vmstat.c 21.2 KB
Newer Older
1 2 3 4 5
/*
 *  linux/mm/vmstat.c
 *
 *  Manages VM statistics
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6 7 8 9
 *
 *  zoned VM statistics
 *  Copyright (C) 2006 Silicon Graphics, Inc.,
 *		Christoph Lameter <christoph@lameter.com>
10 11 12
 */

#include <linux/mm.h>
A
Alexey Dobriyan 已提交
13
#include <linux/err.h>
14
#include <linux/module.h>
15
#include <linux/cpu.h>
A
Adrian Bunk 已提交
16
#include <linux/vmstat.h>
A
Alexey Dobriyan 已提交
17
#include <linux/sched.h>
18

19 20 21 22 23 24
#ifdef CONFIG_VM_EVENT_COUNTERS
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
EXPORT_PER_CPU_SYMBOL(vm_event_states);

static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask)
{
C
Christoph Lameter 已提交
25
	int cpu;
26 27 28 29
	int i;

	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));

30
	for_each_cpu_mask_nr(cpu, *cpumask) {
31 32 33 34 35 36 37 38 39 40 41 42 43 44
		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);

		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			ret[i] += this->event[i];
	}
}

/*
 * Accumulate the vm event counters across all CPUs.
 * The result is unavoidably approximate - it can change
 * during and after execution of this function.
*/
void all_vm_events(unsigned long *ret)
{
K
KOSAKI Motohiro 已提交
45
	get_online_cpus();
46
	sum_vm_events(ret, &cpu_online_map);
K
KOSAKI Motohiro 已提交
47
	put_online_cpus();
48
}
49
EXPORT_SYMBOL_GPL(all_vm_events);
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

#ifdef CONFIG_HOTPLUG
/*
 * Fold the foreign cpu events into our own.
 *
 * This is adding to the events on one processor
 * but keeps the global counts constant.
 */
void vm_events_fold_cpu(int cpu)
{
	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
	int i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		count_vm_events(i, fold_state->event[i]);
		fold_state->event[i] = 0;
	}
}
#endif /* CONFIG_HOTPLUG */

#endif /* CONFIG_VM_EVENT_COUNTERS */

72 73 74 75 76 77 78 79 80 81
/*
 * Manage combined zone based / global counters
 *
 * vm_stat contains the global counters
 */
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
EXPORT_SYMBOL(vm_stat);

#ifdef CONFIG_SMP

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
static int calculate_threshold(struct zone *zone)
{
	int threshold;
	int mem;	/* memory in 128 MB units */

	/*
	 * The threshold scales with the number of processors and the amount
	 * of memory per zone. More memory means that we can defer updates for
	 * longer, more processors could lead to more contention.
 	 * fls() is used to have a cheap way of logarithmic scaling.
	 *
	 * Some sample thresholds:
	 *
	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
	 * ------------------------------------------------------------------
	 * 8		1		1	0.9-1 GB	4
	 * 16		2		2	0.9-1 GB	4
	 * 20 		2		2	1-2 GB		5
	 * 24		2		2	2-4 GB		6
	 * 28		2		2	4-8 GB		7
	 * 32		2		2	8-16 GB		8
	 * 4		2		2	<128M		1
	 * 30		4		3	2-4 GB		5
	 * 48		4		3	8-16 GB		8
	 * 32		8		4	1-2 GB		4
	 * 32		8		4	0.9-1GB		4
	 * 10		16		5	<128M		1
	 * 40		16		5	900M		4
	 * 70		64		7	2-4 GB		5
	 * 84		64		7	4-8 GB		6
	 * 108		512		9	4-8 GB		6
	 * 125		1024		10	8-16 GB		8
	 * 125		1024		10	16-32 GB	9
	 */

	mem = zone->present_pages >> (27 - PAGE_SHIFT);

	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}
128 129

/*
130
 * Refresh the thresholds for each zone.
131
 */
132
static void refresh_zone_stat_thresholds(void)
133
{
134 135 136 137 138 139 140 141 142 143 144 145 146 147
	struct zone *zone;
	int cpu;
	int threshold;

	for_each_zone(zone) {

		if (!zone->present_pages)
			continue;

		threshold = calculate_threshold(zone);

		for_each_online_cpu(cpu)
			zone_pcp(zone, cpu)->stat_threshold = threshold;
	}
148 149 150 151 152 153 154 155
}

/*
 * For use when we know that interrupts are disabled.
 */
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
				int delta)
{
156 157
	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
	s8 *p = pcp->vm_stat_diff + item;
158 159 160 161
	long x;

	x = delta + *p;

162
	if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
		zone_page_state_add(x, zone, item);
		x = 0;
	}
	*p = x;
}
EXPORT_SYMBOL(__mod_zone_page_state);

/*
 * For an unknown interrupt state
 */
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
					int delta)
{
	unsigned long flags;

	local_irq_save(flags);
	__mod_zone_page_state(zone, item, delta);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_zone_page_state);

/*
 * Optimized increment and decrement functions.
 *
 * These are only for a single page and therefore can take a struct page *
 * argument instead of struct zone *. This allows the inclusion of the code
 * generated for page_zone(page) into the optimized functions.
 *
 * No overflow check is necessary and therefore the differential can be
 * incremented or decremented in place which may allow the compilers to
 * generate better code.
 * The increment or decrement is known and therefore one boundary check can
 * be omitted.
 *
197 198 199
 * NOTE: These functions are very performance sensitive. Change only
 * with care.
 *
200 201 202 203 204 205 206
 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 * However, the code must first determine the differential location in a zone
 * based on the processor number and then inc/dec the counter. There is no
 * guarantee without disabling preemption that the processor will not change
 * in between and therefore the atomicity vs. interrupt cannot be exploited
 * in a useful way here.
 */
207
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
208
{
209 210
	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
	s8 *p = pcp->vm_stat_diff + item;
211 212 213

	(*p)++;

214 215 216 217 218
	if (unlikely(*p > pcp->stat_threshold)) {
		int overstep = pcp->stat_threshold / 2;

		zone_page_state_add(*p + overstep, zone, item);
		*p = -overstep;
219 220
	}
}
221 222 223 224 225

void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__inc_zone_state(page_zone(page), item);
}
226 227
EXPORT_SYMBOL(__inc_zone_page_state);

228
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
229
{
230 231
	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
	s8 *p = pcp->vm_stat_diff + item;
232 233 234

	(*p)--;

235 236 237 238 239
	if (unlikely(*p < - pcp->stat_threshold)) {
		int overstep = pcp->stat_threshold / 2;

		zone_page_state_add(*p - overstep, zone, item);
		*p = overstep;
240 241
	}
}
242 243 244 245 246

void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__dec_zone_state(page_zone(page), item);
}
247 248
EXPORT_SYMBOL(__dec_zone_page_state);

249 250 251 252 253 254 255 256 257
void inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
	__inc_zone_state(zone, item);
	local_irq_restore(flags);
}

258 259 260 261 262 263 264
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;
	struct zone *zone;

	zone = page_zone(page);
	local_irq_save(flags);
265
	__inc_zone_state(zone, item);
266 267 268 269 270 271 272 273 274
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
275
	__dec_zone_page_state(page, item);
276 277 278 279 280 281
	local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_zone_page_state);

/*
 * Update the zone counters for one cpu.
282
 *
283 284 285 286
 * The cpu specified must be either the current cpu or a processor that
 * is not online. If it is the current cpu then the execution thread must
 * be pinned to the current cpu.
 *
287 288 289 290 291 292 293 294 295 296
 * Note that refresh_cpu_vm_stats strives to only access
 * node local memory. The per cpu pagesets on remote zones are placed
 * in the memory local to the processor using that pageset. So the
 * loop over all zones will access a series of cachelines local to
 * the processor.
 *
 * The call to zone_page_state_add updates the cachelines with the
 * statistics in the remote zone struct as well as the global cachelines
 * with the global counters. These could cause remote node cache line
 * bouncing and will have to be only done when necessary.
297 298 299 300 301
 */
void refresh_cpu_vm_stats(int cpu)
{
	struct zone *zone;
	int i;
302
	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
303 304

	for_each_zone(zone) {
305
		struct per_cpu_pageset *p;
306

307 308 309
		if (!populated_zone(zone))
			continue;

310
		p = zone_pcp(zone, cpu);
311 312

		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
313
			if (p->vm_stat_diff[i]) {
314 315 316
				unsigned long flags;
				int v;

317
				local_irq_save(flags);
318
				v = p->vm_stat_diff[i];
319
				p->vm_stat_diff[i] = 0;
320 321 322
				local_irq_restore(flags);
				atomic_long_add(v, &zone->vm_stat[i]);
				global_diff[i] += v;
323 324 325 326
#ifdef CONFIG_NUMA
				/* 3 seconds idle till flush */
				p->expire = 3;
#endif
327
			}
328
		cond_resched();
329 330 331 332 333 334 335 336
#ifdef CONFIG_NUMA
		/*
		 * Deal with draining the remote pageset of this
		 * processor
		 *
		 * Check if there are pages remaining in this pageset
		 * if not then there is nothing to expire.
		 */
337
		if (!p->expire || !p->pcp.count)
338 339 340 341 342 343 344 345 346 347 348 349 350 351
			continue;

		/*
		 * We never drain zones local to this processor.
		 */
		if (zone_to_nid(zone) == numa_node_id()) {
			p->expire = 0;
			continue;
		}

		p->expire--;
		if (p->expire)
			continue;

352 353
		if (p->pcp.count)
			drain_zone_pages(zone, &p->pcp);
354
#endif
355
	}
356 357 358 359

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		if (global_diff[i])
			atomic_long_add(global_diff[i], &vm_stat[i]);
360 361 362 363
}

#endif

364 365 366 367 368 369 370
#ifdef CONFIG_NUMA
/*
 * zonelist = the list of zones passed to the allocator
 * z 	    = the zone from which the allocation occurred.
 *
 * Must be called with interrupts disabled.
 */
371
void zone_statistics(struct zone *preferred_zone, struct zone *z)
372
{
373
	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
374 375 376
		__inc_zone_state(z, NUMA_HIT);
	} else {
		__inc_zone_state(z, NUMA_MISS);
377
		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
378
	}
379
	if (z->node == numa_node_id())
380 381 382 383 384 385
		__inc_zone_state(z, NUMA_LOCAL);
	else
		__inc_zone_state(z, NUMA_OTHER);
}
#endif

386 387 388 389
#ifdef CONFIG_PROC_FS

#include <linux/seq_file.h>

390 391 392 393 394
static char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Reclaimable",
	"Movable",
	"Reserve",
395
	"Isolate",
396 397
};

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
static void *frag_start(struct seq_file *m, loff_t *pos)
{
	pg_data_t *pgdat;
	loff_t node = *pos;
	for (pgdat = first_online_pgdat();
	     pgdat && node;
	     pgdat = next_online_pgdat(pgdat))
		--node;

	return pgdat;
}

static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	(*pos)++;
	return next_online_pgdat(pgdat);
}

static void frag_stop(struct seq_file *m, void *arg)
{
}

422 423 424
/* Walk all the zones in a node and print using a callback */
static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
425 426 427 428 429 430 431 432 433 434
{
	struct zone *zone;
	struct zone *node_zones = pgdat->node_zones;
	unsigned long flags;

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;

		spin_lock_irqsave(&zone->lock, flags);
435
		print(m, pgdat, zone);
436
		spin_unlock_irqrestore(&zone->lock, flags);
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	}
}

static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
						struct zone *zone)
{
	int order;

	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
	seq_putc(m, '\n');
}

/*
 * This walks the free areas for each zone.
 */
static int frag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	walk_zones_in_node(m, pgdat, frag_show_print);
	return 0;
}

static void pagetypeinfo_showfree_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int order, mtype;

	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
		seq_printf(m, "Node %4d, zone %8s, type %12s ",
					pgdat->node_id,
					zone->name,
					migratetype_names[mtype]);
		for (order = 0; order < MAX_ORDER; ++order) {
			unsigned long freecount = 0;
			struct free_area *area;
			struct list_head *curr;

			area = &(zone->free_area[order]);

			list_for_each(curr, &area->free_list[mtype])
				freecount++;
			seq_printf(m, "%6lu ", freecount);
		}
482 483
		seq_putc(m, '\n');
	}
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
}

/* Print out the free pages at each order for each migatetype */
static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
{
	int order;
	pg_data_t *pgdat = (pg_data_t *)arg;

	/* Print header */
	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6d ", order);
	seq_putc(m, '\n');

	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);

	return 0;
}

static void pagetypeinfo_showblockcount_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int mtype;
	unsigned long pfn;
	unsigned long start_pfn = zone->zone_start_pfn;
	unsigned long end_pfn = start_pfn + zone->spanned_pages;
	unsigned long count[MIGRATE_TYPES] = { 0, };

	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
#ifdef CONFIG_ARCH_FLATMEM_HAS_HOLES
		/*
		 * Ordinarily, memory holes in flatmem still have a valid
		 * memmap for the PFN range. However, an architecture for
		 * embedded systems (e.g. ARM) can free up the memmap backing
		 * holes to save memory on the assumption the memmap is
		 * never used. The page_zone linkages are then broken even
		 * though pfn_valid() returns true. Skip the page if the
		 * linkages are broken. Even if this test passed, the impact
		 * is that the counters for the movable type are off but
		 * fragmentation monitoring is likely meaningless on small
		 * systems.
		 */
		if (page_zone(page) != zone)
			continue;
#endif
535 536
		mtype = get_pageblock_migratetype(page);

537 538
		if (mtype < MIGRATE_TYPES)
			count[mtype]++;
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	}

	/* Print counts */
	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12lu ", count[mtype]);
	seq_putc(m, '\n');
}

/* Print out the free pages at each order for each migratetype */
static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
{
	int mtype;
	pg_data_t *pgdat = (pg_data_t *)arg;

	seq_printf(m, "\n%-23s", "Number of blocks type ");
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12s ", migratetype_names[mtype]);
	seq_putc(m, '\n');
	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);

	return 0;
}

/*
 * This prints out statistics in relation to grouping pages by mobility.
 * It is expensive to collect so do not constantly read the file.
 */
static int pagetypeinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

571 572 573 574
	/* check memoryless node */
	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
		return 0;

575 576 577 578 579 580
	seq_printf(m, "Page block order: %d\n", pageblock_order);
	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
	seq_putc(m, '\n');
	pagetypeinfo_showfree(m, pgdat);
	pagetypeinfo_showblockcount(m, pgdat);

581 582 583
	return 0;
}

584
const struct seq_operations fragmentation_op = {
585 586 587 588 589 590
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= frag_show,
};

591 592 593 594 595 596 597
const struct seq_operations pagetypeinfo_op = {
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= pagetypeinfo_show,
};

598 599 600 601 602 603
#ifdef CONFIG_ZONE_DMA
#define TEXT_FOR_DMA(xx) xx "_dma",
#else
#define TEXT_FOR_DMA(xx)
#endif

604 605 606 607 608 609 610 611 612 613 614 615
#ifdef CONFIG_ZONE_DMA32
#define TEXT_FOR_DMA32(xx) xx "_dma32",
#else
#define TEXT_FOR_DMA32(xx)
#endif

#ifdef CONFIG_HIGHMEM
#define TEXT_FOR_HIGHMEM(xx) xx "_high",
#else
#define TEXT_FOR_HIGHMEM(xx)
#endif

616
#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
M
Mel Gorman 已提交
617
					TEXT_FOR_HIGHMEM(xx) xx "_movable",
618

619
static const char * const vmstat_text[] = {
620
	/* Zoned VM counters */
621
	"nr_free_pages",
622 623 624 625
	"nr_inactive_anon",
	"nr_active_anon",
	"nr_inactive_file",
	"nr_active_file",
L
Lee Schermerhorn 已提交
626 627
#ifdef CONFIG_UNEVICTABLE_LRU
	"nr_unevictable",
N
Nick Piggin 已提交
628
	"nr_mlock",
L
Lee Schermerhorn 已提交
629
#endif
630
	"nr_anon_pages",
631
	"nr_mapped",
632
	"nr_file_pages",
633 634
	"nr_dirty",
	"nr_writeback",
635 636
	"nr_slab_reclaimable",
	"nr_slab_unreclaimable",
637
	"nr_page_table_pages",
638
	"nr_unstable",
639
	"nr_bounce",
640
	"nr_vmscan_write",
641
	"nr_writeback_temp",
642

643 644 645 646 647 648 649 650 651
#ifdef CONFIG_NUMA
	"numa_hit",
	"numa_miss",
	"numa_foreign",
	"numa_interleave",
	"numa_local",
	"numa_other",
#endif

652
#ifdef CONFIG_VM_EVENT_COUNTERS
653 654 655 656 657
	"pgpgin",
	"pgpgout",
	"pswpin",
	"pswpout",

658
	TEXTS_FOR_ZONES("pgalloc")
659 660 661 662 663 664 665 666

	"pgfree",
	"pgactivate",
	"pgdeactivate",

	"pgfault",
	"pgmajfault",

667 668 669 670
	TEXTS_FOR_ZONES("pgrefill")
	TEXTS_FOR_ZONES("pgsteal")
	TEXTS_FOR_ZONES("pgscan_kswapd")
	TEXTS_FOR_ZONES("pgscan_direct")
671 672 673 674 675 676 677 678 679

	"pginodesteal",
	"slabs_scanned",
	"kswapd_steal",
	"kswapd_inodesteal",
	"pageoutrun",
	"allocstall",

	"pgrotated",
680 681 682 683
#ifdef CONFIG_HUGETLB_PAGE
	"htlb_buddy_alloc_success",
	"htlb_buddy_alloc_fail",
#endif
684 685 686 687
#ifdef CONFIG_UNEVICTABLE_LRU
	"unevictable_pgs_culled",
	"unevictable_pgs_scanned",
	"unevictable_pgs_rescued",
N
Nick Piggin 已提交
688 689 690 691
	"unevictable_pgs_mlocked",
	"unevictable_pgs_munlocked",
	"unevictable_pgs_cleared",
	"unevictable_pgs_stranded",
692
#endif
693
#endif
694 695
};

696 697
static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
							struct zone *zone)
698
{
699 700 701 702 703 704 705
	int i;
	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
	seq_printf(m,
		   "\n  pages free     %lu"
		   "\n        min      %lu"
		   "\n        low      %lu"
		   "\n        high     %lu"
706
		   "\n        scanned  %lu (aa: %lu ia: %lu af: %lu if: %lu)"
707 708 709 710 711 712 713
		   "\n        spanned  %lu"
		   "\n        present  %lu",
		   zone_page_state(zone, NR_FREE_PAGES),
		   zone->pages_min,
		   zone->pages_low,
		   zone->pages_high,
		   zone->pages_scanned,
714 715 716 717
		   zone->lru[LRU_ACTIVE_ANON].nr_scan,
		   zone->lru[LRU_INACTIVE_ANON].nr_scan,
		   zone->lru[LRU_ACTIVE_FILE].nr_scan,
		   zone->lru[LRU_INACTIVE_FILE].nr_scan,
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
		   zone->spanned_pages,
		   zone->present_pages);

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
				zone_page_state(zone, i));

	seq_printf(m,
		   "\n        protection: (%lu",
		   zone->lowmem_reserve[0]);
	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
	seq_printf(m,
		   ")"
		   "\n  pagesets");
	for_each_online_cpu(i) {
		struct per_cpu_pageset *pageset;

		pageset = zone_pcp(zone, i);
737 738 739 740 741 742 743 744 745
		seq_printf(m,
			   "\n    cpu: %i"
			   "\n              count: %i"
			   "\n              high:  %i"
			   "\n              batch: %i",
			   i,
			   pageset->pcp.count,
			   pageset->pcp.high,
			   pageset->pcp.batch);
746
#ifdef CONFIG_SMP
747 748
		seq_printf(m, "\n  vm stats threshold: %d",
				pageset->stat_threshold);
749
#endif
750
	}
751 752 753
	seq_printf(m,
		   "\n  all_unreclaimable: %u"
		   "\n  prev_priority:     %i"
754 755
		   "\n  start_pfn:         %lu"
		   "\n  inactive_ratio:    %u",
756
			   zone_is_all_unreclaimable(zone),
757
		   zone->prev_priority,
758 759
		   zone->zone_start_pfn,
		   zone->inactive_ratio);
760 761 762 763 764 765 766 767 768 769
	seq_putc(m, '\n');
}

/*
 * Output information about zones in @pgdat.
 */
static int zoneinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
770 771 772
	return 0;
}

773
const struct seq_operations zoneinfo_op = {
774 775 776 777 778 779 780 781 782
	.start	= frag_start, /* iterate over all zones. The same as in
			       * fragmentation. */
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= zoneinfo_show,
};

static void *vmstat_start(struct seq_file *m, loff_t *pos)
{
783
	unsigned long *v;
784 785 786
#ifdef CONFIG_VM_EVENT_COUNTERS
	unsigned long *e;
#endif
787
	int i;
788 789 790 791

	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;

792
#ifdef CONFIG_VM_EVENT_COUNTERS
793
	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
794 795 796 797 798
			+ sizeof(struct vm_event_state), GFP_KERNEL);
#else
	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
			GFP_KERNEL);
#endif
799 800
	m->private = v;
	if (!v)
801
		return ERR_PTR(-ENOMEM);
802 803
	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		v[i] = global_page_state(i);
804 805 806 807 808 809
#ifdef CONFIG_VM_EVENT_COUNTERS
	e = v + NR_VM_ZONE_STAT_ITEMS;
	all_vm_events(e);
	e[PGPGIN] /= 2;		/* sectors -> kbytes */
	e[PGPGOUT] /= 2;
#endif
810
	return v + *pos;
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
}

static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
{
	(*pos)++;
	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;
	return (unsigned long *)m->private + *pos;
}

static int vmstat_show(struct seq_file *m, void *arg)
{
	unsigned long *l = arg;
	unsigned long off = l - (unsigned long *)m->private;

	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
	return 0;
}

static void vmstat_stop(struct seq_file *m, void *arg)
{
	kfree(m->private);
	m->private = NULL;
}

836
const struct seq_operations vmstat_op = {
837 838 839 840 841 842 843 844
	.start	= vmstat_start,
	.next	= vmstat_next,
	.stop	= vmstat_stop,
	.show	= vmstat_show,
};

#endif /* CONFIG_PROC_FS */

845
#ifdef CONFIG_SMP
846
static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
847
int sysctl_stat_interval __read_mostly = HZ;
848 849 850 851

static void vmstat_update(struct work_struct *w)
{
	refresh_cpu_vm_stats(smp_processor_id());
852 853
	schedule_delayed_work(&__get_cpu_var(vmstat_work),
		sysctl_stat_interval);
854 855
}

856
static void __cpuinit start_cpu_timer(int cpu)
857 858 859
{
	struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);

860
	INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
861 862 863
	schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
}

864 865 866 867 868 869 870 871
/*
 * Use the cpu notifier to insure that the thresholds are recalculated
 * when necessary.
 */
static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
		unsigned long action,
		void *hcpu)
{
872 873
	long cpu = (long)hcpu;

874
	switch (action) {
875 876 877 878 879 880 881 882 883 884 885 886 887
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		start_cpu_timer(cpu);
		break;
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
		cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
		per_cpu(vmstat_work, cpu).work.func = NULL;
		break;
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
		start_cpu_timer(cpu);
		break;
888
	case CPU_DEAD:
889
	case CPU_DEAD_FROZEN:
890 891 892 893
		refresh_zone_stat_thresholds();
		break;
	default:
		break;
894 895 896 897 898 899 900
	}
	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata vmstat_notifier =
	{ &vmstat_cpuup_callback, NULL, 0 };

A
Adrian Bunk 已提交
901
static int __init setup_vmstat(void)
902
{
903 904
	int cpu;

905 906
	refresh_zone_stat_thresholds();
	register_cpu_notifier(&vmstat_notifier);
907 908 909

	for_each_online_cpu(cpu)
		start_cpu_timer(cpu);
910 911 912 913
	return 0;
}
module_init(setup_vmstat)
#endif