kprobes.c 59.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  Kernel Probes (KProbes)
 *  kernel/kprobes.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2002, 2004
 *
 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
 *		Probes initial implementation (includes suggestions from
 *		Rusty Russell).
 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
 *		hlists and exceptions notifier as suggested by Andi Kleen.
 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 *		interface to access function arguments.
 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
 *		exceptions notifier to be first on the priority list.
30 31 32
 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
 *		<prasanna@in.ibm.com> added function-return probes.
L
Linus Torvalds 已提交
33 34 35 36
 */
#include <linux/kprobes.h>
#include <linux/hash.h>
#include <linux/init.h>
T
Tim Schmielau 已提交
37
#include <linux/slab.h>
R
Randy Dunlap 已提交
38
#include <linux/stddef.h>
39
#include <linux/export.h>
40
#include <linux/moduleloader.h>
41
#include <linux/kallsyms.h>
42
#include <linux/freezer.h>
43 44
#include <linux/seq_file.h>
#include <linux/debugfs.h>
45
#include <linux/sysctl.h>
46
#include <linux/kdebug.h>
47
#include <linux/memory.h>
48
#include <linux/ftrace.h>
49
#include <linux/cpu.h>
50
#include <linux/jump_label.h>
51

52
#include <asm-generic/sections.h>
L
Linus Torvalds 已提交
53 54
#include <asm/cacheflush.h>
#include <asm/errno.h>
55
#include <asm/uaccess.h>
L
Linus Torvalds 已提交
56 57 58 59

#define KPROBE_HASH_BITS 6
#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)

60 61 62 63 64 65 66 67 68 69

/*
 * Some oddball architectures like 64bit powerpc have function descriptors
 * so this must be overridable.
 */
#ifndef kprobe_lookup_name
#define kprobe_lookup_name(name, addr) \
	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
#endif

70
static int kprobes_initialized;
L
Linus Torvalds 已提交
71
static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72
static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
L
Linus Torvalds 已提交
73

74
/* NOTE: change this value only with kprobe_mutex held */
75
static bool kprobes_all_disarmed;
76

77 78
/* This protects kprobe_table and optimizing_list */
static DEFINE_MUTEX(kprobe_mutex);
79
static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80
static struct {
81
	raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 83
} kretprobe_table_locks[KPROBE_TABLE_SIZE];

84
static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 86 87
{
	return &(kretprobe_table_locks[hash].lock);
}
L
Linus Torvalds 已提交
88

89 90 91 92 93 94 95
/*
 * Normally, functions that we'd want to prohibit kprobes in, are marked
 * __kprobes. But, there are cases where such functions already belong to
 * a different section (__sched for preempt_schedule)
 *
 * For such cases, we now have a blacklist
 */
96
static struct kprobe_blackpoint kprobe_blacklist[] = {
97
	{"preempt_schedule",},
98
	{"native_get_debugreg",},
99 100
	{"irq_entries_start",},
	{"common_interrupt",},
101
	{"mcount",},	/* mcount can be called from everywhere */
102 103 104
	{NULL}    /* Terminator */
};

105
#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106 107 108 109 110 111 112
/*
 * kprobe->ainsn.insn points to the copy of the instruction to be
 * single-stepped. x86_64, POWER4 and above have no-exec support and
 * stepping on the instruction on a vmalloced/kmalloced/data page
 * is a recipe for disaster
 */
struct kprobe_insn_page {
113
	struct list_head list;
114 115
	kprobe_opcode_t *insns;		/* Page of instruction slots */
	int nused;
116
	int ngarbage;
117
	char slot_used[];
118 119
};

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
#define KPROBE_INSN_PAGE_SIZE(slots)			\
	(offsetof(struct kprobe_insn_page, slot_used) +	\
	 (sizeof(char) * (slots)))

struct kprobe_insn_cache {
	struct list_head pages;	/* list of kprobe_insn_page */
	size_t insn_size;	/* size of instruction slot */
	int nr_garbage;
};

static int slots_per_page(struct kprobe_insn_cache *c)
{
	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
}

135 136 137 138 139 140
enum kprobe_slot_state {
	SLOT_CLEAN = 0,
	SLOT_DIRTY = 1,
	SLOT_USED = 2,
};

141 142 143 144 145 146 147
static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
static struct kprobe_insn_cache kprobe_insn_slots = {
	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
	.insn_size = MAX_INSN_SIZE,
	.nr_garbage = 0,
};
static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148

149
/**
150
 * __get_insn_slot() - Find a slot on an executable page for an instruction.
151 152
 * We allocate an executable page if there's no room on existing ones.
 */
153
static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154 155 156
{
	struct kprobe_insn_page *kip;

157
 retry:
158 159
	list_for_each_entry(kip, &c->pages, list) {
		if (kip->nused < slots_per_page(c)) {
160
			int i;
161
			for (i = 0; i < slots_per_page(c); i++) {
162 163
				if (kip->slot_used[i] == SLOT_CLEAN) {
					kip->slot_used[i] = SLOT_USED;
164
					kip->nused++;
165
					return kip->insns + (i * c->insn_size);
166 167
				}
			}
168 169 170
			/* kip->nused is broken. Fix it. */
			kip->nused = slots_per_page(c);
			WARN_ON(1);
171 172 173
		}
	}

174
	/* If there are any garbage slots, collect it and try again. */
175
	if (c->nr_garbage && collect_garbage_slots(c) == 0)
176
		goto retry;
177 178 179

	/* All out of space.  Need to allocate a new page. */
	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180
	if (!kip)
181 182 183 184 185 186 187 188 189 190 191 192
		return NULL;

	/*
	 * Use module_alloc so this page is within +/- 2GB of where the
	 * kernel image and loaded module images reside. This is required
	 * so x86_64 can correctly handle the %rip-relative fixups.
	 */
	kip->insns = module_alloc(PAGE_SIZE);
	if (!kip->insns) {
		kfree(kip);
		return NULL;
	}
193
	INIT_LIST_HEAD(&kip->list);
194
	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195
	kip->slot_used[0] = SLOT_USED;
196
	kip->nused = 1;
197
	kip->ngarbage = 0;
198
	list_add(&kip->list, &c->pages);
199 200 201
	return kip->insns;
}

202

203 204
kprobe_opcode_t __kprobes *get_insn_slot(void)
{
205 206
	kprobe_opcode_t *ret = NULL;

207
	mutex_lock(&kprobe_insn_mutex);
208
	ret = __get_insn_slot(&kprobe_insn_slots);
209
	mutex_unlock(&kprobe_insn_mutex);
210

211 212 213
	return ret;
}

214 215 216
/* Return 1 if all garbages are collected, otherwise 0. */
static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
{
217
	kip->slot_used[idx] = SLOT_CLEAN;
218 219 220 221 222 223 224 225
	kip->nused--;
	if (kip->nused == 0) {
		/*
		 * Page is no longer in use.  Free it unless
		 * it's the last one.  We keep the last one
		 * so as not to have to set it up again the
		 * next time somebody inserts a probe.
		 */
226
		if (!list_is_singular(&kip->list)) {
227
			list_del(&kip->list);
228 229 230 231 232 233 234 235
			module_free(NULL, kip->insns);
			kfree(kip);
		}
		return 1;
	}
	return 0;
}

236
static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237
{
238
	struct kprobe_insn_page *kip, *next;
239

240 241
	/* Ensure no-one is interrupted on the garbages */
	synchronize_sched();
242

243
	list_for_each_entry_safe(kip, next, &c->pages, list) {
244 245 246 247
		int i;
		if (kip->ngarbage == 0)
			continue;
		kip->ngarbage = 0;	/* we will collect all garbages */
248
		for (i = 0; i < slots_per_page(c); i++) {
249
			if (kip->slot_used[i] == SLOT_DIRTY &&
250 251 252 253
			    collect_one_slot(kip, i))
				break;
		}
	}
254
	c->nr_garbage = 0;
255 256 257
	return 0;
}

258 259
static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
				       kprobe_opcode_t *slot, int dirty)
260 261 262
{
	struct kprobe_insn_page *kip;

263
	list_for_each_entry(kip, &c->pages, list) {
264 265
		long idx = ((long)slot - (long)kip->insns) /
				(c->insn_size * sizeof(kprobe_opcode_t));
266 267
		if (idx >= 0 && idx < slots_per_page(c)) {
			WARN_ON(kip->slot_used[idx] != SLOT_USED);
268
			if (dirty) {
269
				kip->slot_used[idx] = SLOT_DIRTY;
270
				kip->ngarbage++;
271 272
				if (++c->nr_garbage > slots_per_page(c))
					collect_garbage_slots(c);
273
			} else
274 275
				collect_one_slot(kip, idx);
			return;
276 277
		}
	}
278 279 280
	/* Could not free this slot. */
	WARN_ON(1);
}
281

282 283 284 285
void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
{
	mutex_lock(&kprobe_insn_mutex);
	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
286
	mutex_unlock(&kprobe_insn_mutex);
287
}
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
#ifdef CONFIG_OPTPROBES
/* For optimized_kprobe buffer */
static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
static struct kprobe_insn_cache kprobe_optinsn_slots = {
	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
	/* .insn_size is initialized later */
	.nr_garbage = 0,
};
/* Get a slot for optimized_kprobe buffer */
kprobe_opcode_t __kprobes *get_optinsn_slot(void)
{
	kprobe_opcode_t *ret = NULL;

	mutex_lock(&kprobe_optinsn_mutex);
	ret = __get_insn_slot(&kprobe_optinsn_slots);
	mutex_unlock(&kprobe_optinsn_mutex);

	return ret;
}

void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
{
	mutex_lock(&kprobe_optinsn_mutex);
	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
	mutex_unlock(&kprobe_optinsn_mutex);
}
#endif
315
#endif
316

317 318 319
/* We have preemption disabled.. so it is safe to use __ versions */
static inline void set_kprobe_instance(struct kprobe *kp)
{
C
Christoph Lameter 已提交
320
	__this_cpu_write(kprobe_instance, kp);
321 322 323 324
}

static inline void reset_kprobe_instance(void)
{
C
Christoph Lameter 已提交
325
	__this_cpu_write(kprobe_instance, NULL);
326 327
}

328 329
/*
 * This routine is called either:
330
 * 	- under the kprobe_mutex - during kprobe_[un]register()
331
 * 				OR
332
 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
333
 */
334
struct kprobe __kprobes *get_kprobe(void *addr)
L
Linus Torvalds 已提交
335 336
{
	struct hlist_head *head;
337
	struct kprobe *p;
L
Linus Torvalds 已提交
338 339

	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
340
	hlist_for_each_entry_rcu(p, head, hlist) {
L
Linus Torvalds 已提交
341 342 343
		if (p->addr == addr)
			return p;
	}
344

L
Linus Torvalds 已提交
345 346 347
	return NULL;
}

348 349 350 351 352 353 354 355
static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);

/* Return true if the kprobe is an aggregator */
static inline int kprobe_aggrprobe(struct kprobe *p)
{
	return p->pre_handler == aggr_pre_handler;
}

356 357 358 359 360 361 362
/* Return true(!0) if the kprobe is unused */
static inline int kprobe_unused(struct kprobe *p)
{
	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
	       list_empty(&p->list);
}

363 364 365
/*
 * Keep all fields in the kprobe consistent
 */
366
static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
367
{
368 369
	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
370 371 372
}

#ifdef CONFIG_OPTPROBES
373 374 375
/* NOTE: change this value only with kprobe_mutex held */
static bool kprobes_allow_optimization;

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
/*
 * Call all pre_handler on the list, but ignores its return value.
 * This must be called from arch-dep optimized caller.
 */
void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
	struct kprobe *kp;

	list_for_each_entry_rcu(kp, &p->list, list) {
		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
			set_kprobe_instance(kp);
			kp->pre_handler(kp, regs);
		}
		reset_kprobe_instance();
	}
}

393 394 395 396 397 398 399 400 401 402 403
/* Free optimized instructions and optimized_kprobe */
static __kprobes void free_aggr_kprobe(struct kprobe *p)
{
	struct optimized_kprobe *op;

	op = container_of(p, struct optimized_kprobe, kp);
	arch_remove_optimized_kprobe(op);
	arch_remove_kprobe(p);
	kfree(op);
}

404 405 406 407 408 409 410 411 412 413 414 415 416
/* Return true(!0) if the kprobe is ready for optimization. */
static inline int kprobe_optready(struct kprobe *p)
{
	struct optimized_kprobe *op;

	if (kprobe_aggrprobe(p)) {
		op = container_of(p, struct optimized_kprobe, kp);
		return arch_prepared_optinsn(&op->optinsn);
	}

	return 0;
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
static inline int kprobe_disarmed(struct kprobe *p)
{
	struct optimized_kprobe *op;

	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
	if (!kprobe_aggrprobe(p))
		return kprobe_disabled(p);

	op = container_of(p, struct optimized_kprobe, kp);

	return kprobe_disabled(p) && list_empty(&op->list);
}

/* Return true(!0) if the probe is queued on (un)optimizing lists */
static int __kprobes kprobe_queued(struct kprobe *p)
{
	struct optimized_kprobe *op;

	if (kprobe_aggrprobe(p)) {
		op = container_of(p, struct optimized_kprobe, kp);
		if (!list_empty(&op->list))
			return 1;
	}
	return 0;
}

444 445 446 447
/*
 * Return an optimized kprobe whose optimizing code replaces
 * instructions including addr (exclude breakpoint).
 */
N
Namhyung Kim 已提交
448
static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
{
	int i;
	struct kprobe *p = NULL;
	struct optimized_kprobe *op;

	/* Don't check i == 0, since that is a breakpoint case. */
	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
		p = get_kprobe((void *)(addr - i));

	if (p && kprobe_optready(p)) {
		op = container_of(p, struct optimized_kprobe, kp);
		if (arch_within_optimized_kprobe(op, addr))
			return p;
	}

	return NULL;
}

/* Optimization staging list, protected by kprobe_mutex */
static LIST_HEAD(optimizing_list);
469
static LIST_HEAD(unoptimizing_list);
470
static LIST_HEAD(freeing_list);
471 472 473 474 475

static void kprobe_optimizer(struct work_struct *work);
static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
#define OPTIMIZE_DELAY 5

476 477 478 479 480
/*
 * Optimize (replace a breakpoint with a jump) kprobes listed on
 * optimizing_list.
 */
static __kprobes void do_optimize_kprobes(void)
481
{
482 483 484 485 486
	/* Optimization never be done when disarmed */
	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
	    list_empty(&optimizing_list))
		return;

487 488 489 490 491 492 493 494 495 496 497 498
	/*
	 * The optimization/unoptimization refers online_cpus via
	 * stop_machine() and cpu-hotplug modifies online_cpus.
	 * And same time, text_mutex will be held in cpu-hotplug and here.
	 * This combination can cause a deadlock (cpu-hotplug try to lock
	 * text_mutex but stop_machine can not be done because online_cpus
	 * has been changed)
	 * To avoid this deadlock, we need to call get_online_cpus()
	 * for preventing cpu-hotplug outside of text_mutex locking.
	 */
	get_online_cpus();
	mutex_lock(&text_mutex);
499
	arch_optimize_kprobes(&optimizing_list);
500 501
	mutex_unlock(&text_mutex);
	put_online_cpus();
502 503
}

504 505 506 507
/*
 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 * if need) kprobes listed on unoptimizing_list.
 */
508
static __kprobes void do_unoptimize_kprobes(void)
509 510 511 512 513 514 515 516 517 518
{
	struct optimized_kprobe *op, *tmp;

	/* Unoptimization must be done anytime */
	if (list_empty(&unoptimizing_list))
		return;

	/* Ditto to do_optimize_kprobes */
	get_online_cpus();
	mutex_lock(&text_mutex);
519
	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
520
	/* Loop free_list for disarming */
521
	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
		/* Disarm probes if marked disabled */
		if (kprobe_disabled(&op->kp))
			arch_disarm_kprobe(&op->kp);
		if (kprobe_unused(&op->kp)) {
			/*
			 * Remove unused probes from hash list. After waiting
			 * for synchronization, these probes are reclaimed.
			 * (reclaiming is done by do_free_cleaned_kprobes.)
			 */
			hlist_del_rcu(&op->kp.hlist);
		} else
			list_del_init(&op->list);
	}
	mutex_unlock(&text_mutex);
	put_online_cpus();
}

/* Reclaim all kprobes on the free_list */
540
static __kprobes void do_free_cleaned_kprobes(void)
541 542 543
{
	struct optimized_kprobe *op, *tmp;

544
	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
545 546 547 548 549 550 551 552 553
		BUG_ON(!kprobe_unused(&op->kp));
		list_del_init(&op->list);
		free_aggr_kprobe(&op->kp);
	}
}

/* Start optimizer after OPTIMIZE_DELAY passed */
static __kprobes void kick_kprobe_optimizer(void)
{
554
	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
555 556
}

557 558 559
/* Kprobe jump optimizer */
static __kprobes void kprobe_optimizer(struct work_struct *work)
{
560
	mutex_lock(&kprobe_mutex);
561 562 563 564
	/* Lock modules while optimizing kprobes */
	mutex_lock(&module_mutex);

	/*
565 566 567
	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
	 * kprobes before waiting for quiesence period.
	 */
568
	do_unoptimize_kprobes();
569 570 571

	/*
	 * Step 2: Wait for quiesence period to ensure all running interrupts
572 573 574 575 576 577 578
	 * are done. Because optprobe may modify multiple instructions
	 * there is a chance that Nth instruction is interrupted. In that
	 * case, running interrupt can return to 2nd-Nth byte of jump
	 * instruction. This wait is for avoiding it.
	 */
	synchronize_sched();

579
	/* Step 3: Optimize kprobes after quiesence period */
580
	do_optimize_kprobes();
581 582

	/* Step 4: Free cleaned kprobes after quiesence period */
583
	do_free_cleaned_kprobes();
584

585
	mutex_unlock(&module_mutex);
586
	mutex_unlock(&kprobe_mutex);
587

588
	/* Step 5: Kick optimizer again if needed */
589
	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
590
		kick_kprobe_optimizer();
591 592 593 594 595
}

/* Wait for completing optimization and unoptimization */
static __kprobes void wait_for_kprobe_optimizer(void)
{
596 597 598 599 600 601 602 603 604 605 606 607 608 609
	mutex_lock(&kprobe_mutex);

	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
		mutex_unlock(&kprobe_mutex);

		/* this will also make optimizing_work execute immmediately */
		flush_delayed_work(&optimizing_work);
		/* @optimizing_work might not have been queued yet, relax */
		cpu_relax();

		mutex_lock(&kprobe_mutex);
	}

	mutex_unlock(&kprobe_mutex);
610 611 612 613 614 615 616 617
}

/* Optimize kprobe if p is ready to be optimized */
static __kprobes void optimize_kprobe(struct kprobe *p)
{
	struct optimized_kprobe *op;

	/* Check if the kprobe is disabled or not ready for optimization. */
618
	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	    (kprobe_disabled(p) || kprobes_all_disarmed))
		return;

	/* Both of break_handler and post_handler are not supported. */
	if (p->break_handler || p->post_handler)
		return;

	op = container_of(p, struct optimized_kprobe, kp);

	/* Check there is no other kprobes at the optimized instructions */
	if (arch_check_optimized_kprobe(op) < 0)
		return;

	/* Check if it is already optimized. */
	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
		return;
	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653

	if (!list_empty(&op->list))
		/* This is under unoptimizing. Just dequeue the probe */
		list_del_init(&op->list);
	else {
		list_add(&op->list, &optimizing_list);
		kick_kprobe_optimizer();
	}
}

/* Short cut to direct unoptimizing */
static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
{
	get_online_cpus();
	arch_unoptimize_kprobe(op);
	put_online_cpus();
	if (kprobe_disabled(&op->kp))
		arch_disarm_kprobe(&op->kp);
654 655 656
}

/* Unoptimize a kprobe if p is optimized */
657
static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
658 659 660
{
	struct optimized_kprobe *op;

661 662 663 664 665 666 667 668 669 670 671 672
	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
		return; /* This is not an optprobe nor optimized */

	op = container_of(p, struct optimized_kprobe, kp);
	if (!kprobe_optimized(p)) {
		/* Unoptimized or unoptimizing case */
		if (force && !list_empty(&op->list)) {
			/*
			 * Only if this is unoptimizing kprobe and forced,
			 * forcibly unoptimize it. (No need to unoptimize
			 * unoptimized kprobe again :)
			 */
673
			list_del_init(&op->list);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
			force_unoptimize_kprobe(op);
		}
		return;
	}

	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
	if (!list_empty(&op->list)) {
		/* Dequeue from the optimization queue */
		list_del_init(&op->list);
		return;
	}
	/* Optimized kprobe case */
	if (force)
		/* Forcibly update the code: this is a special case */
		force_unoptimize_kprobe(op);
	else {
		list_add(&op->list, &unoptimizing_list);
		kick_kprobe_optimizer();
692 693 694
	}
}

M
Masami Hiramatsu 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
/* Cancel unoptimizing for reusing */
static void reuse_unused_kprobe(struct kprobe *ap)
{
	struct optimized_kprobe *op;

	BUG_ON(!kprobe_unused(ap));
	/*
	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
	 * there is still a relative jump) and disabled.
	 */
	op = container_of(ap, struct optimized_kprobe, kp);
	if (unlikely(list_empty(&op->list)))
		printk(KERN_WARNING "Warning: found a stray unused "
			"aggrprobe@%p\n", ap->addr);
	/* Enable the probe again */
	ap->flags &= ~KPROBE_FLAG_DISABLED;
	/* Optimize it again (remove from op->list) */
	BUG_ON(!kprobe_optready(ap));
	optimize_kprobe(ap);
}

716 717 718 719 720 721
/* Remove optimized instructions */
static void __kprobes kill_optimized_kprobe(struct kprobe *p)
{
	struct optimized_kprobe *op;

	op = container_of(p, struct optimized_kprobe, kp);
722 723
	if (!list_empty(&op->list))
		/* Dequeue from the (un)optimization queue */
724
		list_del_init(&op->list);
725
	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
726 727 728 729 730 731 732 733 734 735 736 737

	if (kprobe_unused(p)) {
		/* Enqueue if it is unused */
		list_add(&op->list, &freeing_list);
		/*
		 * Remove unused probes from the hash list. After waiting
		 * for synchronization, this probe is reclaimed.
		 * (reclaiming is done by do_free_cleaned_kprobes().)
		 */
		hlist_del_rcu(&op->kp.hlist);
	}

738
	/* Don't touch the code, because it is already freed. */
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
	arch_remove_optimized_kprobe(op);
}

/* Try to prepare optimized instructions */
static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
{
	struct optimized_kprobe *op;

	op = container_of(p, struct optimized_kprobe, kp);
	arch_prepare_optimized_kprobe(op);
}

/* Allocate new optimized_kprobe and try to prepare optimized instructions */
static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
{
	struct optimized_kprobe *op;

	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
	if (!op)
		return NULL;

	INIT_LIST_HEAD(&op->list);
	op->kp.addr = p->addr;
	arch_prepare_optimized_kprobe(op);

	return &op->kp;
}

static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);

/*
 * Prepare an optimized_kprobe and optimize it
 * NOTE: p must be a normal registered kprobe
 */
static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
{
	struct kprobe *ap;
	struct optimized_kprobe *op;

778 779 780 781
	/* Impossible to optimize ftrace-based kprobe */
	if (kprobe_ftrace(p))
		return;

782 783 784 785
	/* For preparing optimization, jump_label_text_reserved() is called */
	jump_label_lock();
	mutex_lock(&text_mutex);

786 787
	ap = alloc_aggr_kprobe(p);
	if (!ap)
788
		goto out;
789 790 791 792

	op = container_of(ap, struct optimized_kprobe, kp);
	if (!arch_prepared_optinsn(&op->optinsn)) {
		/* If failed to setup optimizing, fallback to kprobe */
793 794
		arch_remove_optimized_kprobe(op);
		kfree(op);
795
		goto out;
796 797 798
	}

	init_aggr_kprobe(ap, p);
799 800 801 802 803
	optimize_kprobe(ap);	/* This just kicks optimizer thread */

out:
	mutex_unlock(&text_mutex);
	jump_label_unlock();
804 805
}

806 807 808 809 810 811 812
#ifdef CONFIG_SYSCTL
static void __kprobes optimize_all_kprobes(void)
{
	struct hlist_head *head;
	struct kprobe *p;
	unsigned int i;

813
	mutex_lock(&kprobe_mutex);
814 815
	/* If optimization is already allowed, just return */
	if (kprobes_allow_optimization)
816
		goto out;
817 818 819 820

	kprobes_allow_optimization = true;
	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
		head = &kprobe_table[i];
821
		hlist_for_each_entry_rcu(p, head, hlist)
822 823 824 825
			if (!kprobe_disabled(p))
				optimize_kprobe(p);
	}
	printk(KERN_INFO "Kprobes globally optimized\n");
826 827
out:
	mutex_unlock(&kprobe_mutex);
828 829 830 831 832 833 834 835
}

static void __kprobes unoptimize_all_kprobes(void)
{
	struct hlist_head *head;
	struct kprobe *p;
	unsigned int i;

836
	mutex_lock(&kprobe_mutex);
837
	/* If optimization is already prohibited, just return */
838 839
	if (!kprobes_allow_optimization) {
		mutex_unlock(&kprobe_mutex);
840
		return;
841
	}
842 843 844 845

	kprobes_allow_optimization = false;
	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
		head = &kprobe_table[i];
846
		hlist_for_each_entry_rcu(p, head, hlist) {
847
			if (!kprobe_disabled(p))
848
				unoptimize_kprobe(p, false);
849 850
		}
	}
851 852
	mutex_unlock(&kprobe_mutex);

853 854 855
	/* Wait for unoptimizing completion */
	wait_for_kprobe_optimizer();
	printk(KERN_INFO "Kprobes globally unoptimized\n");
856 857
}

858
static DEFINE_MUTEX(kprobe_sysctl_mutex);
859 860 861 862 863 864 865
int sysctl_kprobes_optimization;
int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
				      void __user *buffer, size_t *length,
				      loff_t *ppos)
{
	int ret;

866
	mutex_lock(&kprobe_sysctl_mutex);
867 868 869 870 871 872 873
	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);

	if (sysctl_kprobes_optimization)
		optimize_all_kprobes();
	else
		unoptimize_all_kprobes();
874
	mutex_unlock(&kprobe_sysctl_mutex);
875 876 877 878 879

	return ret;
}
#endif /* CONFIG_SYSCTL */

880
/* Put a breakpoint for a probe. Must be called with text_mutex locked */
881 882
static void __kprobes __arm_kprobe(struct kprobe *p)
{
883
	struct kprobe *_p;
884 885

	/* Check collision with other optimized kprobes */
886 887
	_p = get_optimized_kprobe((unsigned long)p->addr);
	if (unlikely(_p))
888 889
		/* Fallback to unoptimized kprobe */
		unoptimize_kprobe(_p, true);
890 891 892 893 894

	arch_arm_kprobe(p);
	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
}

895 896
/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
897
{
898
	struct kprobe *_p;
899

900
	unoptimize_kprobe(p, false);	/* Try to unoptimize */
901

902 903 904 905 906 907 908 909
	if (!kprobe_queued(p)) {
		arch_disarm_kprobe(p);
		/* If another kprobe was blocked, optimize it. */
		_p = get_optimized_kprobe((unsigned long)p->addr);
		if (unlikely(_p) && reopt)
			optimize_kprobe(_p);
	}
	/* TODO: reoptimize others after unoptimized this probe */
910 911 912 913 914
}

#else /* !CONFIG_OPTPROBES */

#define optimize_kprobe(p)			do {} while (0)
915
#define unoptimize_kprobe(p, f)			do {} while (0)
916 917 918 919
#define kill_optimized_kprobe(p)		do {} while (0)
#define prepare_optimized_kprobe(p)		do {} while (0)
#define try_to_optimize_kprobe(p)		do {} while (0)
#define __arm_kprobe(p)				arch_arm_kprobe(p)
920 921 922
#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
#define kprobe_disarmed(p)			kprobe_disabled(p)
#define wait_for_kprobe_optimizer()		do {} while (0)
923

M
Masami Hiramatsu 已提交
924 925 926 927 928 929 930
/* There should be no unused kprobes can be reused without optimization */
static void reuse_unused_kprobe(struct kprobe *ap)
{
	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
	BUG_ON(kprobe_unused(ap));
}

931 932
static __kprobes void free_aggr_kprobe(struct kprobe *p)
{
933
	arch_remove_kprobe(p);
934 935 936 937 938 939 940 941 942
	kfree(p);
}

static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
{
	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
}
#endif /* CONFIG_OPTPROBES */

943
#ifdef CONFIG_KPROBES_ON_FTRACE
944
static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
945
	.func = kprobe_ftrace_handler,
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	.flags = FTRACE_OPS_FL_SAVE_REGS,
};
static int kprobe_ftrace_enabled;

/* Must ensure p->addr is really on ftrace */
static int __kprobes prepare_kprobe(struct kprobe *p)
{
	if (!kprobe_ftrace(p))
		return arch_prepare_kprobe(p);

	return arch_prepare_kprobe_ftrace(p);
}

/* Caller must lock kprobe_mutex */
static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
{
	int ret;

	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
				   (unsigned long)p->addr, 0, 0);
	WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
	kprobe_ftrace_enabled++;
	if (kprobe_ftrace_enabled == 1) {
		ret = register_ftrace_function(&kprobe_ftrace_ops);
		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
	}
}

/* Caller must lock kprobe_mutex */
static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
{
	int ret;

	kprobe_ftrace_enabled--;
	if (kprobe_ftrace_enabled == 0) {
		ret = unregister_ftrace_function(&kprobe_ftrace_ops);
		WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
	}
	ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
			   (unsigned long)p->addr, 1, 0);
	WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
}
988
#else	/* !CONFIG_KPROBES_ON_FTRACE */
989 990 991 992 993
#define prepare_kprobe(p)	arch_prepare_kprobe(p)
#define arm_kprobe_ftrace(p)	do {} while (0)
#define disarm_kprobe_ftrace(p)	do {} while (0)
#endif

994 995 996
/* Arm a kprobe with text_mutex */
static void __kprobes arm_kprobe(struct kprobe *kp)
{
997 998 999 1000
	if (unlikely(kprobe_ftrace(kp))) {
		arm_kprobe_ftrace(kp);
		return;
	}
1001 1002 1003 1004 1005
	/*
	 * Here, since __arm_kprobe() doesn't use stop_machine(),
	 * this doesn't cause deadlock on text_mutex. So, we don't
	 * need get_online_cpus().
	 */
1006
	mutex_lock(&text_mutex);
1007
	__arm_kprobe(kp);
1008 1009 1010 1011
	mutex_unlock(&text_mutex);
}

/* Disarm a kprobe with text_mutex */
1012
static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
1013
{
1014 1015 1016 1017
	if (unlikely(kprobe_ftrace(kp))) {
		disarm_kprobe_ftrace(kp);
		return;
	}
1018
	/* Ditto */
1019
	mutex_lock(&text_mutex);
1020
	__disarm_kprobe(kp, reopt);
1021 1022 1023
	mutex_unlock(&text_mutex);
}

1024 1025 1026 1027
/*
 * Aggregate handlers for multiple kprobes support - these handlers
 * take care of invoking the individual kprobe handlers on p->list
 */
1028
static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1029 1030 1031
{
	struct kprobe *kp;

1032
	list_for_each_entry_rcu(kp, &p->list, list) {
1033
		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1034
			set_kprobe_instance(kp);
1035 1036
			if (kp->pre_handler(kp, regs))
				return 1;
1037
		}
1038
		reset_kprobe_instance();
1039 1040 1041 1042
	}
	return 0;
}

1043 1044
static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
					unsigned long flags)
1045 1046 1047
{
	struct kprobe *kp;

1048
	list_for_each_entry_rcu(kp, &p->list, list) {
1049
		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1050
			set_kprobe_instance(kp);
1051
			kp->post_handler(kp, regs, flags);
1052
			reset_kprobe_instance();
1053 1054 1055 1056
		}
	}
}

1057 1058
static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
					int trapnr)
1059
{
C
Christoph Lameter 已提交
1060
	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1061

1062 1063 1064 1065
	/*
	 * if we faulted "during" the execution of a user specified
	 * probe handler, invoke just that probe's fault handler
	 */
1066 1067
	if (cur && cur->fault_handler) {
		if (cur->fault_handler(cur, regs, trapnr))
1068 1069 1070 1071 1072
			return 1;
	}
	return 0;
}

1073
static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1074
{
C
Christoph Lameter 已提交
1075
	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1076 1077 1078 1079 1080
	int ret = 0;

	if (cur && cur->break_handler) {
		if (cur->break_handler(cur, regs))
			ret = 1;
1081
	}
1082 1083
	reset_kprobe_instance();
	return ret;
1084 1085
}

1086 1087 1088 1089
/* Walks the list and increments nmissed count for multiprobe case */
void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
{
	struct kprobe *kp;
1090
	if (!kprobe_aggrprobe(p)) {
1091 1092 1093 1094 1095 1096 1097 1098
		p->nmissed++;
	} else {
		list_for_each_entry_rcu(kp, &p->list, list)
			kp->nmissed++;
	}
	return;
}

1099 1100
void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
				struct hlist_head *head)
1101
{
1102 1103
	struct kretprobe *rp = ri->rp;

1104 1105
	/* remove rp inst off the rprobe_inst_table */
	hlist_del(&ri->hlist);
1106 1107
	INIT_HLIST_NODE(&ri->hlist);
	if (likely(rp)) {
1108
		raw_spin_lock(&rp->lock);
1109
		hlist_add_head(&ri->hlist, &rp->free_instances);
1110
		raw_spin_unlock(&rp->lock);
1111 1112
	} else
		/* Unregistering */
1113
		hlist_add_head(&ri->hlist, head);
1114 1115
}

1116
void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1117
			 struct hlist_head **head, unsigned long *flags)
1118
__acquires(hlist_lock)
1119 1120
{
	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1121
	raw_spinlock_t *hlist_lock;
1122 1123 1124

	*head = &kretprobe_inst_table[hash];
	hlist_lock = kretprobe_table_lock_ptr(hash);
1125
	raw_spin_lock_irqsave(hlist_lock, *flags);
1126 1127
}

1128 1129
static void __kprobes kretprobe_table_lock(unsigned long hash,
	unsigned long *flags)
1130
__acquires(hlist_lock)
1131
{
1132 1133
	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
	raw_spin_lock_irqsave(hlist_lock, *flags);
1134 1135
}

1136 1137
void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
	unsigned long *flags)
1138
__releases(hlist_lock)
1139 1140
{
	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1141
	raw_spinlock_t *hlist_lock;
1142 1143

	hlist_lock = kretprobe_table_lock_ptr(hash);
1144
	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1145 1146
}

N
Namhyung Kim 已提交
1147 1148
static void __kprobes kretprobe_table_unlock(unsigned long hash,
       unsigned long *flags)
1149
__releases(hlist_lock)
1150
{
1151 1152
	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1153 1154 1155
}

/*
1156 1157 1158 1159
 * This function is called from finish_task_switch when task tk becomes dead,
 * so that we can recycle any function-return probe instances associated
 * with this task. These left over instances represent probed functions
 * that have been called but will never return.
1160
 */
1161
void __kprobes kprobe_flush_task(struct task_struct *tk)
1162
{
B
bibo,mao 已提交
1163
	struct kretprobe_instance *ri;
1164
	struct hlist_head *head, empty_rp;
1165
	struct hlist_node *tmp;
1166
	unsigned long hash, flags = 0;
1167

1168 1169 1170 1171
	if (unlikely(!kprobes_initialized))
		/* Early boot.  kretprobe_table_locks not yet initialized. */
		return;

1172
	INIT_HLIST_HEAD(&empty_rp);
1173 1174 1175
	hash = hash_ptr(tk, KPROBE_HASH_BITS);
	head = &kretprobe_inst_table[hash];
	kretprobe_table_lock(hash, &flags);
1176
	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
B
bibo,mao 已提交
1177
		if (ri->task == tk)
1178
			recycle_rp_inst(ri, &empty_rp);
B
bibo,mao 已提交
1179
	}
1180
	kretprobe_table_unlock(hash, &flags);
1181
	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1182 1183 1184
		hlist_del(&ri->hlist);
		kfree(ri);
	}
1185 1186 1187 1188 1189
}

static inline void free_rp_inst(struct kretprobe *rp)
{
	struct kretprobe_instance *ri;
1190
	struct hlist_node *next;
1191

1192
	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1193
		hlist_del(&ri->hlist);
1194 1195 1196 1197
		kfree(ri);
	}
}

1198 1199
static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
{
1200
	unsigned long flags, hash;
1201
	struct kretprobe_instance *ri;
1202
	struct hlist_node *next;
1203 1204
	struct hlist_head *head;

1205
	/* No race here */
1206 1207 1208
	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
		kretprobe_table_lock(hash, &flags);
		head = &kretprobe_inst_table[hash];
1209
		hlist_for_each_entry_safe(ri, next, head, hlist) {
1210 1211 1212 1213
			if (ri->rp == rp)
				ri->rp = NULL;
		}
		kretprobe_table_unlock(hash, &flags);
1214 1215 1216 1217
	}
	free_rp_inst(rp);
}

1218
/*
1219
* Add the new probe to ap->list. Fail if this is the
1220 1221
* second jprobe at the address - two jprobes can't coexist
*/
1222
static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1223
{
1224
	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1225 1226

	if (p->break_handler || p->post_handler)
1227
		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1228

1229
	if (p->break_handler) {
1230
		if (ap->break_handler)
1231
			return -EEXIST;
1232 1233
		list_add_tail_rcu(&p->list, &ap->list);
		ap->break_handler = aggr_break_handler;
1234
	} else
1235 1236 1237
		list_add_rcu(&p->list, &ap->list);
	if (p->post_handler && !ap->post_handler)
		ap->post_handler = aggr_post_handler;
1238

1239 1240 1241
	return 0;
}

1242 1243 1244 1245
/*
 * Fill in the required fields of the "manager kprobe". Replace the
 * earlier kprobe in the hlist with the manager kprobe
 */
1246
static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1247
{
1248
	/* Copy p's insn slot to ap */
1249
	copy_kprobe(p, ap);
1250
	flush_insn_slot(ap);
1251
	ap->addr = p->addr;
1252
	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1253 1254
	ap->pre_handler = aggr_pre_handler;
	ap->fault_handler = aggr_fault_handler;
1255 1256
	/* We don't care the kprobe which has gone. */
	if (p->post_handler && !kprobe_gone(p))
1257
		ap->post_handler = aggr_post_handler;
1258
	if (p->break_handler && !kprobe_gone(p))
1259
		ap->break_handler = aggr_break_handler;
1260 1261

	INIT_LIST_HEAD(&ap->list);
1262
	INIT_HLIST_NODE(&ap->hlist);
1263

1264
	list_add_rcu(&p->list, &ap->list);
1265
	hlist_replace_rcu(&p->hlist, &ap->hlist);
1266 1267 1268 1269 1270 1271
}

/*
 * This is the second or subsequent kprobe at the address - handle
 * the intricacies
 */
1272
static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1273
					  struct kprobe *p)
1274 1275
{
	int ret = 0;
1276
	struct kprobe *ap = orig_p;
1277

1278 1279 1280 1281 1282 1283 1284 1285 1286
	/* For preparing optimization, jump_label_text_reserved() is called */
	jump_label_lock();
	/*
	 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
	 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
	 */
	get_online_cpus();
	mutex_lock(&text_mutex);

1287 1288 1289
	if (!kprobe_aggrprobe(orig_p)) {
		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
		ap = alloc_aggr_kprobe(orig_p);
1290 1291 1292 1293
		if (!ap) {
			ret = -ENOMEM;
			goto out;
		}
1294
		init_aggr_kprobe(ap, orig_p);
1295
	} else if (kprobe_unused(ap))
M
Masami Hiramatsu 已提交
1296 1297
		/* This probe is going to die. Rescue it */
		reuse_unused_kprobe(ap);
1298 1299

	if (kprobe_gone(ap)) {
1300 1301 1302 1303 1304 1305
		/*
		 * Attempting to insert new probe at the same location that
		 * had a probe in the module vaddr area which already
		 * freed. So, the instruction slot has already been
		 * released. We need a new slot for the new probe.
		 */
1306
		ret = arch_prepare_kprobe(ap);
1307
		if (ret)
1308 1309 1310 1311 1312
			/*
			 * Even if fail to allocate new slot, don't need to
			 * free aggr_probe. It will be used next time, or
			 * freed by unregister_kprobe.
			 */
1313
			goto out;
1314

1315 1316 1317
		/* Prepare optimized instructions if possible. */
		prepare_optimized_kprobe(ap);

1318
		/*
1319 1320
		 * Clear gone flag to prevent allocating new slot again, and
		 * set disabled flag because it is not armed yet.
1321
		 */
1322 1323
		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
			    | KPROBE_FLAG_DISABLED;
1324
	}
1325

1326
	/* Copy ap's insn slot to p */
1327
	copy_kprobe(ap, p);
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	ret = add_new_kprobe(ap, p);

out:
	mutex_unlock(&text_mutex);
	put_online_cpus();
	jump_label_unlock();

	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
		ap->flags &= ~KPROBE_FLAG_DISABLED;
		if (!kprobes_all_disarmed)
			/* Arm the breakpoint again. */
			arm_kprobe(ap);
	}
	return ret;
1342 1343
}

1344 1345
static int __kprobes in_kprobes_functions(unsigned long addr)
{
1346 1347
	struct kprobe_blackpoint *kb;

1348 1349
	if (addr >= (unsigned long)__kprobes_text_start &&
	    addr < (unsigned long)__kprobes_text_end)
1350
		return -EINVAL;
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	/*
	 * If there exists a kprobe_blacklist, verify and
	 * fail any probe registration in the prohibited area
	 */
	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
		if (kb->start_addr) {
			if (addr >= kb->start_addr &&
			    addr < (kb->start_addr + kb->range))
				return -EINVAL;
		}
	}
1362 1363 1364
	return 0;
}

1365 1366 1367
/*
 * If we have a symbol_name argument, look it up and add the offset field
 * to it. This way, we can specify a relative address to a symbol.
1368 1369
 * This returns encoded errors if it fails to look up symbol or invalid
 * combination of parameters.
1370 1371 1372 1373
 */
static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
{
	kprobe_opcode_t *addr = p->addr;
1374 1375 1376 1377 1378

	if ((p->symbol_name && p->addr) ||
	    (!p->symbol_name && !p->addr))
		goto invalid;

1379 1380
	if (p->symbol_name) {
		kprobe_lookup_name(p->symbol_name, addr);
1381 1382
		if (!addr)
			return ERR_PTR(-ENOENT);
1383 1384
	}

1385 1386 1387 1388 1389 1390
	addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
	if (addr)
		return addr;

invalid:
	return ERR_PTR(-EINVAL);
1391 1392
}

1393 1394 1395
/* Check passed kprobe is valid and return kprobe in kprobe_table. */
static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
{
1396
	struct kprobe *ap, *list_p;
1397

1398 1399
	ap = get_kprobe(p->addr);
	if (unlikely(!ap))
1400 1401
		return NULL;

1402 1403
	if (p != ap) {
		list_for_each_entry_rcu(list_p, &ap->list, list)
1404 1405 1406 1407 1408 1409
			if (list_p == p)
			/* kprobe p is a valid probe */
				goto valid;
		return NULL;
	}
valid:
1410
	return ap;
1411 1412 1413 1414 1415 1416 1417 1418
}

/* Return error if the kprobe is being re-registered */
static inline int check_kprobe_rereg(struct kprobe *p)
{
	int ret = 0;

	mutex_lock(&kprobe_mutex);
1419
	if (__get_valid_kprobe(p))
1420 1421
		ret = -EINVAL;
	mutex_unlock(&kprobe_mutex);
1422

1423 1424 1425
	return ret;
}

1426 1427
static __kprobes int check_kprobe_address_safe(struct kprobe *p,
					       struct module **probed_mod)
L
Linus Torvalds 已提交
1428 1429
{
	int ret = 0;
1430 1431 1432 1433 1434 1435 1436 1437
	unsigned long ftrace_addr;

	/*
	 * If the address is located on a ftrace nop, set the
	 * breakpoint to the following instruction.
	 */
	ftrace_addr = ftrace_location((unsigned long)p->addr);
	if (ftrace_addr) {
1438
#ifdef CONFIG_KPROBES_ON_FTRACE
1439 1440 1441 1442
		/* Given address is not on the instruction boundary */
		if ((unsigned long)p->addr != ftrace_addr)
			return -EILSEQ;
		p->flags |= KPROBE_FLAG_FTRACE;
1443
#else	/* !CONFIG_KPROBES_ON_FTRACE */
1444 1445 1446
		return -EINVAL;
#endif
	}
1447

1448
	jump_label_lock();
1449
	preempt_disable();
1450 1451

	/* Ensure it is not in reserved area nor out of text */
1452
	if (!kernel_text_address((unsigned long) p->addr) ||
1453
	    in_kprobes_functions((unsigned long) p->addr) ||
1454 1455
	    jump_label_text_reserved(p->addr, p->addr)) {
		ret = -EINVAL;
1456
		goto out;
1457
	}
1458

1459 1460 1461
	/* Check if are we probing a module */
	*probed_mod = __module_text_address((unsigned long) p->addr);
	if (*probed_mod) {
1462
		/*
1463 1464
		 * We must hold a refcount of the probed module while updating
		 * its code to prohibit unexpected unloading.
1465
		 */
1466 1467 1468 1469
		if (unlikely(!try_module_get(*probed_mod))) {
			ret = -ENOENT;
			goto out;
		}
1470

1471 1472 1473 1474
		/*
		 * If the module freed .init.text, we couldn't insert
		 * kprobes in there.
		 */
1475 1476 1477 1478 1479
		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
		    (*probed_mod)->state != MODULE_STATE_COMING) {
			module_put(*probed_mod);
			*probed_mod = NULL;
			ret = -ENOENT;
1480
		}
1481
	}
1482
out:
1483
	preempt_enable();
1484
	jump_label_unlock();
L
Linus Torvalds 已提交
1485

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	return ret;
}

int __kprobes register_kprobe(struct kprobe *p)
{
	int ret;
	struct kprobe *old_p;
	struct module *probed_mod;
	kprobe_opcode_t *addr;

	/* Adjust probe address from symbol */
	addr = kprobe_addr(p);
	if (IS_ERR(addr))
		return PTR_ERR(addr);
	p->addr = addr;

	ret = check_kprobe_rereg(p);
	if (ret)
		return ret;

	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
	p->flags &= KPROBE_FLAG_DISABLED;
1508
	p->nmissed = 0;
1509
	INIT_LIST_HEAD(&p->list);
1510

1511 1512 1513 1514 1515
	ret = check_kprobe_address_safe(p, &probed_mod);
	if (ret)
		return ret;

	mutex_lock(&kprobe_mutex);
1516

1517 1518
	old_p = get_kprobe(p->addr);
	if (old_p) {
1519
		/* Since this may unoptimize old_p, locking text_mutex. */
1520
		ret = register_aggr_kprobe(old_p, p);
L
Linus Torvalds 已提交
1521 1522 1523
		goto out;
	}

1524
	mutex_lock(&text_mutex);	/* Avoiding text modification */
1525
	ret = prepare_kprobe(p);
1526
	mutex_unlock(&text_mutex);
1527
	if (ret)
1528
		goto out;
1529

1530
	INIT_HLIST_NODE(&p->hlist);
1531
	hlist_add_head_rcu(&p->hlist,
L
Linus Torvalds 已提交
1532 1533
		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);

1534
	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1535
		arm_kprobe(p);
1536 1537 1538

	/* Try to optimize kprobe */
	try_to_optimize_kprobe(p);
1539

L
Linus Torvalds 已提交
1540
out:
I
Ingo Molnar 已提交
1541
	mutex_unlock(&kprobe_mutex);
1542

1543
	if (probed_mod)
1544
		module_put(probed_mod);
1545

L
Linus Torvalds 已提交
1546 1547
	return ret;
}
1548
EXPORT_SYMBOL_GPL(register_kprobe);
L
Linus Torvalds 已提交
1549

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
/* Check if all probes on the aggrprobe are disabled */
static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
{
	struct kprobe *kp;

	list_for_each_entry_rcu(kp, &ap->list, list)
		if (!kprobe_disabled(kp))
			/*
			 * There is an active probe on the list.
			 * We can't disable this ap.
			 */
			return 0;

	return 1;
}

/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
{
	struct kprobe *orig_p;

	/* Get an original kprobe for return */
	orig_p = __get_valid_kprobe(p);
	if (unlikely(orig_p == NULL))
		return NULL;

	if (!kprobe_disabled(p)) {
		/* Disable probe if it is a child probe */
		if (p != orig_p)
			p->flags |= KPROBE_FLAG_DISABLED;

		/* Try to disarm and disable this/parent probe */
		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1583
			disarm_kprobe(orig_p, true);
1584 1585 1586 1587 1588 1589 1590
			orig_p->flags |= KPROBE_FLAG_DISABLED;
		}
	}

	return orig_p;
}

1591 1592 1593 1594 1595
/*
 * Unregister a kprobe without a scheduler synchronization.
 */
static int __kprobes __unregister_kprobe_top(struct kprobe *p)
{
1596
	struct kprobe *ap, *list_p;
1597

1598 1599
	/* Disable kprobe. This will disarm it if needed. */
	ap = __disable_kprobe(p);
1600
	if (ap == NULL)
1601 1602
		return -EINVAL;

1603
	if (ap == p)
1604
		/*
1605 1606
		 * This probe is an independent(and non-optimized) kprobe
		 * (not an aggrprobe). Remove from the hash list.
1607
		 */
1608 1609 1610 1611 1612
		goto disarmed;

	/* Following process expects this probe is an aggrprobe */
	WARN_ON(!kprobe_aggrprobe(ap));

1613 1614 1615 1616 1617
	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
		/*
		 * !disarmed could be happen if the probe is under delayed
		 * unoptimizing.
		 */
1618 1619 1620
		goto disarmed;
	else {
		/* If disabling probe has special handlers, update aggrprobe */
1621
		if (p->break_handler && !kprobe_gone(p))
1622
			ap->break_handler = NULL;
1623
		if (p->post_handler && !kprobe_gone(p)) {
1624
			list_for_each_entry_rcu(list_p, &ap->list, list) {
1625 1626 1627
				if ((list_p != p) && (list_p->post_handler))
					goto noclean;
			}
1628
			ap->post_handler = NULL;
1629 1630
		}
noclean:
1631 1632 1633 1634
		/*
		 * Remove from the aggrprobe: this path will do nothing in
		 * __unregister_kprobe_bottom().
		 */
1635
		list_del_rcu(&p->list);
1636 1637 1638 1639 1640 1641
		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
			/*
			 * Try to optimize this probe again, because post
			 * handler may have been changed.
			 */
			optimize_kprobe(ap);
1642
	}
1643
	return 0;
1644 1645

disarmed:
1646
	BUG_ON(!kprobe_disarmed(ap));
1647 1648
	hlist_del_rcu(&ap->hlist);
	return 0;
1649
}
1650

1651 1652
static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
{
1653
	struct kprobe *ap;
1654

1655
	if (list_empty(&p->list))
1656
		/* This is an independent kprobe */
1657
		arch_remove_kprobe(p);
1658
	else if (list_is_singular(&p->list)) {
1659
		/* This is the last child of an aggrprobe */
1660
		ap = list_entry(p->list.next, struct kprobe, list);
1661
		list_del(&p->list);
1662
		free_aggr_kprobe(ap);
1663
	}
1664
	/* Otherwise, do nothing. */
1665 1666
}

1667
int __kprobes register_kprobes(struct kprobe **kps, int num)
1668 1669 1670 1671 1672 1673
{
	int i, ret = 0;

	if (num <= 0)
		return -EINVAL;
	for (i = 0; i < num; i++) {
1674
		ret = register_kprobe(kps[i]);
1675 1676 1677
		if (ret < 0) {
			if (i > 0)
				unregister_kprobes(kps, i);
1678
			break;
1679
		}
1680
	}
1681 1682
	return ret;
}
1683
EXPORT_SYMBOL_GPL(register_kprobes);
1684 1685 1686 1687 1688

void __kprobes unregister_kprobe(struct kprobe *p)
{
	unregister_kprobes(&p, 1);
}
1689
EXPORT_SYMBOL_GPL(unregister_kprobe);
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

void __kprobes unregister_kprobes(struct kprobe **kps, int num)
{
	int i;

	if (num <= 0)
		return;
	mutex_lock(&kprobe_mutex);
	for (i = 0; i < num; i++)
		if (__unregister_kprobe_top(kps[i]) < 0)
			kps[i]->addr = NULL;
	mutex_unlock(&kprobe_mutex);

	synchronize_sched();
	for (i = 0; i < num; i++)
		if (kps[i]->addr)
			__unregister_kprobe_bottom(kps[i]);
L
Linus Torvalds 已提交
1707
}
1708
EXPORT_SYMBOL_GPL(unregister_kprobes);
L
Linus Torvalds 已提交
1709 1710

static struct notifier_block kprobe_exceptions_nb = {
1711 1712 1713 1714
	.notifier_call = kprobe_exceptions_notify,
	.priority = 0x7fffffff /* we need to be notified first */
};

1715 1716 1717 1718
unsigned long __weak arch_deref_entry_point(void *entry)
{
	return (unsigned long)entry;
}
L
Linus Torvalds 已提交
1719

1720
int __kprobes register_jprobes(struct jprobe **jps, int num)
L
Linus Torvalds 已提交
1721
{
1722 1723
	struct jprobe *jp;
	int ret = 0, i;
1724

1725
	if (num <= 0)
1726
		return -EINVAL;
1727
	for (i = 0; i < num; i++) {
1728
		unsigned long addr, offset;
1729 1730 1731
		jp = jps[i];
		addr = arch_deref_entry_point(jp->entry);

1732 1733 1734 1735 1736 1737 1738 1739
		/* Verify probepoint is a function entry point */
		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
		    offset == 0) {
			jp->kp.pre_handler = setjmp_pre_handler;
			jp->kp.break_handler = longjmp_break_handler;
			ret = register_kprobe(&jp->kp);
		} else
			ret = -EINVAL;
1740

1741 1742 1743
		if (ret < 0) {
			if (i > 0)
				unregister_jprobes(jps, i);
1744 1745 1746 1747 1748
			break;
		}
	}
	return ret;
}
1749
EXPORT_SYMBOL_GPL(register_jprobes);
1750

1751 1752
int __kprobes register_jprobe(struct jprobe *jp)
{
1753
	return register_jprobes(&jp, 1);
L
Linus Torvalds 已提交
1754
}
1755
EXPORT_SYMBOL_GPL(register_jprobe);
L
Linus Torvalds 已提交
1756

1757
void __kprobes unregister_jprobe(struct jprobe *jp)
L
Linus Torvalds 已提交
1758
{
1759 1760
	unregister_jprobes(&jp, 1);
}
1761
EXPORT_SYMBOL_GPL(unregister_jprobe);
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

void __kprobes unregister_jprobes(struct jprobe **jps, int num)
{
	int i;

	if (num <= 0)
		return;
	mutex_lock(&kprobe_mutex);
	for (i = 0; i < num; i++)
		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
			jps[i]->kp.addr = NULL;
	mutex_unlock(&kprobe_mutex);

	synchronize_sched();
	for (i = 0; i < num; i++) {
		if (jps[i]->kp.addr)
			__unregister_kprobe_bottom(&jps[i]->kp);
	}
L
Linus Torvalds 已提交
1780
}
1781
EXPORT_SYMBOL_GPL(unregister_jprobes);
L
Linus Torvalds 已提交
1782

1783
#ifdef CONFIG_KRETPROBES
1784 1785 1786 1787 1788 1789 1790 1791
/*
 * This kprobe pre_handler is registered with every kretprobe. When probe
 * hits it will set up the return probe.
 */
static int __kprobes pre_handler_kretprobe(struct kprobe *p,
					   struct pt_regs *regs)
{
	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1792 1793
	unsigned long hash, flags = 0;
	struct kretprobe_instance *ri;
1794 1795

	/*TODO: consider to only swap the RA after the last pre_handler fired */
1796
	hash = hash_ptr(current, KPROBE_HASH_BITS);
1797
	raw_spin_lock_irqsave(&rp->lock, flags);
1798 1799
	if (!hlist_empty(&rp->free_instances)) {
		ri = hlist_entry(rp->free_instances.first,
1800 1801
				struct kretprobe_instance, hlist);
		hlist_del(&ri->hlist);
1802
		raw_spin_unlock_irqrestore(&rp->lock, flags);
1803

1804 1805
		ri->rp = rp;
		ri->task = current;
1806

1807 1808 1809 1810
		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
			raw_spin_lock_irqsave(&rp->lock, flags);
			hlist_add_head(&ri->hlist, &rp->free_instances);
			raw_spin_unlock_irqrestore(&rp->lock, flags);
1811
			return 0;
1812
		}
1813

1814 1815 1816
		arch_prepare_kretprobe(ri, regs);

		/* XXX(hch): why is there no hlist_move_head? */
1817 1818 1819 1820 1821
		INIT_HLIST_NODE(&ri->hlist);
		kretprobe_table_lock(hash, &flags);
		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
		kretprobe_table_unlock(hash, &flags);
	} else {
1822
		rp->nmissed++;
1823
		raw_spin_unlock_irqrestore(&rp->lock, flags);
1824
	}
1825 1826 1827
	return 0;
}

1828
int __kprobes register_kretprobe(struct kretprobe *rp)
1829 1830 1831 1832
{
	int ret = 0;
	struct kretprobe_instance *inst;
	int i;
1833
	void *addr;
1834 1835

	if (kretprobe_blacklist_size) {
1836
		addr = kprobe_addr(&rp->kp);
1837 1838
		if (IS_ERR(addr))
			return PTR_ERR(addr);
1839 1840 1841 1842 1843 1844

		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
			if (kretprobe_blacklist[i].addr == addr)
				return -EINVAL;
		}
	}
1845 1846

	rp->kp.pre_handler = pre_handler_kretprobe;
1847 1848 1849
	rp->kp.post_handler = NULL;
	rp->kp.fault_handler = NULL;
	rp->kp.break_handler = NULL;
1850 1851 1852 1853

	/* Pre-allocate memory for max kretprobe instances */
	if (rp->maxactive <= 0) {
#ifdef CONFIG_PREEMPT
1854
		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1855
#else
1856
		rp->maxactive = num_possible_cpus();
1857 1858
#endif
	}
1859
	raw_spin_lock_init(&rp->lock);
1860 1861
	INIT_HLIST_HEAD(&rp->free_instances);
	for (i = 0; i < rp->maxactive; i++) {
1862 1863
		inst = kmalloc(sizeof(struct kretprobe_instance) +
			       rp->data_size, GFP_KERNEL);
1864 1865 1866 1867
		if (inst == NULL) {
			free_rp_inst(rp);
			return -ENOMEM;
		}
1868 1869
		INIT_HLIST_NODE(&inst->hlist);
		hlist_add_head(&inst->hlist, &rp->free_instances);
1870 1871 1872 1873
	}

	rp->nmissed = 0;
	/* Establish function entry probe point */
1874
	ret = register_kprobe(&rp->kp);
1875
	if (ret != 0)
1876 1877 1878
		free_rp_inst(rp);
	return ret;
}
1879
EXPORT_SYMBOL_GPL(register_kretprobe);
1880

1881
int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1882 1883 1884 1885 1886 1887
{
	int ret = 0, i;

	if (num <= 0)
		return -EINVAL;
	for (i = 0; i < num; i++) {
1888
		ret = register_kretprobe(rps[i]);
1889 1890 1891
		if (ret < 0) {
			if (i > 0)
				unregister_kretprobes(rps, i);
1892 1893 1894 1895 1896
			break;
		}
	}
	return ret;
}
1897
EXPORT_SYMBOL_GPL(register_kretprobes);
1898 1899 1900 1901 1902

void __kprobes unregister_kretprobe(struct kretprobe *rp)
{
	unregister_kretprobes(&rp, 1);
}
1903
EXPORT_SYMBOL_GPL(unregister_kretprobe);
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924

void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
{
	int i;

	if (num <= 0)
		return;
	mutex_lock(&kprobe_mutex);
	for (i = 0; i < num; i++)
		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
			rps[i]->kp.addr = NULL;
	mutex_unlock(&kprobe_mutex);

	synchronize_sched();
	for (i = 0; i < num; i++) {
		if (rps[i]->kp.addr) {
			__unregister_kprobe_bottom(&rps[i]->kp);
			cleanup_rp_inst(rps[i]);
		}
	}
}
1925
EXPORT_SYMBOL_GPL(unregister_kretprobes);
1926

1927
#else /* CONFIG_KRETPROBES */
1928
int __kprobes register_kretprobe(struct kretprobe *rp)
1929 1930 1931
{
	return -ENOSYS;
}
1932
EXPORT_SYMBOL_GPL(register_kretprobe);
1933

1934
int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1935
{
1936
	return -ENOSYS;
1937
}
1938 1939
EXPORT_SYMBOL_GPL(register_kretprobes);

1940
void __kprobes unregister_kretprobe(struct kretprobe *rp)
1941
{
1942
}
1943
EXPORT_SYMBOL_GPL(unregister_kretprobe);
1944

1945 1946 1947
void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
{
}
1948
EXPORT_SYMBOL_GPL(unregister_kretprobes);
1949

1950 1951 1952 1953
static int __kprobes pre_handler_kretprobe(struct kprobe *p,
					   struct pt_regs *regs)
{
	return 0;
1954 1955
}

1956 1957
#endif /* CONFIG_KRETPROBES */

1958 1959 1960 1961
/* Set the kprobe gone and remove its instruction buffer. */
static void __kprobes kill_kprobe(struct kprobe *p)
{
	struct kprobe *kp;
1962

1963
	p->flags |= KPROBE_FLAG_GONE;
1964
	if (kprobe_aggrprobe(p)) {
1965 1966 1967 1968 1969 1970 1971 1972
		/*
		 * If this is an aggr_kprobe, we have to list all the
		 * chained probes and mark them GONE.
		 */
		list_for_each_entry_rcu(kp, &p->list, list)
			kp->flags |= KPROBE_FLAG_GONE;
		p->post_handler = NULL;
		p->break_handler = NULL;
1973
		kill_optimized_kprobe(p);
1974 1975 1976 1977 1978 1979 1980 1981
	}
	/*
	 * Here, we can remove insn_slot safely, because no thread calls
	 * the original probed function (which will be freed soon) any more.
	 */
	arch_remove_kprobe(p);
}

1982 1983 1984 1985 1986 1987 1988
/* Disable one kprobe */
int __kprobes disable_kprobe(struct kprobe *kp)
{
	int ret = 0;

	mutex_lock(&kprobe_mutex);

1989 1990
	/* Disable this kprobe */
	if (__disable_kprobe(kp) == NULL)
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
		ret = -EINVAL;

	mutex_unlock(&kprobe_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(disable_kprobe);

/* Enable one kprobe */
int __kprobes enable_kprobe(struct kprobe *kp)
{
	int ret = 0;
	struct kprobe *p;

	mutex_lock(&kprobe_mutex);

	/* Check whether specified probe is valid. */
	p = __get_valid_kprobe(kp);
	if (unlikely(p == NULL)) {
		ret = -EINVAL;
		goto out;
	}

	if (kprobe_gone(kp)) {
		/* This kprobe has gone, we couldn't enable it. */
		ret = -EINVAL;
		goto out;
	}

	if (p != kp)
		kp->flags &= ~KPROBE_FLAG_DISABLED;

	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
		p->flags &= ~KPROBE_FLAG_DISABLED;
		arm_kprobe(p);
	}
out:
	mutex_unlock(&kprobe_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(enable_kprobe);

2032 2033 2034 2035 2036 2037 2038
void __kprobes dump_kprobe(struct kprobe *kp)
{
	printk(KERN_WARNING "Dumping kprobe:\n");
	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
	       kp->symbol_name, kp->addr, kp->offset);
}

2039 2040 2041 2042 2043 2044 2045 2046
/* Module notifier call back, checking kprobes on the module */
static int __kprobes kprobes_module_callback(struct notifier_block *nb,
					     unsigned long val, void *data)
{
	struct module *mod = data;
	struct hlist_head *head;
	struct kprobe *p;
	unsigned int i;
2047
	int checkcore = (val == MODULE_STATE_GOING);
2048

2049
	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2050 2051 2052
		return NOTIFY_DONE;

	/*
2053 2054 2055 2056
	 * When MODULE_STATE_GOING was notified, both of module .text and
	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
	 * notified, only .init.text section would be freed. We need to
	 * disable kprobes which have been inserted in the sections.
2057 2058 2059 2060
	 */
	mutex_lock(&kprobe_mutex);
	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
		head = &kprobe_table[i];
2061
		hlist_for_each_entry_rcu(p, head, hlist)
2062 2063 2064
			if (within_module_init((unsigned long)p->addr, mod) ||
			    (checkcore &&
			     within_module_core((unsigned long)p->addr, mod))) {
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
				/*
				 * The vaddr this probe is installed will soon
				 * be vfreed buy not synced to disk. Hence,
				 * disarming the breakpoint isn't needed.
				 */
				kill_kprobe(p);
			}
	}
	mutex_unlock(&kprobe_mutex);
	return NOTIFY_DONE;
}

static struct notifier_block kprobe_module_nb = {
	.notifier_call = kprobes_module_callback,
	.priority = 0
};

L
Linus Torvalds 已提交
2082 2083 2084
static int __init init_kprobes(void)
{
	int i, err = 0;
2085 2086 2087 2088 2089
	unsigned long offset = 0, size = 0;
	char *modname, namebuf[128];
	const char *symbol_name;
	void *addr;
	struct kprobe_blackpoint *kb;
L
Linus Torvalds 已提交
2090 2091 2092

	/* FIXME allocate the probe table, currently defined statically */
	/* initialize all list heads */
2093
	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
L
Linus Torvalds 已提交
2094
		INIT_HLIST_HEAD(&kprobe_table[i]);
2095
		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2096
		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2097
	}
L
Linus Torvalds 已提交
2098

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	/*
	 * Lookup and populate the kprobe_blacklist.
	 *
	 * Unlike the kretprobe blacklist, we'll need to determine
	 * the range of addresses that belong to the said functions,
	 * since a kprobe need not necessarily be at the beginning
	 * of a function.
	 */
	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
		kprobe_lookup_name(kb->name, addr);
		if (!addr)
			continue;

		kb->start_addr = (unsigned long)addr;
		symbol_name = kallsyms_lookup(kb->start_addr,
				&size, &offset, &modname, namebuf);
		if (!symbol_name)
			kb->range = 0;
		else
			kb->range = size;
	}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	if (kretprobe_blacklist_size) {
		/* lookup the function address from its name */
		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
			kprobe_lookup_name(kretprobe_blacklist[i].name,
					   kretprobe_blacklist[i].addr);
			if (!kretprobe_blacklist[i].addr)
				printk("kretprobe: lookup failed: %s\n",
				       kretprobe_blacklist[i].name);
		}
	}

2132 2133
#if defined(CONFIG_OPTPROBES)
#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2134 2135 2136
	/* Init kprobe_optinsn_slots */
	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
#endif
2137 2138 2139
	/* By default, kprobes can be optimized */
	kprobes_allow_optimization = true;
#endif
2140

2141 2142
	/* By default, kprobes are armed */
	kprobes_all_disarmed = false;
2143

2144
	err = arch_init_kprobes();
2145 2146
	if (!err)
		err = register_die_notifier(&kprobe_exceptions_nb);
2147 2148 2149
	if (!err)
		err = register_module_notifier(&kprobe_module_nb);

2150
	kprobes_initialized = (err == 0);
2151

2152 2153
	if (!err)
		init_test_probes();
L
Linus Torvalds 已提交
2154 2155 2156
	return err;
}

2157 2158
#ifdef CONFIG_DEBUG_FS
static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2159
		const char *sym, int offset, char *modname, struct kprobe *pp)
2160 2161 2162 2163 2164 2165 2166 2167 2168
{
	char *kprobe_type;

	if (p->pre_handler == pre_handler_kretprobe)
		kprobe_type = "r";
	else if (p->pre_handler == setjmp_pre_handler)
		kprobe_type = "j";
	else
		kprobe_type = "k";
2169

2170
	if (sym)
2171
		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2172
			p->addr, kprobe_type, sym, offset,
2173
			(modname ? modname : " "));
2174
	else
2175 2176 2177 2178 2179
		seq_printf(pi, "%p  %s  %p ",
			p->addr, kprobe_type, p->addr);

	if (!pp)
		pp = p;
2180
	seq_printf(pi, "%s%s%s%s\n",
2181 2182
		(kprobe_gone(p) ? "[GONE]" : ""),
		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2183 2184
		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
}

static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
{
	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
}

static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
{
	(*pos)++;
	if (*pos >= KPROBE_TABLE_SIZE)
		return NULL;
	return pos;
}

static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
{
	/* Nothing to do */
}

static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
{
	struct hlist_head *head;
	struct kprobe *p, *kp;
	const char *sym = NULL;
	unsigned int i = *(loff_t *) v;
A
Alexey Dobriyan 已提交
2211
	unsigned long offset = 0;
2212 2213 2214 2215
	char *modname, namebuf[128];

	head = &kprobe_table[i];
	preempt_disable();
2216
	hlist_for_each_entry_rcu(p, head, hlist) {
A
Alexey Dobriyan 已提交
2217
		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2218
					&offset, &modname, namebuf);
2219
		if (kprobe_aggrprobe(p)) {
2220
			list_for_each_entry_rcu(kp, &p->list, list)
2221
				report_probe(pi, kp, sym, offset, modname, p);
2222
		} else
2223
			report_probe(pi, p, sym, offset, modname, NULL);
2224 2225 2226 2227 2228
	}
	preempt_enable();
	return 0;
}

J
James Morris 已提交
2229
static const struct seq_operations kprobes_seq_ops = {
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	.start = kprobe_seq_start,
	.next  = kprobe_seq_next,
	.stop  = kprobe_seq_stop,
	.show  = show_kprobe_addr
};

static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
{
	return seq_open(filp, &kprobes_seq_ops);
}

2241
static const struct file_operations debugfs_kprobes_operations = {
2242 2243 2244 2245 2246 2247
	.open           = kprobes_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = seq_release,
};

2248
static void __kprobes arm_all_kprobes(void)
2249 2250 2251 2252 2253 2254 2255
{
	struct hlist_head *head;
	struct kprobe *p;
	unsigned int i;

	mutex_lock(&kprobe_mutex);

2256 2257
	/* If kprobes are armed, just return */
	if (!kprobes_all_disarmed)
2258 2259
		goto already_enabled;

2260
	/* Arming kprobes doesn't optimize kprobe itself */
2261 2262
	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
		head = &kprobe_table[i];
2263
		hlist_for_each_entry_rcu(p, head, hlist)
2264
			if (!kprobe_disabled(p))
2265
				arm_kprobe(p);
2266 2267
	}

2268
	kprobes_all_disarmed = false;
2269 2270 2271 2272 2273 2274 2275
	printk(KERN_INFO "Kprobes globally enabled\n");

already_enabled:
	mutex_unlock(&kprobe_mutex);
	return;
}

2276
static void __kprobes disarm_all_kprobes(void)
2277 2278 2279 2280 2281 2282 2283
{
	struct hlist_head *head;
	struct kprobe *p;
	unsigned int i;

	mutex_lock(&kprobe_mutex);

2284
	/* If kprobes are already disarmed, just return */
2285 2286 2287 2288
	if (kprobes_all_disarmed) {
		mutex_unlock(&kprobe_mutex);
		return;
	}
2289

2290
	kprobes_all_disarmed = true;
2291
	printk(KERN_INFO "Kprobes globally disabled\n");
2292

2293 2294
	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
		head = &kprobe_table[i];
2295
		hlist_for_each_entry_rcu(p, head, hlist) {
2296
			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2297
				disarm_kprobe(p, false);
2298 2299 2300 2301
		}
	}
	mutex_unlock(&kprobe_mutex);

2302 2303
	/* Wait for disarming all kprobes by optimizer */
	wait_for_kprobe_optimizer();
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
}

/*
 * XXX: The debugfs bool file interface doesn't allow for callbacks
 * when the bool state is switched. We can reuse that facility when
 * available
 */
static ssize_t read_enabled_file_bool(struct file *file,
	       char __user *user_buf, size_t count, loff_t *ppos)
{
	char buf[3];

2316
	if (!kprobes_all_disarmed)
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
		buf[0] = '1';
	else
		buf[0] = '0';
	buf[1] = '\n';
	buf[2] = 0x00;
	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
}

static ssize_t write_enabled_file_bool(struct file *file,
	       const char __user *user_buf, size_t count, loff_t *ppos)
{
	char buf[32];
2329
	size_t buf_size;
2330 2331 2332 2333 2334

	buf_size = min(count, (sizeof(buf)-1));
	if (copy_from_user(buf, user_buf, buf_size))
		return -EFAULT;

2335
	buf[buf_size] = '\0';
2336 2337 2338 2339
	switch (buf[0]) {
	case 'y':
	case 'Y':
	case '1':
2340
		arm_all_kprobes();
2341 2342 2343 2344
		break;
	case 'n':
	case 'N':
	case '0':
2345
		disarm_all_kprobes();
2346
		break;
2347 2348
	default:
		return -EINVAL;
2349 2350 2351 2352 2353
	}

	return count;
}

2354
static const struct file_operations fops_kp = {
2355 2356
	.read =         read_enabled_file_bool,
	.write =        write_enabled_file_bool,
2357
	.llseek =	default_llseek,
2358 2359
};

2360 2361 2362
static int __kprobes debugfs_kprobe_init(void)
{
	struct dentry *dir, *file;
2363
	unsigned int value = 1;
2364 2365 2366 2367 2368

	dir = debugfs_create_dir("kprobes", NULL);
	if (!dir)
		return -ENOMEM;

R
Randy Dunlap 已提交
2369
	file = debugfs_create_file("list", 0444, dir, NULL,
2370 2371 2372 2373 2374 2375
				&debugfs_kprobes_operations);
	if (!file) {
		debugfs_remove(dir);
		return -ENOMEM;
	}

2376 2377 2378 2379 2380 2381 2382
	file = debugfs_create_file("enabled", 0600, dir,
					&value, &fops_kp);
	if (!file) {
		debugfs_remove(dir);
		return -ENOMEM;
	}

2383 2384 2385 2386 2387 2388 2389
	return 0;
}

late_initcall(debugfs_kprobe_init);
#endif /* CONFIG_DEBUG_FS */

module_init(init_kprobes);
L
Linus Torvalds 已提交
2390

2391
/* defined in arch/.../kernel/kprobes.c */
L
Linus Torvalds 已提交
2392
EXPORT_SYMBOL_GPL(jprobe_return);