book3s_32_mmu_host.c 12.0 KB
Newer Older
A
Alexander Graf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/*
 * Copyright (C) 2010 SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *     Alexander Graf <agraf@suse.de>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

#include <linux/kvm_host.h>

#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu-hash32.h>
#include <asm/machdep.h>
#include <asm/mmu_context.h>
#include <asm/hw_irq.h>

/* #define DEBUG_MMU */
/* #define DEBUG_SR */

#ifdef DEBUG_MMU
#define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__)
#else
#define dprintk_mmu(a, ...) do { } while(0)
#endif

#ifdef DEBUG_SR
#define dprintk_sr(a, ...) printk(KERN_INFO a, __VA_ARGS__)
#else
#define dprintk_sr(a, ...) do { } while(0)
#endif

#if PAGE_SHIFT != 12
#error Unknown page size
#endif

#ifdef CONFIG_SMP
#error XXX need to grab mmu_hash_lock
#endif

#ifdef CONFIG_PTE_64BIT
#error Only 32 bit pages are supported for now
#endif

static void invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
{
	volatile u32 *pteg;

	dprintk_mmu("KVM: Flushing SPTE: 0x%llx (0x%llx) -> 0x%llx\n",
		    pte->pte.eaddr, pte->pte.vpage, pte->host_va);

	pteg = (u32*)pte->slot;

	pteg[0] = 0;
	asm volatile ("sync");
	asm volatile ("tlbie %0" : : "r" (pte->pte.eaddr) : "memory");
	asm volatile ("sync");
	asm volatile ("tlbsync");

	pte->host_va = 0;

	if (pte->pte.may_write)
		kvm_release_pfn_dirty(pte->pfn);
	else
		kvm_release_pfn_clean(pte->pfn);
}

A
Alexander Graf 已提交
80
void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong guest_ea, ulong ea_mask)
A
Alexander Graf 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
{
	int i;

	dprintk_mmu("KVM: Flushing %d Shadow PTEs: 0x%x & 0x%x\n",
		    vcpu->arch.hpte_cache_offset, guest_ea, ea_mask);
	BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM);

	guest_ea &= ea_mask;
	for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) {
		struct hpte_cache *pte;

		pte = &vcpu->arch.hpte_cache[i];
		if (!pte->host_va)
			continue;

		if ((pte->pte.eaddr & ea_mask) == guest_ea) {
			invalidate_pte(vcpu, pte);
		}
	}

	/* Doing a complete flush -> start from scratch */
	if (!ea_mask)
		vcpu->arch.hpte_cache_offset = 0;
}

void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 guest_vp, u64 vp_mask)
{
	int i;

	dprintk_mmu("KVM: Flushing %d Shadow vPTEs: 0x%llx & 0x%llx\n",
		    vcpu->arch.hpte_cache_offset, guest_vp, vp_mask);
	BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM);

	guest_vp &= vp_mask;
	for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) {
		struct hpte_cache *pte;

		pte = &vcpu->arch.hpte_cache[i];
		if (!pte->host_va)
			continue;

		if ((pte->pte.vpage & vp_mask) == guest_vp) {
			invalidate_pte(vcpu, pte);
		}
	}
}

A
Alexander Graf 已提交
128
void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
A
Alexander Graf 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
{
	int i;

	dprintk_mmu("KVM: Flushing %d Shadow pPTEs: 0x%llx & 0x%llx\n",
		    vcpu->arch.hpte_cache_offset, pa_start, pa_end);
	BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM);

	for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) {
		struct hpte_cache *pte;

		pte = &vcpu->arch.hpte_cache[i];
		if (!pte->host_va)
			continue;

		if ((pte->pte.raddr >= pa_start) &&
		    (pte->pte.raddr < pa_end)) {
			invalidate_pte(vcpu, pte);
		}
	}
}

struct kvmppc_pte *kvmppc_mmu_find_pte(struct kvm_vcpu *vcpu, u64 ea, bool data)
{
	int i;
	u64 guest_vp;

	guest_vp = vcpu->arch.mmu.ea_to_vp(vcpu, ea, false);
	for (i=0; i<vcpu->arch.hpte_cache_offset; i++) {
		struct hpte_cache *pte;

		pte = &vcpu->arch.hpte_cache[i];
		if (!pte->host_va)
			continue;

		if (pte->pte.vpage == guest_vp)
			return &pte->pte;
	}

	return NULL;
}

static int kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.hpte_cache_offset == HPTEG_CACHE_NUM)
		kvmppc_mmu_pte_flush(vcpu, 0, 0);

	return vcpu->arch.hpte_cache_offset++;
}

/* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
 * a hash, so we don't waste cycles on looping */
static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
{
	return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
		     ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
		     ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
		     ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
		     ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
		     ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
		     ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
		     ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
}


static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
{
	struct kvmppc_sid_map *map;
	u16 sid_map_mask;

	if (vcpu->arch.msr & MSR_PR)
		gvsid |= VSID_PR;

	sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
	map = &to_book3s(vcpu)->sid_map[sid_map_mask];
	if (map->guest_vsid == gvsid) {
		dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n",
			    gvsid, map->host_vsid);
		return map;
	}

	map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
	if (map->guest_vsid == gvsid) {
		dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n",
			    gvsid, map->host_vsid);
		return map;
	}

	dprintk_sr("SR: Searching 0x%llx -> not found\n", gvsid);
	return NULL;
}

extern struct hash_pte *Hash;
extern unsigned long _SDR1;

static u32 *kvmppc_mmu_get_pteg(struct kvm_vcpu *vcpu, u32 vsid, u32 eaddr,
				bool primary)
{
	u32 page, hash, htabmask;
	ulong pteg = (ulong)Hash;

	page = (eaddr & ~ESID_MASK) >> 12;

	hash = ((vsid ^ page) << 6);
	if (!primary)
		hash = ~hash;

	htabmask = ((_SDR1 & 0x1FF) << 16) | 0xFFC0;
	hash &= htabmask;

	pteg |= hash;

	dprintk_mmu("htab: %p | hash: %x | htabmask: %x | pteg: %lx\n",
		Hash, hash, htabmask, pteg);

	return (u32*)pteg;
}

extern char etext[];

int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
{
	pfn_t hpaddr;
	u64 va;
	u64 vsid;
	struct kvmppc_sid_map *map;
	volatile u32 *pteg;
	u32 eaddr = orig_pte->eaddr;
	u32 pteg0, pteg1;
	register int rr = 0;
	bool primary = false;
	bool evict = false;
	int hpte_id;
	struct hpte_cache *pte;

	/* Get host physical address for gpa */
	hpaddr = gfn_to_pfn(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
	if (kvm_is_error_hva(hpaddr)) {
A
Alexander Graf 已提交
266
		printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n",
A
Alexander Graf 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
				 orig_pte->eaddr);
		return -EINVAL;
	}
	hpaddr <<= PAGE_SHIFT;

	/* and write the mapping ea -> hpa into the pt */
	vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
	map = find_sid_vsid(vcpu, vsid);
	if (!map) {
		kvmppc_mmu_map_segment(vcpu, eaddr);
		map = find_sid_vsid(vcpu, vsid);
	}
	BUG_ON(!map);

	vsid = map->host_vsid;
	va = (vsid << SID_SHIFT) | (eaddr & ~ESID_MASK);

next_pteg:
	if (rr == 16) {
		primary = !primary;
		evict = true;
		rr = 0;
	}

	pteg = kvmppc_mmu_get_pteg(vcpu, vsid, eaddr, primary);

	/* not evicting yet */
	if (!evict && (pteg[rr] & PTE_V)) {
		rr += 2;
		goto next_pteg;
	}

	dprintk_mmu("KVM: old PTEG: %p (%d)\n", pteg, rr);
	dprintk_mmu("KVM:   %08x - %08x\n", pteg[0], pteg[1]);
	dprintk_mmu("KVM:   %08x - %08x\n", pteg[2], pteg[3]);
	dprintk_mmu("KVM:   %08x - %08x\n", pteg[4], pteg[5]);
	dprintk_mmu("KVM:   %08x - %08x\n", pteg[6], pteg[7]);
	dprintk_mmu("KVM:   %08x - %08x\n", pteg[8], pteg[9]);
	dprintk_mmu("KVM:   %08x - %08x\n", pteg[10], pteg[11]);
	dprintk_mmu("KVM:   %08x - %08x\n", pteg[12], pteg[13]);
	dprintk_mmu("KVM:   %08x - %08x\n", pteg[14], pteg[15]);

	pteg0 = ((eaddr & 0x0fffffff) >> 22) | (vsid << 7) | PTE_V |
		(primary ? 0 : PTE_SEC);
	pteg1 = hpaddr | PTE_M | PTE_R | PTE_C;

	if (orig_pte->may_write) {
		pteg1 |= PP_RWRW;
		mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
	} else {
		pteg1 |= PP_RWRX;
	}

	local_irq_disable();

	if (pteg[rr]) {
		pteg[rr] = 0;
		asm volatile ("sync");
	}
	pteg[rr + 1] = pteg1;
	pteg[rr] = pteg0;
	asm volatile ("sync");

	local_irq_enable();

	dprintk_mmu("KVM: new PTEG: %p\n", pteg);
	dprintk_mmu("KVM:   %08x - %08x\n", pteg[0], pteg[1]);
	dprintk_mmu("KVM:   %08x - %08x\n", pteg[2], pteg[3]);
	dprintk_mmu("KVM:   %08x - %08x\n", pteg[4], pteg[5]);
	dprintk_mmu("KVM:   %08x - %08x\n", pteg[6], pteg[7]);
	dprintk_mmu("KVM:   %08x - %08x\n", pteg[8], pteg[9]);
	dprintk_mmu("KVM:   %08x - %08x\n", pteg[10], pteg[11]);
	dprintk_mmu("KVM:   %08x - %08x\n", pteg[12], pteg[13]);
	dprintk_mmu("KVM:   %08x - %08x\n", pteg[14], pteg[15]);


	/* Now tell our Shadow PTE code about the new page */

	hpte_id = kvmppc_mmu_hpte_cache_next(vcpu);
	pte = &vcpu->arch.hpte_cache[hpte_id];

	dprintk_mmu("KVM: %c%c Map 0x%llx: [%lx] 0x%llx (0x%llx) -> %lx\n",
		    orig_pte->may_write ? 'w' : '-',
		    orig_pte->may_execute ? 'x' : '-',
		    orig_pte->eaddr, (ulong)pteg, va,
		    orig_pte->vpage, hpaddr);

	pte->slot = (ulong)&pteg[rr];
	pte->host_va = va;
	pte->pte = *orig_pte;
	pte->pfn = hpaddr >> PAGE_SHIFT;

	return 0;
}

static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
{
	struct kvmppc_sid_map *map;
	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
	u16 sid_map_mask;
	static int backwards_map = 0;

	if (vcpu->arch.msr & MSR_PR)
		gvsid |= VSID_PR;

	/* We might get collisions that trap in preceding order, so let's
	   map them differently */

	sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
	if (backwards_map)
		sid_map_mask = SID_MAP_MASK - sid_map_mask;

	map = &to_book3s(vcpu)->sid_map[sid_map_mask];

	/* Make sure we're taking the other map next time */
	backwards_map = !backwards_map;

	/* Uh-oh ... out of mappings. Let's flush! */
	if (vcpu_book3s->vsid_next >= vcpu_book3s->vsid_max) {
		vcpu_book3s->vsid_next = vcpu_book3s->vsid_first;
		memset(vcpu_book3s->sid_map, 0,
		       sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
		kvmppc_mmu_pte_flush(vcpu, 0, 0);
		kvmppc_mmu_flush_segments(vcpu);
	}
	map->host_vsid = vcpu_book3s->vsid_next;

	/* Would have to be 111 to be completely aligned with the rest of
	   Linux, but that is just way too little space! */
	vcpu_book3s->vsid_next+=1;

	map->guest_vsid = gvsid;
	map->valid = true;

	return map;
}

int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
{
	u32 esid = eaddr >> SID_SHIFT;
	u64 gvsid;
	u32 sr;
	struct kvmppc_sid_map *map;
	struct kvmppc_book3s_shadow_vcpu *svcpu = to_svcpu(vcpu);

	if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
		/* Invalidate an entry */
		svcpu->sr[esid] = SR_INVALID;
		return -ENOENT;
	}

	map = find_sid_vsid(vcpu, gvsid);
	if (!map)
		map = create_sid_map(vcpu, gvsid);

	map->guest_esid = esid;
	sr = map->host_vsid | SR_KP;
	svcpu->sr[esid] = sr;

	dprintk_sr("MMU: mtsr %d, 0x%x\n", esid, sr);

	return 0;
}

void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvmppc_book3s_shadow_vcpu *svcpu = to_svcpu(vcpu);

	dprintk_sr("MMU: flushing all segments (%d)\n", ARRAY_SIZE(svcpu->sr));
	for (i = 0; i < ARRAY_SIZE(svcpu->sr); i++)
		svcpu->sr[i] = SR_INVALID;
}

void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
{
	kvmppc_mmu_pte_flush(vcpu, 0, 0);
	preempt_disable();
	__destroy_context(to_book3s(vcpu)->context_id);
	preempt_enable();
}

/* From mm/mmu_context_hash32.c */
#define CTX_TO_VSID(ctx) (((ctx) * (897 * 16)) & 0xffffff)

int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int err;

	err = __init_new_context();
	if (err < 0)
		return -1;
	vcpu3s->context_id = err;

	vcpu3s->vsid_max = CTX_TO_VSID(vcpu3s->context_id + 1) - 1;
	vcpu3s->vsid_first = CTX_TO_VSID(vcpu3s->context_id);

#if 0 /* XXX still doesn't guarantee uniqueness */
	/* We could collide with the Linux vsid space because the vsid
	 * wraps around at 24 bits. We're safe if we do our own space
	 * though, so let's always set the highest bit. */

	vcpu3s->vsid_max |= 0x00800000;
	vcpu3s->vsid_first |= 0x00800000;
#endif
	BUG_ON(vcpu3s->vsid_max < vcpu3s->vsid_first);

	vcpu3s->vsid_next = vcpu3s->vsid_first;

	return 0;
}