skbuff.h 110.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 *	Definitions for the 'struct sk_buff' memory handlers.
 *
 *	Authors:
 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 *		Florian La Roche, <rzsfl@rz.uni-sb.de>
 *
 *	This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License
 *	as published by the Free Software Foundation; either version
 *	2 of the License, or (at your option) any later version.
 */

#ifndef _LINUX_SKBUFF_H
#define _LINUX_SKBUFF_H

#include <linux/kernel.h>
18
#include <linux/kmemcheck.h>
L
Linus Torvalds 已提交
19 20
#include <linux/compiler.h>
#include <linux/time.h>
21
#include <linux/bug.h>
L
Linus Torvalds 已提交
22
#include <linux/cache.h>
E
Eric Dumazet 已提交
23
#include <linux/rbtree.h>
24
#include <linux/socket.h>
L
Linus Torvalds 已提交
25

A
Arun Sharma 已提交
26
#include <linux/atomic.h>
L
Linus Torvalds 已提交
27 28 29
#include <asm/types.h>
#include <linux/spinlock.h>
#include <linux/net.h>
30
#include <linux/textsearch.h>
L
Linus Torvalds 已提交
31
#include <net/checksum.h>
32
#include <linux/rcupdate.h>
33
#include <linux/hrtimer.h>
34
#include <linux/dma-mapping.h>
35
#include <linux/netdev_features.h>
36
#include <linux/sched.h>
37
#include <net/flow_dissector.h>
38
#include <linux/splice.h>
39
#include <linux/in6.h>
40
#include <linux/if_packet.h>
41
#include <net/flow.h>
L
Linus Torvalds 已提交
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/* The interface for checksum offload between the stack and networking drivers
 * is as follows...
 *
 * A. IP checksum related features
 *
 * Drivers advertise checksum offload capabilities in the features of a device.
 * From the stack's point of view these are capabilities offered by the driver,
 * a driver typically only advertises features that it is capable of offloading
 * to its device.
 *
 * The checksum related features are:
 *
 *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
 *			  IP (one's complement) checksum for any combination
 *			  of protocols or protocol layering. The checksum is
 *			  computed and set in a packet per the CHECKSUM_PARTIAL
 *			  interface (see below).
 *
 *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
 *			  TCP or UDP packets over IPv4. These are specifically
 *			  unencapsulated packets of the form IPv4|TCP or
 *			  IPv4|UDP where the Protocol field in the IPv4 header
 *			  is TCP or UDP. The IPv4 header may contain IP options
 *			  This feature cannot be set in features for a device
 *			  with NETIF_F_HW_CSUM also set. This feature is being
 *			  DEPRECATED (see below).
 *
 *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
 *			  TCP or UDP packets over IPv6. These are specifically
 *			  unencapsulated packets of the form IPv6|TCP or
 *			  IPv4|UDP where the Next Header field in the IPv6
 *			  header is either TCP or UDP. IPv6 extension headers
 *			  are not supported with this feature. This feature
 *			  cannot be set in features for a device with
 *			  NETIF_F_HW_CSUM also set. This feature is being
 *			  DEPRECATED (see below).
 *
 *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
 *			 This flag is used only used to disable the RX checksum
 *			 feature for a device. The stack will accept receive
 *			 checksum indication in packets received on a device
 *			 regardless of whether NETIF_F_RXCSUM is set.
 *
 * B. Checksumming of received packets by device. Indication of checksum
 *    verification is in set skb->ip_summed. Possible values are:
88 89 90
 *
 * CHECKSUM_NONE:
 *
91
 *   Device did not checksum this packet e.g. due to lack of capabilities.
92 93 94 95 96 97 98
 *   The packet contains full (though not verified) checksum in packet but
 *   not in skb->csum. Thus, skb->csum is undefined in this case.
 *
 * CHECKSUM_UNNECESSARY:
 *
 *   The hardware you're dealing with doesn't calculate the full checksum
 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
99 100
 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
 *   if their checksums are okay. skb->csum is still undefined in this case
101 102
 *   though. A driver or device must never modify the checksum field in the
 *   packet even if checksum is verified.
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
 *
 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
 *     TCP: IPv6 and IPv4.
 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
 *       may perform further validation in this case.
 *     GRE: only if the checksum is present in the header.
 *     SCTP: indicates the CRC in SCTP header has been validated.
 *
 *   skb->csum_level indicates the number of consecutive checksums found in
 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
 *   and a device is able to verify the checksums for UDP (possibly zero),
 *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
 *   two. If the device were only able to verify the UDP checksum and not
 *   GRE, either because it doesn't support GRE checksum of because GRE
 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
 *   not considered in this case).
121 122 123 124 125 126 127 128 129 130 131 132
 *
 * CHECKSUM_COMPLETE:
 *
 *   This is the most generic way. The device supplied checksum of the _whole_
 *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
 *   hardware doesn't need to parse L3/L4 headers to implement this.
 *
 *   Note: Even if device supports only some protocols, but is able to produce
 *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 *
 * CHECKSUM_PARTIAL:
 *
133 134
 *   A checksum is set up to be offloaded to a device as described in the
 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
135
 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
136 137 138 139 140 141
 *   on the same host, or it may be set in the input path in GRO or remote
 *   checksum offload. For the purposes of checksum verification, the checksum
 *   referred to by skb->csum_start + skb->csum_offset and any preceding
 *   checksums in the packet are considered verified. Any checksums in the
 *   packet that are after the checksum being offloaded are not considered to
 *   be verified.
142
 *
143 144
 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
 *    in the skb->ip_summed for a packet. Values are:
145 146 147
 *
 * CHECKSUM_PARTIAL:
 *
148
 *   The driver is required to checksum the packet as seen by hard_start_xmit()
149
 *   from skb->csum_start up to the end, and to record/write the checksum at
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
 *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
 *   csum_start and csum_offset values are valid values given the length and
 *   offset of the packet, however they should not attempt to validate that the
 *   checksum refers to a legitimate transport layer checksum-- it is the
 *   purview of the stack to validate that csum_start and csum_offset are set
 *   correctly.
 *
 *   When the stack requests checksum offload for a packet, the driver MUST
 *   ensure that the checksum is set correctly. A driver can either offload the
 *   checksum calculation to the device, or call skb_checksum_help (in the case
 *   that the device does not support offload for a particular checksum).
 *
 *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
 *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
 *   checksum offload capability. If a	device has limited checksum capabilities
 *   (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
 *   described above) a helper function can be called to resolve
 *   CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
 *   function takes a spec argument that describes the protocol layer that is
 *   supported for checksum offload and can be called for each packet. If a
 *   packet does not match the specification for offload, skb_checksum_help
 *   is called to resolve the checksum.
172
 *
173
 * CHECKSUM_NONE:
174
 *
175 176
 *   The skb was already checksummed by the protocol, or a checksum is not
 *   required.
177 178 179
 *
 * CHECKSUM_UNNECESSARY:
 *
180 181
 *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
 *   output.
182
 *
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
 * CHECKSUM_COMPLETE:
 *   Not used in checksum output. If a driver observes a packet with this value
 *   set in skbuff, if should treat as CHECKSUM_NONE being set.
 *
 * D. Non-IP checksum (CRC) offloads
 *
 *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
 *     offloading the SCTP CRC in a packet. To perform this offload the stack
 *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
 *     accordingly. Note the there is no indication in the skbuff that the
 *     CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
 *     both IP checksum offload and SCTP CRC offload must verify which offload
 *     is configured for a packet presumably by inspecting packet headers.
 *
 *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
 *     offloading the FCOE CRC in a packet. To perform this offload the stack
 *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
 *     accordingly. Note the there is no indication in the skbuff that the
 *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
 *     both IP checksum offload and FCOE CRC offload must verify which offload
 *     is configured for a packet presumably by inspecting packet headers.
 *
 * E. Checksumming on output with GSO.
 *
 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
 * part of the GSO operation is implied. If a checksum is being offloaded
 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
 * are set to refer to the outermost checksum being offload (two offloaded
 * checksums are possible with UDP encapsulation).
214 215
 */

216
/* Don't change this without changing skb_csum_unnecessary! */
217 218 219 220
#define CHECKSUM_NONE		0
#define CHECKSUM_UNNECESSARY	1
#define CHECKSUM_COMPLETE	2
#define CHECKSUM_PARTIAL	3
L
Linus Torvalds 已提交
221

222 223 224
/* Maximum value in skb->csum_level */
#define SKB_MAX_CSUM_LEVEL	3

225
#define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
226
#define SKB_WITH_OVERHEAD(X)	\
227
	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
228 229
#define SKB_MAX_ORDER(X, ORDER) \
	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
L
Linus Torvalds 已提交
230 231 232
#define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
#define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))

E
Eric Dumazet 已提交
233 234 235 236 237
/* return minimum truesize of one skb containing X bytes of data */
#define SKB_TRUESIZE(X) ((X) +						\
			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))

L
Linus Torvalds 已提交
238
struct net_device;
239
struct scatterlist;
J
Jens Axboe 已提交
240
struct pipe_inode_info;
H
Herbert Xu 已提交
241
struct iov_iter;
242
struct napi_struct;
L
Linus Torvalds 已提交
243

244
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
L
Linus Torvalds 已提交
245 246 247
struct nf_conntrack {
	atomic_t use;
};
248
#endif
L
Linus Torvalds 已提交
249

250
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
L
Linus Torvalds 已提交
251
struct nf_bridge_info {
252
	atomic_t		use;
253 254 255 256
	enum {
		BRNF_PROTO_UNCHANGED,
		BRNF_PROTO_8021Q,
		BRNF_PROTO_PPPOE
257
	} orig_proto:8;
258 259 260
	u8			pkt_otherhost:1;
	u8			in_prerouting:1;
	u8			bridged_dnat:1;
261
	__u16			frag_max_size;
262
	struct net_device	*physindev;
263 264 265

	/* always valid & non-NULL from FORWARD on, for physdev match */
	struct net_device	*physoutdev;
266
	union {
267
		/* prerouting: detect dnat in orig/reply direction */
268 269
		__be32          ipv4_daddr;
		struct in6_addr ipv6_daddr;
270 271 272 273 274 275

		/* after prerouting + nat detected: store original source
		 * mac since neigh resolution overwrites it, only used while
		 * skb is out in neigh layer.
		 */
		char neigh_header[8];
276
	};
L
Linus Torvalds 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290
};
#endif

struct sk_buff_head {
	/* These two members must be first. */
	struct sk_buff	*next;
	struct sk_buff	*prev;

	__u32		qlen;
	spinlock_t	lock;
};

struct sk_buff;

291 292 293 294 295 296
/* To allow 64K frame to be packed as single skb without frag_list we
 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 * buffers which do not start on a page boundary.
 *
 * Since GRO uses frags we allocate at least 16 regardless of page
 * size.
297
 */
298
#if (65536/PAGE_SIZE + 1) < 16
299
#define MAX_SKB_FRAGS 16UL
300
#else
301
#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
302
#endif
H
Hans Westgaard Ry 已提交
303
extern int sysctl_max_skb_frags;
L
Linus Torvalds 已提交
304

305 306 307 308 309
/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
 * segment using its current segmentation instead.
 */
#define GSO_BY_FRAGS	0xFFFF

L
Linus Torvalds 已提交
310 311 312
typedef struct skb_frag_struct skb_frag_t;

struct skb_frag_struct {
313 314 315
	struct {
		struct page *p;
	} page;
316
#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
317 318
	__u32 page_offset;
	__u32 size;
319 320 321 322
#else
	__u16 page_offset;
	__u16 size;
#endif
L
Linus Torvalds 已提交
323 324
};

E
Eric Dumazet 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
static inline unsigned int skb_frag_size(const skb_frag_t *frag)
{
	return frag->size;
}

static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
{
	frag->size = size;
}

static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
{
	frag->size += delta;
}

static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
{
	frag->size -= delta;
}

345 346 347
#define HAVE_HW_TIME_STAMP

/**
348
 * struct skb_shared_hwtstamps - hardware time stamps
349 350 351 352
 * @hwtstamp:	hardware time stamp transformed into duration
 *		since arbitrary point in time
 *
 * Software time stamps generated by ktime_get_real() are stored in
353
 * skb->tstamp.
354 355 356 357 358 359 360 361 362 363 364
 *
 * hwtstamps can only be compared against other hwtstamps from
 * the same device.
 *
 * This structure is attached to packets as part of the
 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 */
struct skb_shared_hwtstamps {
	ktime_t	hwtstamp;
};

365 366 367 368 369
/* Definitions for tx_flags in struct skb_shared_info */
enum {
	/* generate hardware time stamp */
	SKBTX_HW_TSTAMP = 1 << 0,

370
	/* generate software time stamp when queueing packet to NIC */
371 372 373 374 375
	SKBTX_SW_TSTAMP = 1 << 1,

	/* device driver is going to provide hardware time stamp */
	SKBTX_IN_PROGRESS = 1 << 2,

376
	/* device driver supports TX zero-copy buffers */
E
Eric Dumazet 已提交
377
	SKBTX_DEV_ZEROCOPY = 1 << 3,
378 379

	/* generate wifi status information (where possible) */
E
Eric Dumazet 已提交
380
	SKBTX_WIFI_STATUS = 1 << 4,
381 382 383 384 385 386 387

	/* This indicates at least one fragment might be overwritten
	 * (as in vmsplice(), sendfile() ...)
	 * If we need to compute a TX checksum, we'll need to copy
	 * all frags to avoid possible bad checksum
	 */
	SKBTX_SHARED_FRAG = 1 << 5,
388 389 390

	/* generate software time stamp when entering packet scheduling */
	SKBTX_SCHED_TSTAMP = 1 << 6,
391 392
};

393
#define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
394
				 SKBTX_SCHED_TSTAMP)
395 396
#define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)

397 398 399
/*
 * The callback notifies userspace to release buffers when skb DMA is done in
 * lower device, the skb last reference should be 0 when calling this.
400 401
 * The zerocopy_success argument is true if zero copy transmit occurred,
 * false on data copy or out of memory error caused by data copy attempt.
402 403
 * The ctx field is used to track device context.
 * The desc field is used to track userspace buffer index.
404 405
 */
struct ubuf_info {
406
	void (*callback)(struct ubuf_info *, bool zerocopy_success);
407
	void *ctx;
408
	unsigned long desc;
409 410
};

L
Linus Torvalds 已提交
411 412 413 414
/* This data is invariant across clones and lives at
 * the end of the header data, ie. at skb->end.
 */
struct skb_shared_info {
415 416
	unsigned char	nr_frags;
	__u8		tx_flags;
417 418 419 420
	unsigned short	gso_size;
	/* Warning: this field is not always filled in (UFO)! */
	unsigned short	gso_segs;
	unsigned short  gso_type;
L
Linus Torvalds 已提交
421
	struct sk_buff	*frag_list;
422
	struct skb_shared_hwtstamps hwtstamps;
423
	u32		tskey;
424
	__be32          ip6_frag_id;
E
Eric Dumazet 已提交
425 426 427 428 429 430

	/*
	 * Warning : all fields before dataref are cleared in __alloc_skb()
	 */
	atomic_t	dataref;

J
Johann Baudy 已提交
431 432 433
	/* Intermediate layers must ensure that destructor_arg
	 * remains valid until skb destructor */
	void *		destructor_arg;
434

435 436
	/* must be last field, see pskb_expand_head() */
	skb_frag_t	frags[MAX_SKB_FRAGS];
L
Linus Torvalds 已提交
437 438 439 440
};

/* We divide dataref into two halves.  The higher 16 bits hold references
 * to the payload part of skb->data.  The lower 16 bits hold references to
441 442
 * the entire skb->data.  A clone of a headerless skb holds the length of
 * the header in skb->hdr_len.
L
Linus Torvalds 已提交
443 444 445 446 447 448 449 450 451 452
 *
 * All users must obey the rule that the skb->data reference count must be
 * greater than or equal to the payload reference count.
 *
 * Holding a reference to the payload part means that the user does not
 * care about modifications to the header part of skb->data.
 */
#define SKB_DATAREF_SHIFT 16
#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)

453 454

enum {
455 456 457
	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
458 459
};

460 461
enum {
	SKB_GSO_TCPV4 = 1 << 0,
H
Herbert Xu 已提交
462
	SKB_GSO_UDP = 1 << 1,
463 464 465

	/* This indicates the skb is from an untrusted source. */
	SKB_GSO_DODGY = 1 << 2,
M
Michael Chan 已提交
466 467

	/* This indicates the tcp segment has CWR set. */
H
Herbert Xu 已提交
468 469
	SKB_GSO_TCP_ECN = 1 << 3,

470
	SKB_GSO_TCP_FIXEDID = 1 << 4,
471

472
	SKB_GSO_TCPV6 = 1 << 5,
473

474
	SKB_GSO_FCOE = 1 << 6,
475

476
	SKB_GSO_GRE = 1 << 7,
S
Simon Horman 已提交
477

478
	SKB_GSO_GRE_CSUM = 1 << 8,
E
Eric Dumazet 已提交
479

480
	SKB_GSO_IPXIP4 = 1 << 9,
E
Eric Dumazet 已提交
481

482
	SKB_GSO_IPXIP6 = 1 << 10,
483

484
	SKB_GSO_UDP_TUNNEL = 1 << 11,
T
Tom Herbert 已提交
485

486 487
	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,

488 489 490
	SKB_GSO_PARTIAL = 1 << 13,

	SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
M
Marcelo Ricardo Leitner 已提交
491 492

	SKB_GSO_SCTP = 1 << 15,
493 494
};

495 496 497 498 499 500 501 502 503 504
#if BITS_PER_LONG > 32
#define NET_SKBUFF_DATA_USES_OFFSET 1
#endif

#ifdef NET_SKBUFF_DATA_USES_OFFSET
typedef unsigned int sk_buff_data_t;
#else
typedef unsigned char *sk_buff_data_t;
#endif

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
/**
 * struct skb_mstamp - multi resolution time stamps
 * @stamp_us: timestamp in us resolution
 * @stamp_jiffies: timestamp in jiffies
 */
struct skb_mstamp {
	union {
		u64		v64;
		struct {
			u32	stamp_us;
			u32	stamp_jiffies;
		};
	};
};

/**
 * skb_mstamp_get - get current timestamp
 * @cl: place to store timestamps
 */
static inline void skb_mstamp_get(struct skb_mstamp *cl)
{
	u64 val = local_clock();

	do_div(val, NSEC_PER_USEC);
	cl->stamp_us = (u32)val;
	cl->stamp_jiffies = (u32)jiffies;
}

/**
 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
 * @t1: pointer to newest sample
 * @t0: pointer to oldest sample
 */
static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
				      const struct skb_mstamp *t0)
{
	s32 delta_us = t1->stamp_us - t0->stamp_us;
	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;

	/* If delta_us is negative, this might be because interval is too big,
	 * or local_clock() drift is too big : fallback using jiffies.
	 */
	if (delta_us <= 0 ||
	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))

		delta_us = jiffies_to_usecs(delta_jiffies);

	return delta_us;
}

Y
Yuchung Cheng 已提交
555 556 557 558 559 560 561 562 563
static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
				    const struct skb_mstamp *t0)
{
	s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;

	if (!diff)
		diff = t1->stamp_us - t0->stamp_us;
	return diff > 0;
}
564

L
Linus Torvalds 已提交
565 566 567 568
/** 
 *	struct sk_buff - socket buffer
 *	@next: Next buffer in list
 *	@prev: Previous buffer in list
569
 *	@tstamp: Time we arrived/left
E
Eric Dumazet 已提交
570
 *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
571
 *	@sk: Socket we are owned by
L
Linus Torvalds 已提交
572
 *	@dev: Device we arrived on/are leaving by
573
 *	@cb: Control buffer. Free for use by every layer. Put private vars here
E
Eric Dumazet 已提交
574
 *	@_skb_refdst: destination entry (with norefcount bit)
575
 *	@sp: the security path, used for xfrm
L
Linus Torvalds 已提交
576 577 578
 *	@len: Length of actual data
 *	@data_len: Data length
 *	@mac_len: Length of link layer header
579
 *	@hdr_len: writable header length of cloned skb
580 581 582
 *	@csum: Checksum (must include start/offset pair)
 *	@csum_start: Offset from skb->head where checksumming should start
 *	@csum_offset: Offset from csum_start where checksum should be stored
583
 *	@priority: Packet queueing priority
W
WANG Cong 已提交
584
 *	@ignore_df: allow local fragmentation
L
Linus Torvalds 已提交
585
 *	@cloned: Head may be cloned (check refcnt to be sure)
586
 *	@ip_summed: Driver fed us an IP checksum
L
Linus Torvalds 已提交
587
 *	@nohdr: Payload reference only, must not modify header
588
 *	@nfctinfo: Relationship of this skb to the connection
L
Linus Torvalds 已提交
589
 *	@pkt_type: Packet class
590 591
 *	@fclone: skbuff clone status
 *	@ipvs_property: skbuff is owned by ipvs
592 593
 *	@peeked: this packet has been seen already, so stats have been
 *		done for it, don't do them again
594
 *	@nf_trace: netfilter packet trace flag
595 596 597
 *	@protocol: Packet protocol from driver
 *	@destructor: Destruct function
 *	@nfct: Associated connection, if any
L
Linus Torvalds 已提交
598
 *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
599
 *	@skb_iif: ifindex of device we arrived on
L
Linus Torvalds 已提交
600 601
 *	@tc_index: Traffic control index
 *	@tc_verd: traffic control verdict
602
 *	@hash: the packet hash
603
 *	@queue_mapping: Queue mapping for multiqueue devices
604
 *	@xmit_more: More SKBs are pending for this queue
605
 *	@ndisc_nodetype: router type (from link layer)
606
 *	@ooo_okay: allow the mapping of a socket to a queue to be changed
607
 *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
608
 *		ports.
609
 *	@sw_hash: indicates hash was computed in software stack
610 611
 *	@wifi_acked_valid: wifi_acked was set
 *	@wifi_acked: whether frame was acked on wifi or not
612
 *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
E
Eliezer Tamir 已提交
613
  *	@napi_id: id of the NAPI struct this skb came from
614
 *	@secmark: security marking
615
 *	@mark: Generic packet mark
616
 *	@vlan_proto: vlan encapsulation protocol
617
 *	@vlan_tci: vlan tag control information
S
Simon Horman 已提交
618
 *	@inner_protocol: Protocol (encapsulation)
619 620
 *	@inner_transport_header: Inner transport layer header (encapsulation)
 *	@inner_network_header: Network layer header (encapsulation)
621
 *	@inner_mac_header: Link layer header (encapsulation)
622 623 624 625 626 627 628 629 630
 *	@transport_header: Transport layer header
 *	@network_header: Network layer header
 *	@mac_header: Link layer header
 *	@tail: Tail pointer
 *	@end: End pointer
 *	@head: Head of buffer
 *	@data: Data head pointer
 *	@truesize: Buffer size
 *	@users: User count - see {datagram,tcp}.c
L
Linus Torvalds 已提交
631 632 633
 */

struct sk_buff {
634
	union {
E
Eric Dumazet 已提交
635 636 637 638 639 640 641 642 643 644 645
		struct {
			/* These two members must be first. */
			struct sk_buff		*next;
			struct sk_buff		*prev;

			union {
				ktime_t		tstamp;
				struct skb_mstamp skb_mstamp;
			};
		};
		struct rb_node	rbnode; /* used in netem & tcp stack */
646
	};
647
	struct sock		*sk;
L
Linus Torvalds 已提交
648 649 650 651 652 653 654 655
	struct net_device	*dev;

	/*
	 * This is the control buffer. It is free to use for every
	 * layer. Please put your private variables there. If you
	 * want to keep them across layers you have to do a skb_clone()
	 * first. This is owned by whoever has the skb queued ATM.
	 */
656
	char			cb[48] __aligned(8);
L
Linus Torvalds 已提交
657

E
Eric Dumazet 已提交
658
	unsigned long		_skb_refdst;
659
	void			(*destructor)(struct sk_buff *skb);
660 661
#ifdef CONFIG_XFRM
	struct	sec_path	*sp;
662 663 664 665
#endif
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
	struct nf_conntrack	*nfct;
#endif
666
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
667
	struct nf_bridge_info	*nf_bridge;
668
#endif
L
Linus Torvalds 已提交
669
	unsigned int		len,
670 671 672
				data_len;
	__u16			mac_len,
				hdr_len;
673 674 675 676

	/* Following fields are _not_ copied in __copy_skb_header()
	 * Note that queue_mapping is here mostly to fill a hole.
	 */
677
	kmemcheck_bitfield_begin(flags1);
678
	__u16			queue_mapping;
679 680 681 682 683 684 685 686 687 688

/* if you move cloned around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define CLONED_MASK	(1 << 7)
#else
#define CLONED_MASK	1
#endif
#define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)

	__u8			__cloned_offset[0];
689
	__u8			cloned:1,
690
				nohdr:1,
691
				fclone:2,
692
				peeked:1,
693
				head_frag:1,
694 695
				xmit_more:1,
				__unused:1; /* one bit hole */
696
	kmemcheck_bitfield_end(flags1);
697

698 699 700
	/* fields enclosed in headers_start/headers_end are copied
	 * using a single memcpy() in __copy_skb_header()
	 */
701
	/* private: */
702
	__u32			headers_start[0];
703
	/* public: */
704

705 706 707 708 709
/* if you move pkt_type around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define PKT_TYPE_MAX	(7 << 5)
#else
#define PKT_TYPE_MAX	7
L
Linus Torvalds 已提交
710
#endif
711
#define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
712

713
	__u8			__pkt_type_offset[0];
714
	__u8			pkt_type:3;
715
	__u8			pfmemalloc:1;
716 717 718 719 720
	__u8			ignore_df:1;
	__u8			nfctinfo:3;

	__u8			nf_trace:1;
	__u8			ip_summed:2;
721
	__u8			ooo_okay:1;
722
	__u8			l4_hash:1;
723
	__u8			sw_hash:1;
724 725
	__u8			wifi_acked_valid:1;
	__u8			wifi_acked:1;
726

727
	__u8			no_fcs:1;
728
	/* Indicates the inner headers are valid in the skbuff. */
729
	__u8			encapsulation:1;
730
	__u8			encap_hdr_csum:1;
731
	__u8			csum_valid:1;
732
	__u8			csum_complete_sw:1;
733 734
	__u8			csum_level:2;
	__u8			csum_bad:1;
735

736 737 738 739
#ifdef CONFIG_IPV6_NDISC_NODETYPE
	__u8			ndisc_nodetype:2;
#endif
	__u8			ipvs_property:1;
T
Tom Herbert 已提交
740
	__u8			inner_protocol_type:1;
741
	__u8			remcsum_offload:1;
742 743 744 745
#ifdef CONFIG_NET_SWITCHDEV
	__u8			offload_fwd_mark:1;
#endif
	/* 2, 4 or 5 bit hole */
746 747 748 749 750 751 752

#ifdef CONFIG_NET_SCHED
	__u16			tc_index;	/* traffic control index */
#ifdef CONFIG_NET_CLS_ACT
	__u16			tc_verd;	/* traffic control verdict */
#endif
#endif
753

754 755 756 757 758 759 760 761 762 763 764 765
	union {
		__wsum		csum;
		struct {
			__u16	csum_start;
			__u16	csum_offset;
		};
	};
	__u32			priority;
	int			skb_iif;
	__u32			hash;
	__be16			vlan_proto;
	__u16			vlan_tci;
E
Eric Dumazet 已提交
766 767 768 769 770
#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
	union {
		unsigned int	napi_id;
		unsigned int	sender_cpu;
	};
771
#endif
772
#ifdef CONFIG_NETWORK_SECMARK
773
	__u32		secmark;
774 775
#endif

776 777
	union {
		__u32		mark;
E
Eric Dumazet 已提交
778
		__u32		reserved_tailroom;
779
	};
L
Linus Torvalds 已提交
780

T
Tom Herbert 已提交
781 782 783 784 785
	union {
		__be16		inner_protocol;
		__u8		inner_ipproto;
	};

786 787 788
	__u16			inner_transport_header;
	__u16			inner_network_header;
	__u16			inner_mac_header;
789 790

	__be16			protocol;
791 792 793
	__u16			transport_header;
	__u16			network_header;
	__u16			mac_header;
794

795
	/* private: */
796
	__u32			headers_end[0];
797
	/* public: */
798

L
Linus Torvalds 已提交
799
	/* These elements must be at the end, see alloc_skb() for details.  */
800
	sk_buff_data_t		tail;
801
	sk_buff_data_t		end;
L
Linus Torvalds 已提交
802
	unsigned char		*head,
803
				*data;
804 805
	unsigned int		truesize;
	atomic_t		users;
L
Linus Torvalds 已提交
806 807 808 809 810 811 812 813 814
};

#ifdef __KERNEL__
/*
 *	Handling routines are only of interest to the kernel
 */
#include <linux/slab.h>


815 816
#define SKB_ALLOC_FCLONE	0x01
#define SKB_ALLOC_RX		0x02
817
#define SKB_ALLOC_NAPI		0x04
818 819 820 821 822 823 824

/* Returns true if the skb was allocated from PFMEMALLOC reserves */
static inline bool skb_pfmemalloc(const struct sk_buff *skb)
{
	return unlikely(skb->pfmemalloc);
}

E
Eric Dumazet 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837
/*
 * skb might have a dst pointer attached, refcounted or not.
 * _skb_refdst low order bit is set if refcount was _not_ taken
 */
#define SKB_DST_NOREF	1UL
#define SKB_DST_PTRMASK	~(SKB_DST_NOREF)

/**
 * skb_dst - returns skb dst_entry
 * @skb: buffer
 *
 * Returns skb dst_entry, regardless of reference taken or not.
 */
E
Eric Dumazet 已提交
838 839
static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
840 841 842 843 844 845 846
	/* If refdst was not refcounted, check we still are in a 
	 * rcu_read_lock section
	 */
	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
		!rcu_read_lock_held() &&
		!rcu_read_lock_bh_held());
	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
E
Eric Dumazet 已提交
847 848
}

E
Eric Dumazet 已提交
849 850 851 852 853 854 855 856
/**
 * skb_dst_set - sets skb dst
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was taken on dst and should
 * be released by skb_dst_drop()
 */
E
Eric Dumazet 已提交
857 858
static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
{
E
Eric Dumazet 已提交
859 860 861
	skb->_skb_refdst = (unsigned long)dst;
}

862 863 864 865 866 867 868 869 870 871 872 873
/**
 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was not taken on dst.
 * If dst entry is cached, we do not take reference and dst_release
 * will be avoided by refdst_drop. If dst entry is not cached, we take
 * reference, so that last dst_release can destroy the dst immediately.
 */
static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
{
874 875
	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
876
}
E
Eric Dumazet 已提交
877 878

/**
L
Lucas De Marchi 已提交
879
 * skb_dst_is_noref - Test if skb dst isn't refcounted
E
Eric Dumazet 已提交
880 881 882 883 884
 * @skb: buffer
 */
static inline bool skb_dst_is_noref(const struct sk_buff *skb)
{
	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
E
Eric Dumazet 已提交
885 886
}

E
Eric Dumazet 已提交
887 888
static inline struct rtable *skb_rtable(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
889
	return (struct rtable *)skb_dst(skb);
E
Eric Dumazet 已提交
890 891
}

892 893 894 895 896 897 898 899 900
/* For mangling skb->pkt_type from user space side from applications
 * such as nft, tc, etc, we only allow a conservative subset of
 * possible pkt_types to be set.
*/
static inline bool skb_pkt_type_ok(u32 ptype)
{
	return ptype <= PACKET_OTHERHOST;
}

901 902 903 904 905
void kfree_skb(struct sk_buff *skb);
void kfree_skb_list(struct sk_buff *segs);
void skb_tx_error(struct sk_buff *skb);
void consume_skb(struct sk_buff *skb);
void  __kfree_skb(struct sk_buff *skb);
906
extern struct kmem_cache *skbuff_head_cache;
E
Eric Dumazet 已提交
907

908 909 910
void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
		      bool *fragstolen, int *delta_truesize);
E
Eric Dumazet 已提交
911

912 913
struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
			    int node);
E
Eric Dumazet 已提交
914
struct sk_buff *__build_skb(void *data, unsigned int frag_size);
915
struct sk_buff *build_skb(void *data, unsigned int frag_size);
916
static inline struct sk_buff *alloc_skb(unsigned int size,
A
Al Viro 已提交
917
					gfp_t priority)
918
{
E
Eric Dumazet 已提交
919
	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
920 921
}

922 923 924 925 926 927
struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
				     unsigned long data_len,
				     int max_page_order,
				     int *errcode,
				     gfp_t gfp_mask);

928 929 930 931 932 933 934 935 936 937 938
/* Layout of fast clones : [skb1][skb2][fclone_ref] */
struct sk_buff_fclones {
	struct sk_buff	skb1;

	struct sk_buff	skb2;

	atomic_t	fclone_ref;
};

/**
 *	skb_fclone_busy - check if fclone is busy
939
 *	@sk: socket
940 941
 *	@skb: buffer
 *
M
Masanari Iida 已提交
942
 * Returns true if skb is a fast clone, and its clone is not freed.
943 944
 * Some drivers call skb_orphan() in their ndo_start_xmit(),
 * so we also check that this didnt happen.
945
 */
946 947
static inline bool skb_fclone_busy(const struct sock *sk,
				   const struct sk_buff *skb)
948 949 950 951 952 953
{
	const struct sk_buff_fclones *fclones;

	fclones = container_of(skb, struct sk_buff_fclones, skb1);

	return skb->fclone == SKB_FCLONE_ORIG &&
954
	       atomic_read(&fclones->fclone_ref) > 1 &&
955
	       fclones->skb2.sk == sk;
956 957
}

958
static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
A
Al Viro 已提交
959
					       gfp_t priority)
960
{
961
	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
962 963
}

964
struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
965 966 967 968 969
static inline struct sk_buff *alloc_skb_head(gfp_t priority)
{
	return __alloc_skb_head(priority, -1);
}

970 971 972 973
struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
974 975 976 977 978 979 980
struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
				   gfp_t gfp_mask, bool fclone);
static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
					  gfp_t gfp_mask)
{
	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
}
981 982 983 984 985 986

int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
				     unsigned int headroom);
struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
				int newtailroom, gfp_t priority);
987 988
int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
			int offset, int len);
989 990 991 992
int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
		 int len);
int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
int skb_pad(struct sk_buff *skb, int pad);
993
#define dev_kfree_skb(a)	consume_skb(a)
L
Linus Torvalds 已提交
994

995 996 997 998
int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
			    int getfrag(void *from, char *to, int offset,
					int len, int odd, struct sk_buff *skb),
			    void *from, int length);
999

1000 1001 1002
int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
			 int offset, size_t size);

E
Eric Dumazet 已提交
1003
struct skb_seq_state {
1004 1005 1006 1007 1008 1009 1010 1011 1012
	__u32		lower_offset;
	__u32		upper_offset;
	__u32		frag_idx;
	__u32		stepped_offset;
	struct sk_buff	*root_skb;
	struct sk_buff	*cur_skb;
	__u8		*frag_data;
};

1013 1014 1015 1016 1017
void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
			  unsigned int to, struct skb_seq_state *st);
unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
			  struct skb_seq_state *st);
void skb_abort_seq_read(struct skb_seq_state *st);
1018

1019
unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1020
			   unsigned int to, struct ts_config *config);
1021

T
Tom Herbert 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * Packet hash types specify the type of hash in skb_set_hash.
 *
 * Hash types refer to the protocol layer addresses which are used to
 * construct a packet's hash. The hashes are used to differentiate or identify
 * flows of the protocol layer for the hash type. Hash types are either
 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
 *
 * Properties of hashes:
 *
 * 1) Two packets in different flows have different hash values
 * 2) Two packets in the same flow should have the same hash value
 *
 * A hash at a higher layer is considered to be more specific. A driver should
 * set the most specific hash possible.
 *
 * A driver cannot indicate a more specific hash than the layer at which a hash
 * was computed. For instance an L3 hash cannot be set as an L4 hash.
 *
 * A driver may indicate a hash level which is less specific than the
 * actual layer the hash was computed on. For instance, a hash computed
 * at L4 may be considered an L3 hash. This should only be done if the
 * driver can't unambiguously determine that the HW computed the hash at
 * the higher layer. Note that the "should" in the second property above
 * permits this.
 */
enum pkt_hash_types {
	PKT_HASH_TYPE_NONE,	/* Undefined type */
	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
};

1055
static inline void skb_clear_hash(struct sk_buff *skb)
T
Tom Herbert 已提交
1056
{
1057
	skb->hash = 0;
1058
	skb->sw_hash = 0;
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	skb->l4_hash = 0;
}

static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
{
	if (!skb->l4_hash)
		skb_clear_hash(skb);
}

static inline void
__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
{
	skb->l4_hash = is_l4;
	skb->sw_hash = is_sw;
1073
	skb->hash = hash;
T
Tom Herbert 已提交
1074 1075
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
static inline void
skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
{
	/* Used by drivers to set hash from HW */
	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
}

static inline void
__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
{
	__skb_set_hash(skb, hash, true, is_l4);
}

1089
void __skb_get_hash(struct sk_buff *skb);
1090
u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
u32 skb_get_poff(const struct sk_buff *skb);
u32 __skb_get_poff(const struct sk_buff *skb, void *data,
		   const struct flow_keys *keys, int hlen);
__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
			    void *data, int hlen_proto);

static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
					int thoff, u8 ip_proto)
{
	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
}

void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
			     const struct flow_dissector_key *key,
			     unsigned int key_count);

bool __skb_flow_dissect(const struct sk_buff *skb,
			struct flow_dissector *flow_dissector,
			void *target_container,
1110 1111
			void *data, __be16 proto, int nhoff, int hlen,
			unsigned int flags);
1112 1113 1114

static inline bool skb_flow_dissect(const struct sk_buff *skb,
				    struct flow_dissector *flow_dissector,
1115
				    void *target_container, unsigned int flags)
1116 1117
{
	return __skb_flow_dissect(skb, flow_dissector, target_container,
1118
				  NULL, 0, 0, 0, flags);
1119 1120 1121
}

static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1122 1123
					      struct flow_keys *flow,
					      unsigned int flags)
1124 1125 1126
{
	memset(flow, 0, sizeof(*flow));
	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1127
				  NULL, 0, 0, 0, flags);
1128 1129 1130 1131
}

static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
						  void *data, __be16 proto,
1132 1133
						  int nhoff, int hlen,
						  unsigned int flags)
1134 1135 1136
{
	memset(flow, 0, sizeof(*flow));
	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1137
				  data, proto, nhoff, hlen, flags);
1138 1139
}

1140
static inline __u32 skb_get_hash(struct sk_buff *skb)
1141
{
1142
	if (!skb->l4_hash && !skb->sw_hash)
1143
		__skb_get_hash(skb);
1144

1145
	return skb->hash;
1146 1147
}

1148
__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1149

1150
static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1151
{
1152 1153
	if (!skb->l4_hash && !skb->sw_hash) {
		struct flow_keys keys;
1154
		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1155

1156
		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1157
	}
1158 1159 1160 1161

	return skb->hash;
}

1162
__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1163

1164
static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1165
{
1166 1167
	if (!skb->l4_hash && !skb->sw_hash) {
		struct flow_keys keys;
1168
		__u32 hash = __get_hash_from_flowi4(fl4, &keys);
1169

1170
		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1171
	}
1172 1173 1174 1175

	return skb->hash;
}

T
Tom Herbert 已提交
1176 1177
__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);

T
Tom Herbert 已提交
1178 1179
static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
{
1180
	return skb->hash;
T
Tom Herbert 已提交
1181 1182
}

1183 1184
static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
{
1185
	to->hash = from->hash;
1186
	to->sw_hash = from->sw_hash;
1187
	to->l4_hash = from->l4_hash;
1188 1189
};

1190 1191 1192 1193 1194
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
	return skb->head + skb->end;
}
1195 1196 1197 1198 1199

static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
	return skb->end;
}
1200 1201 1202 1203 1204
#else
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
	return skb->end;
}
1205 1206 1207 1208 1209

static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
	return skb->end - skb->head;
}
1210 1211
#endif

L
Linus Torvalds 已提交
1212
/* Internal */
1213
#define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
L
Linus Torvalds 已提交
1214

1215 1216 1217 1218 1219
static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
{
	return &skb_shinfo(skb)->hwtstamps;
}

L
Linus Torvalds 已提交
1220 1221 1222 1223 1224 1225 1226 1227
/**
 *	skb_queue_empty - check if a queue is empty
 *	@list: queue head
 *
 *	Returns true if the queue is empty, false otherwise.
 */
static inline int skb_queue_empty(const struct sk_buff_head *list)
{
1228
	return list->next == (const struct sk_buff *) list;
L
Linus Torvalds 已提交
1229 1230
}

D
David S. Miller 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
/**
 *	skb_queue_is_last - check if skb is the last entry in the queue
 *	@list: queue head
 *	@skb: buffer
 *
 *	Returns true if @skb is the last buffer on the list.
 */
static inline bool skb_queue_is_last(const struct sk_buff_head *list,
				     const struct sk_buff *skb)
{
1241
	return skb->next == (const struct sk_buff *) list;
D
David S. Miller 已提交
1242 1243
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
/**
 *	skb_queue_is_first - check if skb is the first entry in the queue
 *	@list: queue head
 *	@skb: buffer
 *
 *	Returns true if @skb is the first buffer on the list.
 */
static inline bool skb_queue_is_first(const struct sk_buff_head *list,
				      const struct sk_buff *skb)
{
1254
	return skb->prev == (const struct sk_buff *) list;
1255 1256
}

D
David S. Miller 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
/**
 *	skb_queue_next - return the next packet in the queue
 *	@list: queue head
 *	@skb: current buffer
 *
 *	Return the next packet in @list after @skb.  It is only valid to
 *	call this if skb_queue_is_last() evaluates to false.
 */
static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
					     const struct sk_buff *skb)
{
	/* This BUG_ON may seem severe, but if we just return then we
	 * are going to dereference garbage.
	 */
	BUG_ON(skb_queue_is_last(list, skb));
	return skb->next;
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
/**
 *	skb_queue_prev - return the prev packet in the queue
 *	@list: queue head
 *	@skb: current buffer
 *
 *	Return the prev packet in @list before @skb.  It is only valid to
 *	call this if skb_queue_is_first() evaluates to false.
 */
static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
					     const struct sk_buff *skb)
{
	/* This BUG_ON may seem severe, but if we just return then we
	 * are going to dereference garbage.
	 */
	BUG_ON(skb_queue_is_first(list, skb));
	return skb->prev;
}

L
Linus Torvalds 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
/**
 *	skb_get - reference buffer
 *	@skb: buffer to reference
 *
 *	Makes another reference to a socket buffer and returns a pointer
 *	to the buffer.
 */
static inline struct sk_buff *skb_get(struct sk_buff *skb)
{
	atomic_inc(&skb->users);
	return skb;
}

/*
 * If users == 1, we are the only owner and are can avoid redundant
 * atomic change.
 */

/**
 *	skb_cloned - is the buffer a clone
 *	@skb: buffer to check
 *
 *	Returns true if the buffer was generated with skb_clone() and is
 *	one of multiple shared copies of the buffer. Cloned buffers are
 *	shared data so must not be written to under normal circumstances.
 */
static inline int skb_cloned(const struct sk_buff *skb)
{
	return skb->cloned &&
	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
}

1325 1326
static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
{
1327
	might_sleep_if(gfpflags_allow_blocking(pri));
1328 1329 1330 1331 1332 1333 1334

	if (skb_cloned(skb))
		return pskb_expand_head(skb, 0, 0, pri);

	return 0;
}

L
Linus Torvalds 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
/**
 *	skb_header_cloned - is the header a clone
 *	@skb: buffer to check
 *
 *	Returns true if modifying the header part of the buffer requires
 *	the data to be copied.
 */
static inline int skb_header_cloned(const struct sk_buff *skb)
{
	int dataref;

	if (!skb->cloned)
		return 0;

	dataref = atomic_read(&skb_shinfo(skb)->dataref);
	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
	return dataref != 1;
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
{
	might_sleep_if(gfpflags_allow_blocking(pri));

	if (skb_header_cloned(skb))
		return pskb_expand_head(skb, 0, 0, pri);

	return 0;
}

L
Linus Torvalds 已提交
1364 1365 1366 1367 1368 1369 1370
/**
 *	skb_header_release - release reference to header
 *	@skb: buffer to operate on
 *
 *	Drop a reference to the header part of the buffer.  This is done
 *	by acquiring a payload reference.  You must not read from the header
 *	part of skb->data after this.
1371
 *	Note : Check if you can use __skb_header_release() instead.
L
Linus Torvalds 已提交
1372 1373 1374 1375 1376 1377 1378 1379
 */
static inline void skb_header_release(struct sk_buff *skb)
{
	BUG_ON(skb->nohdr);
	skb->nohdr = 1;
	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
/**
 *	__skb_header_release - release reference to header
 *	@skb: buffer to operate on
 *
 *	Variant of skb_header_release() assuming skb is private to caller.
 *	We can avoid one atomic operation.
 */
static inline void __skb_header_release(struct sk_buff *skb)
{
	skb->nohdr = 1;
	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
}


L
Linus Torvalds 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
/**
 *	skb_shared - is the buffer shared
 *	@skb: buffer to check
 *
 *	Returns true if more than one person has a reference to this
 *	buffer.
 */
static inline int skb_shared(const struct sk_buff *skb)
{
	return atomic_read(&skb->users) != 1;
}

/**
 *	skb_share_check - check if buffer is shared and if so clone it
 *	@skb: buffer to check
 *	@pri: priority for memory allocation
 *
 *	If the buffer is shared the buffer is cloned and the old copy
 *	drops a reference. A new clone with a single reference is returned.
 *	If the buffer is not shared the original buffer is returned. When
 *	being called from interrupt status or with spinlocks held pri must
 *	be GFP_ATOMIC.
 *
 *	NULL is returned on a memory allocation failure.
 */
1419
static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
L
Linus Torvalds 已提交
1420
{
1421
	might_sleep_if(gfpflags_allow_blocking(pri));
L
Linus Torvalds 已提交
1422 1423
	if (skb_shared(skb)) {
		struct sk_buff *nskb = skb_clone(skb, pri);
1424 1425 1426 1427 1428

		if (likely(nskb))
			consume_skb(skb);
		else
			kfree_skb(skb);
L
Linus Torvalds 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
		skb = nskb;
	}
	return skb;
}

/*
 *	Copy shared buffers into a new sk_buff. We effectively do COW on
 *	packets to handle cases where we have a local reader and forward
 *	and a couple of other messy ones. The normal one is tcpdumping
 *	a packet thats being forwarded.
 */

/**
 *	skb_unshare - make a copy of a shared buffer
 *	@skb: buffer to check
 *	@pri: priority for memory allocation
 *
 *	If the socket buffer is a clone then this function creates a new
 *	copy of the data, drops a reference count on the old copy and returns
 *	the new copy with the reference count at 1. If the buffer is not a clone
 *	the original buffer is returned. When called with a spinlock held or
 *	from interrupt state @pri must be %GFP_ATOMIC
 *
 *	%NULL is returned on a memory allocation failure.
 */
1454
static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
A
Al Viro 已提交
1455
					  gfp_t pri)
L
Linus Torvalds 已提交
1456
{
1457
	might_sleep_if(gfpflags_allow_blocking(pri));
L
Linus Torvalds 已提交
1458 1459
	if (skb_cloned(skb)) {
		struct sk_buff *nskb = skb_copy(skb, pri);
1460 1461 1462 1463 1464 1465

		/* Free our shared copy */
		if (likely(nskb))
			consume_skb(skb);
		else
			kfree_skb(skb);
L
Linus Torvalds 已提交
1466 1467 1468 1469 1470 1471
		skb = nskb;
	}
	return skb;
}

/**
1472
 *	skb_peek - peek at the head of an &sk_buff_head
L
Linus Torvalds 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
 *	@list_: list to peek at
 *
 *	Peek an &sk_buff. Unlike most other operations you _MUST_
 *	be careful with this one. A peek leaves the buffer on the
 *	list and someone else may run off with it. You must hold
 *	the appropriate locks or have a private queue to do this.
 *
 *	Returns %NULL for an empty list or a pointer to the head element.
 *	The reference count is not incremented and the reference is therefore
 *	volatile. Use with caution.
 */
1484
static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
L
Linus Torvalds 已提交
1485
{
1486 1487 1488 1489 1490
	struct sk_buff *skb = list_->next;

	if (skb == (struct sk_buff *)list_)
		skb = NULL;
	return skb;
L
Linus Torvalds 已提交
1491 1492
}

P
Pavel Emelyanov 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
/**
 *	skb_peek_next - peek skb following the given one from a queue
 *	@skb: skb to start from
 *	@list_: list to peek at
 *
 *	Returns %NULL when the end of the list is met or a pointer to the
 *	next element. The reference count is not incremented and the
 *	reference is therefore volatile. Use with caution.
 */
static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
		const struct sk_buff_head *list_)
{
	struct sk_buff *next = skb->next;
1506

P
Pavel Emelyanov 已提交
1507 1508 1509 1510 1511
	if (next == (struct sk_buff *)list_)
		next = NULL;
	return next;
}

L
Linus Torvalds 已提交
1512
/**
1513
 *	skb_peek_tail - peek at the tail of an &sk_buff_head
L
Linus Torvalds 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
 *	@list_: list to peek at
 *
 *	Peek an &sk_buff. Unlike most other operations you _MUST_
 *	be careful with this one. A peek leaves the buffer on the
 *	list and someone else may run off with it. You must hold
 *	the appropriate locks or have a private queue to do this.
 *
 *	Returns %NULL for an empty list or a pointer to the tail element.
 *	The reference count is not incremented and the reference is therefore
 *	volatile. Use with caution.
 */
1525
static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
L
Linus Torvalds 已提交
1526
{
1527 1528 1529 1530 1531 1532
	struct sk_buff *skb = list_->prev;

	if (skb == (struct sk_buff *)list_)
		skb = NULL;
	return skb;

L
Linus Torvalds 已提交
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
}

/**
 *	skb_queue_len	- get queue length
 *	@list_: list to measure
 *
 *	Return the length of an &sk_buff queue.
 */
static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
{
	return list_->qlen;
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
/**
 *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
 *	@list: queue to initialize
 *
 *	This initializes only the list and queue length aspects of
 *	an sk_buff_head object.  This allows to initialize the list
 *	aspects of an sk_buff_head without reinitializing things like
 *	the spinlock.  It can also be used for on-stack sk_buff_head
 *	objects where the spinlock is known to not be used.
 */
static inline void __skb_queue_head_init(struct sk_buff_head *list)
{
	list->prev = list->next = (struct sk_buff *)list;
	list->qlen = 0;
}

1562 1563 1564 1565 1566 1567 1568 1569
/*
 * This function creates a split out lock class for each invocation;
 * this is needed for now since a whole lot of users of the skb-queue
 * infrastructure in drivers have different locking usage (in hardirq)
 * than the networking core (in softirq only). In the long run either the
 * network layer or drivers should need annotation to consolidate the
 * main types of usage into 3 classes.
 */
L
Linus Torvalds 已提交
1570 1571 1572
static inline void skb_queue_head_init(struct sk_buff_head *list)
{
	spin_lock_init(&list->lock);
1573
	__skb_queue_head_init(list);
L
Linus Torvalds 已提交
1574 1575
}

1576 1577 1578 1579 1580 1581 1582
static inline void skb_queue_head_init_class(struct sk_buff_head *list,
		struct lock_class_key *class)
{
	skb_queue_head_init(list);
	lockdep_set_class(&list->lock, class);
}

L
Linus Torvalds 已提交
1583
/*
1584
 *	Insert an sk_buff on a list.
L
Linus Torvalds 已提交
1585 1586 1587 1588
 *
 *	The "__skb_xxxx()" functions are the non-atomic ones that
 *	can only be called with interrupts disabled.
 */
1589 1590
void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
		struct sk_buff_head *list);
1591 1592 1593 1594 1595 1596 1597 1598 1599
static inline void __skb_insert(struct sk_buff *newsk,
				struct sk_buff *prev, struct sk_buff *next,
				struct sk_buff_head *list)
{
	newsk->next = next;
	newsk->prev = prev;
	next->prev  = prev->next = newsk;
	list->qlen++;
}
L
Linus Torvalds 已提交
1600

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
static inline void __skb_queue_splice(const struct sk_buff_head *list,
				      struct sk_buff *prev,
				      struct sk_buff *next)
{
	struct sk_buff *first = list->next;
	struct sk_buff *last = list->prev;

	first->prev = prev;
	prev->next = first;

	last->next = next;
	next->prev = last;
}

/**
 *	skb_queue_splice - join two skb lists, this is designed for stacks
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 */
static inline void skb_queue_splice(const struct sk_buff_head *list,
				    struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1625
		head->qlen += list->qlen;
1626 1627 1628 1629
	}
}

/**
E
Eric Dumazet 已提交
1630
 *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 *
 *	The list at @list is reinitialised
 */
static inline void skb_queue_splice_init(struct sk_buff_head *list,
					 struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1641
		head->qlen += list->qlen;
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
		__skb_queue_head_init(list);
	}
}

/**
 *	skb_queue_splice_tail - join two skb lists, each list being a queue
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 */
static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
					 struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1656
		head->qlen += list->qlen;
1657 1658 1659 1660
	}
}

/**
E
Eric Dumazet 已提交
1661
 *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 *
 *	Each of the lists is a queue.
 *	The list at @list is reinitialised
 */
static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
					      struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1673
		head->qlen += list->qlen;
1674 1675 1676 1677
		__skb_queue_head_init(list);
	}
}

L
Linus Torvalds 已提交
1678
/**
1679
 *	__skb_queue_after - queue a buffer at the list head
L
Linus Torvalds 已提交
1680
 *	@list: list to use
1681
 *	@prev: place after this buffer
L
Linus Torvalds 已提交
1682 1683
 *	@newsk: buffer to queue
 *
1684
 *	Queue a buffer int the middle of a list. This function takes no locks
L
Linus Torvalds 已提交
1685 1686 1687 1688
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1689 1690 1691
static inline void __skb_queue_after(struct sk_buff_head *list,
				     struct sk_buff *prev,
				     struct sk_buff *newsk)
L
Linus Torvalds 已提交
1692
{
1693
	__skb_insert(newsk, prev, prev->next, list);
L
Linus Torvalds 已提交
1694 1695
}

1696 1697
void skb_append(struct sk_buff *old, struct sk_buff *newsk,
		struct sk_buff_head *list);
1698

1699 1700 1701 1702 1703 1704 1705
static inline void __skb_queue_before(struct sk_buff_head *list,
				      struct sk_buff *next,
				      struct sk_buff *newsk)
{
	__skb_insert(newsk, next->prev, next, list);
}

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
/**
 *	__skb_queue_head - queue a buffer at the list head
 *	@list: list to use
 *	@newsk: buffer to queue
 *
 *	Queue a buffer at the start of a list. This function takes no locks
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1716
void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1717 1718 1719 1720 1721 1722
static inline void __skb_queue_head(struct sk_buff_head *list,
				    struct sk_buff *newsk)
{
	__skb_queue_after(list, (struct sk_buff *)list, newsk);
}

L
Linus Torvalds 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
/**
 *	__skb_queue_tail - queue a buffer at the list tail
 *	@list: list to use
 *	@newsk: buffer to queue
 *
 *	Queue a buffer at the end of a list. This function takes no locks
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1733
void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
L
Linus Torvalds 已提交
1734 1735 1736
static inline void __skb_queue_tail(struct sk_buff_head *list,
				   struct sk_buff *newsk)
{
1737
	__skb_queue_before(list, (struct sk_buff *)list, newsk);
L
Linus Torvalds 已提交
1738 1739 1740 1741 1742 1743
}

/*
 * remove sk_buff from list. _Must_ be called atomically, and with
 * the list known..
 */
1744
void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
L
Linus Torvalds 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
{
	struct sk_buff *next, *prev;

	list->qlen--;
	next	   = skb->next;
	prev	   = skb->prev;
	skb->next  = skb->prev = NULL;
	next->prev = prev;
	prev->next = next;
}

1757 1758 1759 1760 1761 1762 1763 1764
/**
 *	__skb_dequeue - remove from the head of the queue
 *	@list: list to dequeue from
 *
 *	Remove the head of the list. This function does not take any locks
 *	so must be used with appropriate locks held only. The head item is
 *	returned or %NULL if the list is empty.
 */
1765
struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1766 1767 1768 1769 1770 1771 1772
static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
{
	struct sk_buff *skb = skb_peek(list);
	if (skb)
		__skb_unlink(skb, list);
	return skb;
}
L
Linus Torvalds 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781

/**
 *	__skb_dequeue_tail - remove from the tail of the queue
 *	@list: list to dequeue from
 *
 *	Remove the tail of the list. This function does not take any locks
 *	so must be used with appropriate locks held only. The tail item is
 *	returned or %NULL if the list is empty.
 */
1782
struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
L
Linus Torvalds 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791
static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
{
	struct sk_buff *skb = skb_peek_tail(list);
	if (skb)
		__skb_unlink(skb, list);
	return skb;
}


1792
static inline bool skb_is_nonlinear(const struct sk_buff *skb)
L
Linus Torvalds 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
{
	return skb->data_len;
}

static inline unsigned int skb_headlen(const struct sk_buff *skb)
{
	return skb->len - skb->data_len;
}

static inline int skb_pagelen(const struct sk_buff *skb)
{
	int i, len = 0;

	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
E
Eric Dumazet 已提交
1807
		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
L
Linus Torvalds 已提交
1808 1809 1810
	return len + skb_headlen(skb);
}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
/**
 * __skb_fill_page_desc - initialise a paged fragment in an skb
 * @skb: buffer containing fragment to be initialised
 * @i: paged fragment index to initialise
 * @page: the page to use for this fragment
 * @off: the offset to the data with @page
 * @size: the length of the data
 *
 * Initialises the @i'th fragment of @skb to point to &size bytes at
 * offset @off within @page.
 *
 * Does not take any additional reference on the fragment.
 */
static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
					struct page *page, int off, int size)
L
Linus Torvalds 已提交
1826 1827 1828
{
	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

1829
	/*
1830 1831 1832
	 * Propagate page pfmemalloc to the skb if we can. The problem is
	 * that not all callers have unique ownership of the page but rely
	 * on page_is_pfmemalloc doing the right thing(tm).
1833
	 */
1834
	frag->page.p		  = page;
L
Linus Torvalds 已提交
1835
	frag->page_offset	  = off;
E
Eric Dumazet 已提交
1836
	skb_frag_size_set(frag, size);
1837 1838

	page = compound_head(page);
1839
	if (page_is_pfmemalloc(page))
1840
		skb->pfmemalloc	= true;
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
}

/**
 * skb_fill_page_desc - initialise a paged fragment in an skb
 * @skb: buffer containing fragment to be initialised
 * @i: paged fragment index to initialise
 * @page: the page to use for this fragment
 * @off: the offset to the data with @page
 * @size: the length of the data
 *
 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
M
Mathias Krause 已提交
1852
 * @skb to point to @size bytes at offset @off within @page. In
1853 1854 1855 1856 1857 1858 1859 1860
 * addition updates @skb such that @i is the last fragment.
 *
 * Does not take any additional reference on the fragment.
 */
static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
				      struct page *page, int off, int size)
{
	__skb_fill_page_desc(skb, i, page, off, size);
L
Linus Torvalds 已提交
1861 1862 1863
	skb_shinfo(skb)->nr_frags = i + 1;
}

1864 1865
void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
		     int size, unsigned int truesize);
P
Peter Zijlstra 已提交
1866

J
Jason Wang 已提交
1867 1868 1869
void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
			  unsigned int truesize);

L
Linus Torvalds 已提交
1870
#define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1871
#define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
L
Linus Torvalds 已提交
1872 1873
#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
	return skb->head + skb->tail;
}

static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
	skb->tail = skb->data - skb->head;
}

static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
	skb_reset_tail_pointer(skb);
	skb->tail += offset;
}
1890

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
#else /* NET_SKBUFF_DATA_USES_OFFSET */
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
	return skb->tail;
}

static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
	skb->tail = skb->data;
}

static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
	skb->tail = skb->data + offset;
}
1906

1907 1908
#endif /* NET_SKBUFF_DATA_USES_OFFSET */

L
Linus Torvalds 已提交
1909 1910 1911
/*
 *	Add data to an sk_buff
 */
M
Mathias Krause 已提交
1912
unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1913
unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1914 1915
static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
{
1916
	unsigned char *tmp = skb_tail_pointer(skb);
L
Linus Torvalds 已提交
1917 1918 1919 1920 1921 1922
	SKB_LINEAR_ASSERT(skb);
	skb->tail += len;
	skb->len  += len;
	return tmp;
}

1923
unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1924 1925 1926 1927 1928 1929 1930
static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
{
	skb->data -= len;
	skb->len  += len;
	return skb->data;
}

1931
unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1932 1933 1934 1935 1936 1937 1938
static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
{
	skb->len -= len;
	BUG_ON(skb->len < skb->data_len);
	return skb->data += len;
}

1939 1940 1941 1942 1943
static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
{
	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
}

1944
unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
L
Linus Torvalds 已提交
1945 1946 1947 1948

static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
{
	if (len > skb_headlen(skb) &&
G
Gerrit Renker 已提交
1949
	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
L
Linus Torvalds 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
		return NULL;
	skb->len -= len;
	return skb->data += len;
}

static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
{
	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
}

static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
{
	if (likely(len <= skb_headlen(skb)))
		return 1;
	if (unlikely(len > skb->len))
		return 0;
G
Gerrit Renker 已提交
1966
	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
L
Linus Torvalds 已提交
1967 1968 1969 1970 1971 1972 1973 1974
}

/**
 *	skb_headroom - bytes at buffer head
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the head of an &sk_buff.
 */
1975
static inline unsigned int skb_headroom(const struct sk_buff *skb)
L
Linus Torvalds 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
{
	return skb->data - skb->head;
}

/**
 *	skb_tailroom - bytes at buffer end
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the tail of an sk_buff
 */
static inline int skb_tailroom(const struct sk_buff *skb)
{
1988
	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
L
Linus Torvalds 已提交
1989 1990
}

1991 1992 1993 1994 1995 1996 1997 1998 1999
/**
 *	skb_availroom - bytes at buffer end
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the tail of an sk_buff
 *	allocated by sk_stream_alloc()
 */
static inline int skb_availroom(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
2000 2001 2002 2003
	if (skb_is_nonlinear(skb))
		return 0;

	return skb->end - skb->tail - skb->reserved_tailroom;
2004 2005
}

L
Linus Torvalds 已提交
2006 2007 2008 2009 2010 2011 2012 2013
/**
 *	skb_reserve - adjust headroom
 *	@skb: buffer to alter
 *	@len: bytes to move
 *
 *	Increase the headroom of an empty &sk_buff by reducing the tail
 *	room. This is only allowed for an empty buffer.
 */
2014
static inline void skb_reserve(struct sk_buff *skb, int len)
L
Linus Torvalds 已提交
2015 2016 2017 2018 2019
{
	skb->data += len;
	skb->tail += len;
}

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
/**
 *	skb_tailroom_reserve - adjust reserved_tailroom
 *	@skb: buffer to alter
 *	@mtu: maximum amount of headlen permitted
 *	@needed_tailroom: minimum amount of reserved_tailroom
 *
 *	Set reserved_tailroom so that headlen can be as large as possible but
 *	not larger than mtu and tailroom cannot be smaller than
 *	needed_tailroom.
 *	The required headroom should already have been reserved before using
 *	this function.
 */
static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
					unsigned int needed_tailroom)
{
	SKB_LINEAR_ASSERT(skb);
	if (mtu < skb_tailroom(skb) - needed_tailroom)
		/* use at most mtu */
		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
	else
		/* use up to all available space */
		skb->reserved_tailroom = needed_tailroom;
}

T
Tom Herbert 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
#define ENCAP_TYPE_ETHER	0
#define ENCAP_TYPE_IPPROTO	1

static inline void skb_set_inner_protocol(struct sk_buff *skb,
					  __be16 protocol)
{
	skb->inner_protocol = protocol;
	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
}

static inline void skb_set_inner_ipproto(struct sk_buff *skb,
					 __u8 ipproto)
{
	skb->inner_ipproto = ipproto;
	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
}

2061 2062
static inline void skb_reset_inner_headers(struct sk_buff *skb)
{
2063
	skb->inner_mac_header = skb->mac_header;
2064 2065 2066 2067
	skb->inner_network_header = skb->network_header;
	skb->inner_transport_header = skb->transport_header;
}

2068 2069 2070 2071 2072
static inline void skb_reset_mac_len(struct sk_buff *skb)
{
	skb->mac_len = skb->network_header - skb->mac_header;
}

2073 2074 2075 2076 2077 2078
static inline unsigned char *skb_inner_transport_header(const struct sk_buff
							*skb)
{
	return skb->head + skb->inner_transport_header;
}

2079 2080 2081 2082 2083
static inline int skb_inner_transport_offset(const struct sk_buff *skb)
{
	return skb_inner_transport_header(skb) - skb->data;
}

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
{
	skb->inner_transport_header = skb->data - skb->head;
}

static inline void skb_set_inner_transport_header(struct sk_buff *skb,
						   const int offset)
{
	skb_reset_inner_transport_header(skb);
	skb->inner_transport_header += offset;
}

static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
{
	return skb->head + skb->inner_network_header;
}

static inline void skb_reset_inner_network_header(struct sk_buff *skb)
{
	skb->inner_network_header = skb->data - skb->head;
}

static inline void skb_set_inner_network_header(struct sk_buff *skb,
						const int offset)
{
	skb_reset_inner_network_header(skb);
	skb->inner_network_header += offset;
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
{
	return skb->head + skb->inner_mac_header;
}

static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
{
	skb->inner_mac_header = skb->data - skb->head;
}

static inline void skb_set_inner_mac_header(struct sk_buff *skb,
					    const int offset)
{
	skb_reset_inner_mac_header(skb);
	skb->inner_mac_header += offset;
}
2129 2130
static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
{
C
Cong Wang 已提交
2131
	return skb->transport_header != (typeof(skb->transport_header))~0U;
2132 2133
}

2134 2135
static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
{
2136
	return skb->head + skb->transport_header;
2137 2138
}

2139 2140
static inline void skb_reset_transport_header(struct sk_buff *skb)
{
2141
	skb->transport_header = skb->data - skb->head;
2142 2143
}

2144 2145 2146
static inline void skb_set_transport_header(struct sk_buff *skb,
					    const int offset)
{
2147 2148
	skb_reset_transport_header(skb);
	skb->transport_header += offset;
2149 2150
}

2151 2152
static inline unsigned char *skb_network_header(const struct sk_buff *skb)
{
2153
	return skb->head + skb->network_header;
2154 2155
}

2156 2157
static inline void skb_reset_network_header(struct sk_buff *skb)
{
2158
	skb->network_header = skb->data - skb->head;
2159 2160
}

2161 2162
static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
{
2163 2164
	skb_reset_network_header(skb);
	skb->network_header += offset;
2165 2166
}

2167
static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2168
{
2169
	return skb->head + skb->mac_header;
2170 2171
}

2172
static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2173
{
C
Cong Wang 已提交
2174
	return skb->mac_header != (typeof(skb->mac_header))~0U;
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
}

static inline void skb_reset_mac_header(struct sk_buff *skb)
{
	skb->mac_header = skb->data - skb->head;
}

static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
{
	skb_reset_mac_header(skb);
	skb->mac_header += offset;
}

2188 2189 2190 2191 2192
static inline void skb_pop_mac_header(struct sk_buff *skb)
{
	skb->mac_header = skb->network_header;
}

2193 2194 2195 2196 2197 2198 2199
static inline void skb_probe_transport_header(struct sk_buff *skb,
					      const int offset_hint)
{
	struct flow_keys keys;

	if (skb_transport_header_was_set(skb))
		return;
2200
	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2201
		skb_set_transport_header(skb, keys.control.thoff);
2202 2203 2204 2205
	else
		skb_set_transport_header(skb, offset_hint);
}

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
static inline void skb_mac_header_rebuild(struct sk_buff *skb)
{
	if (skb_mac_header_was_set(skb)) {
		const unsigned char *old_mac = skb_mac_header(skb);

		skb_set_mac_header(skb, -skb->mac_len);
		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
	}
}

2216 2217 2218 2219 2220
static inline int skb_checksum_start_offset(const struct sk_buff *skb)
{
	return skb->csum_start - skb_headroom(skb);
}

2221 2222 2223 2224 2225
static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
{
	return skb->head + skb->csum_start;
}

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
static inline int skb_transport_offset(const struct sk_buff *skb)
{
	return skb_transport_header(skb) - skb->data;
}

static inline u32 skb_network_header_len(const struct sk_buff *skb)
{
	return skb->transport_header - skb->network_header;
}

2236 2237 2238 2239 2240
static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
{
	return skb->inner_transport_header - skb->inner_network_header;
}

2241 2242 2243 2244
static inline int skb_network_offset(const struct sk_buff *skb)
{
	return skb_network_header(skb) - skb->data;
}
2245

2246 2247 2248 2249 2250
static inline int skb_inner_network_offset(const struct sk_buff *skb)
{
	return skb_inner_network_header(skb) - skb->data;
}

2251 2252 2253 2254 2255
static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
{
	return pskb_may_pull(skb, skb_network_offset(skb) + len);
}

L
Linus Torvalds 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
/*
 * CPUs often take a performance hit when accessing unaligned memory
 * locations. The actual performance hit varies, it can be small if the
 * hardware handles it or large if we have to take an exception and fix it
 * in software.
 *
 * Since an ethernet header is 14 bytes network drivers often end up with
 * the IP header at an unaligned offset. The IP header can be aligned by
 * shifting the start of the packet by 2 bytes. Drivers should do this
 * with:
 *
2267
 * skb_reserve(skb, NET_IP_ALIGN);
L
Linus Torvalds 已提交
2268 2269 2270 2271
 *
 * The downside to this alignment of the IP header is that the DMA is now
 * unaligned. On some architectures the cost of an unaligned DMA is high
 * and this cost outweighs the gains made by aligning the IP header.
2272
 *
L
Linus Torvalds 已提交
2273 2274 2275 2276 2277 2278 2279
 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
 * to be overridden.
 */
#ifndef NET_IP_ALIGN
#define NET_IP_ALIGN	2
#endif

2280 2281 2282 2283
/*
 * The networking layer reserves some headroom in skb data (via
 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
 * the header has to grow. In the default case, if the header has to grow
2284
 * 32 bytes or less we avoid the reallocation.
2285 2286 2287 2288 2289 2290 2291
 *
 * Unfortunately this headroom changes the DMA alignment of the resulting
 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
 * on some architectures. An architecture can override this value,
 * perhaps setting it to a cacheline in size (since that will maintain
 * cacheline alignment of the DMA). It must be a power of 2.
 *
2292
 * Various parts of the networking layer expect at least 32 bytes of
2293
 * headroom, you should not reduce this.
2294 2295 2296 2297
 *
 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
 * to reduce average number of cache lines per packet.
 * get_rps_cpus() for example only access one 64 bytes aligned block :
2298
 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2299 2300
 */
#ifndef NET_SKB_PAD
2301
#define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2302 2303
#endif

2304
int ___pskb_trim(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
2305

2306
static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2307
{
2308
	if (unlikely(skb_is_nonlinear(skb))) {
2309 2310 2311
		WARN_ON(1);
		return;
	}
2312 2313
	skb->len = len;
	skb_set_tail_pointer(skb, len);
L
Linus Torvalds 已提交
2314 2315
}

2316 2317 2318 2319 2320
static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
{
	__skb_set_length(skb, len);
}

2321
void skb_trim(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
2322 2323 2324

static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
{
2325 2326 2327 2328
	if (skb->data_len)
		return ___pskb_trim(skb, len);
	__skb_trim(skb, len);
	return 0;
L
Linus Torvalds 已提交
2329 2330 2331 2332 2333 2334 2335
}

static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
{
	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
}

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
/**
 *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
 *	@skb: buffer to alter
 *	@len: new length
 *
 *	This is identical to pskb_trim except that the caller knows that
 *	the skb is not cloned so we should never get an error due to out-
 *	of-memory.
 */
static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
{
	int err = pskb_trim(skb, len);
	BUG_ON(err);
}

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
{
	unsigned int diff = len - skb->len;

	if (skb_tailroom(skb) < diff) {
		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
					   GFP_ATOMIC);
		if (ret)
			return ret;
	}
	__skb_set_length(skb, len);
	return 0;
}

L
Linus Torvalds 已提交
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
/**
 *	skb_orphan - orphan a buffer
 *	@skb: buffer to orphan
 *
 *	If a buffer currently has an owner then we call the owner's
 *	destructor function and make the @skb unowned. The buffer continues
 *	to exist but is no longer charged to its former owner.
 */
static inline void skb_orphan(struct sk_buff *skb)
{
E
Eric Dumazet 已提交
2375
	if (skb->destructor) {
L
Linus Torvalds 已提交
2376
		skb->destructor(skb);
E
Eric Dumazet 已提交
2377 2378
		skb->destructor = NULL;
		skb->sk		= NULL;
2379 2380
	} else {
		BUG_ON(skb->sk);
E
Eric Dumazet 已提交
2381
	}
L
Linus Torvalds 已提交
2382 2383
}

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
/**
 *	skb_orphan_frags - orphan the frags contained in a buffer
 *	@skb: buffer to orphan frags from
 *	@gfp_mask: allocation mask for replacement pages
 *
 *	For each frag in the SKB which needs a destructor (i.e. has an
 *	owner) create a copy of that frag and release the original
 *	page by calling the destructor.
 */
static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
{
	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
		return 0;
	return skb_copy_ubufs(skb, gfp_mask);
}

L
Linus Torvalds 已提交
2400 2401 2402 2403 2404 2405 2406 2407
/**
 *	__skb_queue_purge - empty a list
 *	@list: list to empty
 *
 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
 *	the list and one reference dropped. This function does not take the
 *	list lock and the caller must hold the relevant locks to use it.
 */
2408
void skb_queue_purge(struct sk_buff_head *list);
L
Linus Torvalds 已提交
2409 2410 2411 2412 2413 2414 2415
static inline void __skb_queue_purge(struct sk_buff_head *list)
{
	struct sk_buff *skb;
	while ((skb = __skb_dequeue(list)) != NULL)
		kfree_skb(skb);
}

2416 2417
void skb_rbtree_purge(struct rb_root *root);

2418
void *netdev_alloc_frag(unsigned int fragsz);
L
Linus Torvalds 已提交
2419

2420 2421
struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
				   gfp_t gfp_mask);
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436

/**
 *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
 *	@dev: network device to receive on
 *	@length: length to allocate
 *
 *	Allocate a new &sk_buff and assign it a usage count of one. The
 *	buffer has unspecified headroom built in. Users should allocate
 *	the headroom they think they need without accounting for the
 *	built in space. The built in space is used for optimisations.
 *
 *	%NULL is returned if there is no free memory. Although this function
 *	allocates memory it can be called from an interrupt.
 */
static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2437
					       unsigned int length)
2438 2439 2440 2441
{
	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
}

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
/* legacy helper around __netdev_alloc_skb() */
static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
					      gfp_t gfp_mask)
{
	return __netdev_alloc_skb(NULL, length, gfp_mask);
}

/* legacy helper around netdev_alloc_skb() */
static inline struct sk_buff *dev_alloc_skb(unsigned int length)
{
	return netdev_alloc_skb(NULL, length);
}


2456 2457
static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
		unsigned int length, gfp_t gfp)
2458
{
2459
	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2460 2461 2462 2463 2464 2465

	if (NET_IP_ALIGN && skb)
		skb_reserve(skb, NET_IP_ALIGN);
	return skb;
}

2466 2467 2468 2469 2470 2471
static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
		unsigned int length)
{
	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
}

2472 2473 2474 2475 2476
static inline void skb_free_frag(void *addr)
{
	__free_page_frag(addr);
}

2477
void *napi_alloc_frag(unsigned int fragsz);
2478 2479 2480 2481 2482 2483 2484
struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
				 unsigned int length, gfp_t gfp_mask);
static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
					     unsigned int length)
{
	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
}
2485 2486 2487
void napi_consume_skb(struct sk_buff *skb, int budget);

void __kfree_skb_flush(void);
2488
void __kfree_skb_defer(struct sk_buff *skb);
2489

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
/**
 * __dev_alloc_pages - allocate page for network Rx
 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
 * @order: size of the allocation
 *
 * Allocate a new page.
 *
 * %NULL is returned if there is no free memory.
*/
static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
					     unsigned int order)
{
	/* This piece of code contains several assumptions.
	 * 1.  This is for device Rx, therefor a cold page is preferred.
	 * 2.  The expectation is the user wants a compound page.
	 * 3.  If requesting a order 0 page it will not be compound
	 *     due to the check to see if order has a value in prep_new_page
	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
	 *     code in gfp_to_alloc_flags that should be enforcing this.
	 */
	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;

	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
}

static inline struct page *dev_alloc_pages(unsigned int order)
{
2517
	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
}

/**
 * __dev_alloc_page - allocate a page for network Rx
 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
 *
 * Allocate a new page.
 *
 * %NULL is returned if there is no free memory.
 */
static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
{
	return __dev_alloc_pages(gfp_mask, 0);
}

static inline struct page *dev_alloc_page(void)
{
2535
	return dev_alloc_pages(0);
2536 2537
}

2538 2539 2540 2541 2542 2543 2544 2545
/**
 *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
 *	@page: The page that was allocated from skb_alloc_page
 *	@skb: The skb that may need pfmemalloc set
 */
static inline void skb_propagate_pfmemalloc(struct page *page,
					     struct sk_buff *skb)
{
2546
	if (page_is_pfmemalloc(page))
2547 2548 2549
		skb->pfmemalloc = true;
}

2550
/**
2551
 * skb_frag_page - retrieve the page referred to by a paged fragment
2552 2553 2554 2555 2556 2557
 * @frag: the paged fragment
 *
 * Returns the &struct page associated with @frag.
 */
static inline struct page *skb_frag_page(const skb_frag_t *frag)
{
2558
	return frag->page.p;
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
}

/**
 * __skb_frag_ref - take an addition reference on a paged fragment.
 * @frag: the paged fragment
 *
 * Takes an additional reference on the paged fragment @frag.
 */
static inline void __skb_frag_ref(skb_frag_t *frag)
{
	get_page(skb_frag_page(frag));
}

/**
 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
 * @skb: the buffer
 * @f: the fragment offset.
 *
 * Takes an additional reference on the @f'th paged fragment of @skb.
 */
static inline void skb_frag_ref(struct sk_buff *skb, int f)
{
	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
}

/**
 * __skb_frag_unref - release a reference on a paged fragment.
 * @frag: the paged fragment
 *
 * Releases a reference on the paged fragment @frag.
 */
static inline void __skb_frag_unref(skb_frag_t *frag)
{
	put_page(skb_frag_page(frag));
}

/**
 * skb_frag_unref - release a reference on a paged fragment of an skb.
 * @skb: the buffer
 * @f: the fragment offset
 *
 * Releases a reference on the @f'th paged fragment of @skb.
 */
static inline void skb_frag_unref(struct sk_buff *skb, int f)
{
	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
}

/**
 * skb_frag_address - gets the address of the data contained in a paged fragment
 * @frag: the paged fragment buffer
 *
 * Returns the address of the data within @frag. The page must already
 * be mapped.
 */
static inline void *skb_frag_address(const skb_frag_t *frag)
{
	return page_address(skb_frag_page(frag)) + frag->page_offset;
}

/**
 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
 * @frag: the paged fragment buffer
 *
 * Returns the address of the data within @frag. Checks that the page
 * is mapped and returns %NULL otherwise.
 */
static inline void *skb_frag_address_safe(const skb_frag_t *frag)
{
	void *ptr = page_address(skb_frag_page(frag));
	if (unlikely(!ptr))
		return NULL;

	return ptr + frag->page_offset;
}

/**
 * __skb_frag_set_page - sets the page contained in a paged fragment
 * @frag: the paged fragment
 * @page: the page to set
 *
 * Sets the fragment @frag to contain @page.
 */
static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
{
2644
	frag->page.p = page;
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
}

/**
 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
 * @skb: the buffer
 * @f: the fragment offset
 * @page: the page to set
 *
 * Sets the @f'th fragment of @skb to contain @page.
 */
static inline void skb_frag_set_page(struct sk_buff *skb, int f,
				     struct page *page)
{
	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
}

E
Eric Dumazet 已提交
2661 2662
bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);

2663 2664
/**
 * skb_frag_dma_map - maps a paged fragment via the DMA API
2665
 * @dev: the device to map the fragment to
2666 2667 2668 2669
 * @frag: the paged fragment to map
 * @offset: the offset within the fragment (starting at the
 *          fragment's own offset)
 * @size: the number of bytes to map
2670
 * @dir: the direction of the mapping (%PCI_DMA_*)
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
 *
 * Maps the page associated with @frag to @device.
 */
static inline dma_addr_t skb_frag_dma_map(struct device *dev,
					  const skb_frag_t *frag,
					  size_t offset, size_t size,
					  enum dma_data_direction dir)
{
	return dma_map_page(dev, skb_frag_page(frag),
			    frag->page_offset + offset, size, dir);
}

E
Eric Dumazet 已提交
2683 2684 2685 2686 2687 2688
static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
					gfp_t gfp_mask)
{
	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
}

2689 2690 2691 2692 2693 2694 2695 2696

static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
						  gfp_t gfp_mask)
{
	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
}


2697 2698 2699 2700 2701 2702 2703 2704
/**
 *	skb_clone_writable - is the header of a clone writable
 *	@skb: buffer to check
 *	@len: length up to which to write
 *
 *	Returns true if modifying the header part of the cloned buffer
 *	does not requires the data to be copied.
 */
2705
static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2706 2707 2708 2709 2710
{
	return !skb_header_cloned(skb) &&
	       skb_headroom(skb) + len <= skb->hdr_len;
}

2711 2712 2713 2714 2715 2716 2717
static inline int skb_try_make_writable(struct sk_buff *skb,
					unsigned int write_len)
{
	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
}

H
Herbert Xu 已提交
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
			    int cloned)
{
	int delta = 0;

	if (headroom > skb_headroom(skb))
		delta = headroom - skb_headroom(skb);

	if (delta || cloned)
		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
					GFP_ATOMIC);
	return 0;
}

L
Linus Torvalds 已提交
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
/**
 *	skb_cow - copy header of skb when it is required
 *	@skb: buffer to cow
 *	@headroom: needed headroom
 *
 *	If the skb passed lacks sufficient headroom or its data part
 *	is shared, data is reallocated. If reallocation fails, an error
 *	is returned and original skb is not changed.
 *
 *	The result is skb with writable area skb->head...skb->tail
 *	and at least @headroom of space at head.
 */
static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
{
H
Herbert Xu 已提交
2746 2747
	return __skb_cow(skb, headroom, skb_cloned(skb));
}
L
Linus Torvalds 已提交
2748

H
Herbert Xu 已提交
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
/**
 *	skb_cow_head - skb_cow but only making the head writable
 *	@skb: buffer to cow
 *	@headroom: needed headroom
 *
 *	This function is identical to skb_cow except that we replace the
 *	skb_cloned check by skb_header_cloned.  It should be used when
 *	you only need to push on some header and do not need to modify
 *	the data.
 */
static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
{
	return __skb_cow(skb, headroom, skb_header_cloned(skb));
L
Linus Torvalds 已提交
2762 2763 2764 2765 2766 2767 2768 2769 2770
}

/**
 *	skb_padto	- pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
2771 2772
 *	is untouched. Otherwise it is extended. Returns zero on
 *	success. The skb is freed on error.
L
Linus Torvalds 已提交
2773
 */
2774
static inline int skb_padto(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2775 2776 2777
{
	unsigned int size = skb->len;
	if (likely(size >= len))
2778
		return 0;
G
Gerrit Renker 已提交
2779
	return skb_pad(skb, len - size);
L
Linus Torvalds 已提交
2780 2781
}

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
/**
 *	skb_put_padto - increase size and pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
 *	is untouched. Otherwise it is extended. Returns zero on
 *	success. The skb is freed on error.
 */
static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
{
	unsigned int size = skb->len;

	if (unlikely(size < len)) {
		len -= size;
		if (skb_pad(skb, len))
			return -ENOMEM;
		__skb_put(skb, len);
	}
	return 0;
}

L
Linus Torvalds 已提交
2805
static inline int skb_add_data(struct sk_buff *skb,
2806
			       struct iov_iter *from, int copy)
L
Linus Torvalds 已提交
2807 2808 2809 2810
{
	const int off = skb->len;

	if (skb->ip_summed == CHECKSUM_NONE) {
2811 2812 2813
		__wsum csum = 0;
		if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
					    &csum, from) == copy) {
L
Linus Torvalds 已提交
2814 2815 2816
			skb->csum = csum_block_add(skb->csum, csum, off);
			return 0;
		}
2817
	} else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
L
Linus Torvalds 已提交
2818 2819 2820 2821 2822 2823
		return 0;

	__skb_trim(skb, off);
	return -EFAULT;
}

2824 2825
static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
				    const struct page *page, int off)
L
Linus Torvalds 已提交
2826 2827
{
	if (i) {
E
Eric Dumazet 已提交
2828
		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
L
Linus Torvalds 已提交
2829

2830
		return page == skb_frag_page(frag) &&
E
Eric Dumazet 已提交
2831
		       off == frag->page_offset + skb_frag_size(frag);
L
Linus Torvalds 已提交
2832
	}
2833
	return false;
L
Linus Torvalds 已提交
2834 2835
}

H
Herbert Xu 已提交
2836 2837 2838 2839 2840
static inline int __skb_linearize(struct sk_buff *skb)
{
	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
}

L
Linus Torvalds 已提交
2841 2842 2843 2844 2845 2846 2847
/**
 *	skb_linearize - convert paged skb to linear one
 *	@skb: buffer to linarize
 *
 *	If there is no free memory -ENOMEM is returned, otherwise zero
 *	is returned and the old skb data released.
 */
H
Herbert Xu 已提交
2848 2849 2850 2851 2852
static inline int skb_linearize(struct sk_buff *skb)
{
	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
}

2853 2854 2855 2856 2857 2858 2859 2860 2861
/**
 * skb_has_shared_frag - can any frag be overwritten
 * @skb: buffer to test
 *
 * Return true if the skb has at least one frag that might be modified
 * by an external entity (as in vmsplice()/sendfile())
 */
static inline bool skb_has_shared_frag(const struct sk_buff *skb)
{
2862 2863
	return skb_is_nonlinear(skb) &&
	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2864 2865
}

H
Herbert Xu 已提交
2866 2867 2868 2869 2870 2871 2872 2873
/**
 *	skb_linearize_cow - make sure skb is linear and writable
 *	@skb: buffer to process
 *
 *	If there is no free memory -ENOMEM is returned, otherwise zero
 *	is returned and the old skb data released.
 */
static inline int skb_linearize_cow(struct sk_buff *skb)
L
Linus Torvalds 已提交
2874
{
H
Herbert Xu 已提交
2875 2876
	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
	       __skb_linearize(skb) : 0;
L
Linus Torvalds 已提交
2877 2878
}

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
static __always_inline void
__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
		     unsigned int off)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->csum = csum_block_sub(skb->csum,
					   csum_partial(start, len, 0), off);
	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
		 skb_checksum_start_offset(skb) < 0)
		skb->ip_summed = CHECKSUM_NONE;
}

L
Linus Torvalds 已提交
2891 2892 2893 2894 2895 2896 2897
/**
 *	skb_postpull_rcsum - update checksum for received skb after pull
 *	@skb: buffer to update
 *	@start: start of data before pull
 *	@len: length of data pulled
 *
 *	After doing a pull on a received packet, you need to call this to
2898 2899
 *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
 *	CHECKSUM_NONE so that it can be recomputed from scratch.
L
Linus Torvalds 已提交
2900 2901
 */
static inline void skb_postpull_rcsum(struct sk_buff *skb,
2902
				      const void *start, unsigned int len)
L
Linus Torvalds 已提交
2903
{
2904
	__skb_postpull_rcsum(skb, start, len, 0);
L
Linus Torvalds 已提交
2905 2906
}

2907 2908 2909 2910 2911 2912 2913 2914
static __always_inline void
__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
		     unsigned int off)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->csum = csum_block_add(skb->csum,
					   csum_partial(start, len, 0), off);
}
2915

2916 2917 2918 2919 2920 2921 2922 2923 2924
/**
 *	skb_postpush_rcsum - update checksum for received skb after push
 *	@skb: buffer to update
 *	@start: start of data after push
 *	@len: length of data pushed
 *
 *	After doing a push on a received packet, you need to call this to
 *	update the CHECKSUM_COMPLETE checksum.
 */
2925 2926 2927
static inline void skb_postpush_rcsum(struct sk_buff *skb,
				      const void *start, unsigned int len)
{
2928
	__skb_postpush_rcsum(skb, start, len, 0);
2929 2930
}

2931 2932
unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
/**
 *	skb_push_rcsum - push skb and update receive checksum
 *	@skb: buffer to update
 *	@len: length of data pulled
 *
 *	This function performs an skb_push on the packet and updates
 *	the CHECKSUM_COMPLETE checksum.  It should be used on
 *	receive path processing instead of skb_push unless you know
 *	that the checksum difference is zero (e.g., a valid IP header)
 *	or you are setting ip_summed to CHECKSUM_NONE.
 */
static inline unsigned char *skb_push_rcsum(struct sk_buff *skb,
					    unsigned int len)
{
	skb_push(skb, len);
	skb_postpush_rcsum(skb, skb->data, len);
	return skb->data;
}

2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
/**
 *	pskb_trim_rcsum - trim received skb and update checksum
 *	@skb: buffer to trim
 *	@len: new length
 *
 *	This is exactly the same as pskb_trim except that it ensures the
 *	checksum of received packets are still valid after the operation.
 */

static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (likely(len >= skb->len))
		return 0;
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
	return __pskb_trim(skb, len);
}

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
	__skb_trim(skb, len);
	return 0;
}

static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
	return __skb_grow(skb, len);
}

L
Linus Torvalds 已提交
2985 2986
#define skb_queue_walk(queue, skb) \
		for (skb = (queue)->next;					\
2987
		     skb != (struct sk_buff *)(queue);				\
L
Linus Torvalds 已提交
2988 2989
		     skb = skb->next)

2990 2991 2992 2993 2994
#define skb_queue_walk_safe(queue, skb, tmp)					\
		for (skb = (queue)->next, tmp = skb->next;			\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->next)

2995
#define skb_queue_walk_from(queue, skb)						\
2996
		for (; skb != (struct sk_buff *)(queue);			\
2997 2998 2999 3000 3001 3002 3003
		     skb = skb->next)

#define skb_queue_walk_from_safe(queue, skb, tmp)				\
		for (tmp = skb->next;						\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->next)

3004 3005
#define skb_queue_reverse_walk(queue, skb) \
		for (skb = (queue)->prev;					\
3006
		     skb != (struct sk_buff *)(queue);				\
3007 3008
		     skb = skb->prev)

3009 3010 3011 3012 3013 3014 3015 3016 3017
#define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
		for (skb = (queue)->prev, tmp = skb->prev;			\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->prev)

#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
		for (tmp = skb->prev;						\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->prev)
L
Linus Torvalds 已提交
3018

3019
static inline bool skb_has_frag_list(const struct sk_buff *skb)
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
{
	return skb_shinfo(skb)->frag_list != NULL;
}

static inline void skb_frag_list_init(struct sk_buff *skb)
{
	skb_shinfo(skb)->frag_list = NULL;
}

#define skb_walk_frags(skb, iter)	\
	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)

3032 3033 3034 3035 3036 3037

int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
				const struct sk_buff *skb);
struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
					int *peeked, int *off, int *err,
					struct sk_buff **last);
3038 3039 3040 3041 3042 3043
struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
				    int *peeked, int *off, int *err);
struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
				  int *err);
unsigned int datagram_poll(struct file *file, struct socket *sock,
			   struct poll_table_struct *wait);
A
Al Viro 已提交
3044 3045
int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
			   struct iov_iter *to, int size);
3046 3047 3048
static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
					struct msghdr *msg, int size)
{
3049
	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3050
}
3051 3052
int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
				   struct msghdr *msg);
3053 3054 3055
int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
				 struct iov_iter *from, int len);
int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3056
void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3057 3058 3059 3060 3061 3062
void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
static inline void skb_free_datagram_locked(struct sock *sk,
					    struct sk_buff *skb)
{
	__skb_free_datagram_locked(sk, skb, 0);
}
3063 3064 3065 3066 3067
int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
			      int len, __wsum csum);
3068
int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3069
		    struct pipe_inode_info *pipe, unsigned int len,
A
Al Viro 已提交
3070
		    unsigned int flags);
3071
void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3072
unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3073 3074
int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
		 int len, int hlen);
3075 3076 3077
void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3078
unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3079
bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3080
struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3081
struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3082
int skb_ensure_writable(struct sk_buff *skb, int write_len);
3083
int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3084 3085
int skb_vlan_pop(struct sk_buff *skb);
int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3086 3087
struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
			     gfp_t gfp);
3088

A
Al Viro 已提交
3089 3090
static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
{
3091
	return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
A
Al Viro 已提交
3092 3093
}

A
Al Viro 已提交
3094 3095
static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
{
3096
	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
A
Al Viro 已提交
3097 3098
}

3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
struct skb_checksum_ops {
	__wsum (*update)(const void *mem, int len, __wsum wsum);
	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
};

__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
		      __wsum csum, const struct skb_checksum_ops *ops);
__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
		    __wsum csum);

3109 3110 3111
static inline void * __must_check
__skb_header_pointer(const struct sk_buff *skb, int offset,
		     int len, void *data, int hlen, void *buffer)
L
Linus Torvalds 已提交
3112
{
3113
	if (hlen - offset >= len)
3114
		return data + offset;
L
Linus Torvalds 已提交
3115

3116 3117
	if (!skb ||
	    skb_copy_bits(skb, offset, buffer, len) < 0)
L
Linus Torvalds 已提交
3118 3119 3120 3121 3122
		return NULL;

	return buffer;
}

3123 3124
static inline void * __must_check
skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3125 3126 3127 3128 3129
{
	return __skb_header_pointer(skb, offset, len, skb->data,
				    skb_headlen(skb), buffer);
}

3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
/**
 *	skb_needs_linearize - check if we need to linearize a given skb
 *			      depending on the given device features.
 *	@skb: socket buffer to check
 *	@features: net device features
 *
 *	Returns true if either:
 *	1. skb has frag_list and the device doesn't support FRAGLIST, or
 *	2. skb is fragmented and the device does not support SG.
 */
static inline bool skb_needs_linearize(struct sk_buff *skb,
				       netdev_features_t features)
{
	return skb_is_nonlinear(skb) &&
	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
}

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
					     void *to,
					     const unsigned int len)
{
	memcpy(to, skb->data, len);
}

static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
						    const int offset, void *to,
						    const unsigned int len)
{
	memcpy(to, skb->data + offset, len);
}

3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
static inline void skb_copy_to_linear_data(struct sk_buff *skb,
					   const void *from,
					   const unsigned int len)
{
	memcpy(skb->data, from, len);
}

static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
						  const int offset,
						  const void *from,
						  const unsigned int len)
{
	memcpy(skb->data + offset, from, len);
}

3177
void skb_init(void);
L
Linus Torvalds 已提交
3178

3179 3180 3181 3182 3183
static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
{
	return skb->tstamp;
}

3184 3185 3186 3187 3188 3189 3190 3191 3192
/**
 *	skb_get_timestamp - get timestamp from a skb
 *	@skb: skb to get stamp from
 *	@stamp: pointer to struct timeval to store stamp in
 *
 *	Timestamps are stored in the skb as offsets to a base timestamp.
 *	This function converts the offset back to a struct timeval and stores
 *	it in stamp.
 */
3193 3194
static inline void skb_get_timestamp(const struct sk_buff *skb,
				     struct timeval *stamp)
3195
{
3196
	*stamp = ktime_to_timeval(skb->tstamp);
3197 3198
}

3199 3200 3201 3202 3203 3204
static inline void skb_get_timestampns(const struct sk_buff *skb,
				       struct timespec *stamp)
{
	*stamp = ktime_to_timespec(skb->tstamp);
}

3205
static inline void __net_timestamp(struct sk_buff *skb)
3206
{
3207
	skb->tstamp = ktime_get_real();
3208 3209
}

3210 3211 3212 3213 3214
static inline ktime_t net_timedelta(ktime_t t)
{
	return ktime_sub(ktime_get_real(), t);
}

3215 3216 3217 3218
static inline ktime_t net_invalid_timestamp(void)
{
	return ktime_set(0, 0);
}
3219

3220 3221
struct sk_buff *skb_clone_sk(struct sk_buff *skb);

3222 3223
#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING

3224 3225
void skb_clone_tx_timestamp(struct sk_buff *skb);
bool skb_defer_rx_timestamp(struct sk_buff *skb);
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242

#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */

static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
{
}

static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
{
	return false;
}

#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */

/**
 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
 *
3243 3244
 * PHY drivers may accept clones of transmitted packets for
 * timestamping via their phy_driver.txtstamp method. These drivers
3245 3246
 * must call this function to return the skb back to the stack with a
 * timestamp.
3247
 *
3248
 * @skb: clone of the the original outgoing packet
3249
 * @hwtstamps: hardware time stamps
3250 3251 3252 3253 3254
 *
 */
void skb_complete_tx_timestamp(struct sk_buff *skb,
			       struct skb_shared_hwtstamps *hwtstamps);

3255 3256 3257 3258
void __skb_tstamp_tx(struct sk_buff *orig_skb,
		     struct skb_shared_hwtstamps *hwtstamps,
		     struct sock *sk, int tstype);

3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
/**
 * skb_tstamp_tx - queue clone of skb with send time stamps
 * @orig_skb:	the original outgoing packet
 * @hwtstamps:	hardware time stamps, may be NULL if not available
 *
 * If the skb has a socket associated, then this function clones the
 * skb (thus sharing the actual data and optional structures), stores
 * the optional hardware time stamping information (if non NULL) or
 * generates a software time stamp (otherwise), then queues the clone
 * to the error queue of the socket.  Errors are silently ignored.
 */
3270 3271
void skb_tstamp_tx(struct sk_buff *orig_skb,
		   struct skb_shared_hwtstamps *hwtstamps);
3272

3273 3274
static inline void sw_tx_timestamp(struct sk_buff *skb)
{
3275 3276
	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3277 3278 3279 3280 3281 3282 3283
		skb_tstamp_tx(skb, NULL);
}

/**
 * skb_tx_timestamp() - Driver hook for transmit timestamping
 *
 * Ethernet MAC Drivers should call this function in their hard_xmit()
3284
 * function immediately before giving the sk_buff to the MAC hardware.
3285
 *
3286 3287 3288 3289
 * Specifically, one should make absolutely sure that this function is
 * called before TX completion of this packet can trigger.  Otherwise
 * the packet could potentially already be freed.
 *
3290 3291 3292 3293
 * @skb: A socket buffer.
 */
static inline void skb_tx_timestamp(struct sk_buff *skb)
{
3294
	skb_clone_tx_timestamp(skb);
3295 3296 3297
	sw_tx_timestamp(skb);
}

3298 3299 3300 3301 3302 3303 3304 3305 3306
/**
 * skb_complete_wifi_ack - deliver skb with wifi status
 *
 * @skb: the original outgoing packet
 * @acked: ack status
 *
 */
void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);

3307 3308
__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
__sum16 __skb_checksum_complete(struct sk_buff *skb);
3309

3310 3311
static inline int skb_csum_unnecessary(const struct sk_buff *skb)
{
3312 3313 3314 3315
	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
		skb->csum_valid ||
		(skb->ip_summed == CHECKSUM_PARTIAL &&
		 skb_checksum_start_offset(skb) >= 0));
3316 3317
}

3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
/**
 *	skb_checksum_complete - Calculate checksum of an entire packet
 *	@skb: packet to process
 *
 *	This function calculates the checksum over the entire packet plus
 *	the value of skb->csum.  The latter can be used to supply the
 *	checksum of a pseudo header as used by TCP/UDP.  It returns the
 *	checksum.
 *
 *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
 *	this function can be used to verify that checksum on received
 *	packets.  In that case the function should return zero if the
 *	checksum is correct.  In particular, this function will return zero
 *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
 *	hardware has already verified the correctness of the checksum.
 */
3334
static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3335
{
3336 3337
	return skb_csum_unnecessary(skb) ?
	       0 : __skb_checksum_complete(skb);
3338 3339
}

3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		if (skb->csum_level == 0)
			skb->ip_summed = CHECKSUM_NONE;
		else
			skb->csum_level--;
	}
}

static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
			skb->csum_level++;
	} else if (skb->ip_summed == CHECKSUM_NONE) {
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		skb->csum_level = 0;
	}
}

3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
{
	/* Mark current checksum as bad (typically called from GRO
	 * path). In the case that ip_summed is CHECKSUM_NONE
	 * this must be the first checksum encountered in the packet.
	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
	 * checksum after the last one validated. For UDP, a zero
	 * checksum can not be marked as bad.
	 */

	if (skb->ip_summed == CHECKSUM_NONE ||
	    skb->ip_summed == CHECKSUM_UNNECESSARY)
		skb->csum_bad = 1;
}

3376 3377 3378 3379 3380 3381 3382 3383 3384
/* Check if we need to perform checksum complete validation.
 *
 * Returns true if checksum complete is needed, false otherwise
 * (either checksum is unnecessary or zero checksum is allowed).
 */
static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
						  bool zero_okay,
						  __sum16 check)
{
3385 3386
	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
		skb->csum_valid = 1;
3387
		__skb_decr_checksum_unnecessary(skb);
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
		return false;
	}

	return true;
}

/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
 * in checksum_init.
 */
#define CHECKSUM_BREAK 76

3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
/* Unset checksum-complete
 *
 * Unset checksum complete can be done when packet is being modified
 * (uncompressed for instance) and checksum-complete value is
 * invalidated.
 */
static inline void skb_checksum_complete_unset(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
}

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
/* Validate (init) checksum based on checksum complete.
 *
 * Return values:
 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
 *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
 *	checksum is stored in skb->csum for use in __skb_checksum_complete
 *   non-zero: value of invalid checksum
 *
 */
static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
						       bool complete,
						       __wsum psum)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE) {
		if (!csum_fold(csum_add(psum, skb->csum))) {
3426
			skb->csum_valid = 1;
3427 3428
			return 0;
		}
3429 3430
	} else if (skb->csum_bad) {
		/* ip_summed == CHECKSUM_NONE in this case */
E
Eric Dumazet 已提交
3431
		return (__force __sum16)1;
3432 3433 3434 3435
	}

	skb->csum = psum;

3436 3437 3438 3439 3440 3441 3442
	if (complete || skb->len <= CHECKSUM_BREAK) {
		__sum16 csum;

		csum = __skb_checksum_complete(skb);
		skb->csum_valid = !csum;
		return csum;
	}
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465

	return 0;
}

static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
{
	return 0;
}

/* Perform checksum validate (init). Note that this is a macro since we only
 * want to calculate the pseudo header which is an input function if necessary.
 * First we try to validate without any computation (checksum unnecessary) and
 * then calculate based on checksum complete calling the function to compute
 * pseudo header.
 *
 * Return values:
 *   0: checksum is validated or try to in skb_checksum_complete
 *   non-zero: value of invalid checksum
 */
#define __skb_checksum_validate(skb, proto, complete,			\
				zero_okay, check, compute_pseudo)	\
({									\
	__sum16 __ret = 0;						\
3466
	skb->csum_valid = 0;						\
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
		__ret = __skb_checksum_validate_complete(skb,		\
				complete, compute_pseudo(skb, proto));	\
	__ret;								\
})

#define skb_checksum_init(skb, proto, compute_pseudo)			\
	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)

#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)

#define skb_checksum_validate(skb, proto, compute_pseudo)		\
	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)

#define skb_checksum_validate_zero_check(skb, proto, check,		\
					 compute_pseudo)		\
3484
	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3485 3486 3487 3488

#define skb_checksum_simple_validate(skb)				\
	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
{
	return (skb->ip_summed == CHECKSUM_NONE &&
		skb->csum_valid && !skb->csum_bad);
}

static inline void __skb_checksum_convert(struct sk_buff *skb,
					  __sum16 check, __wsum pseudo)
{
	skb->csum = ~pseudo;
	skb->ip_summed = CHECKSUM_COMPLETE;
}

#define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
do {									\
	if (__skb_checksum_convert_check(skb))				\
		__skb_checksum_convert(skb, check,			\
				       compute_pseudo(skb, proto));	\
} while (0)

3509 3510 3511 3512 3513 3514 3515 3516
static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
					      u16 start, u16 offset)
{
	skb->ip_summed = CHECKSUM_PARTIAL;
	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
	skb->csum_offset = offset - start;
}

3517 3518 3519 3520 3521 3522
/* Update skbuf and packet to reflect the remote checksum offload operation.
 * When called, ptr indicates the starting point for skb->csum when
 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
 */
static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3523
				       int start, int offset, bool nopartial)
3524 3525 3526
{
	__wsum delta;

3527 3528 3529 3530 3531
	if (!nopartial) {
		skb_remcsum_adjust_partial(skb, ptr, start, offset);
		return;
	}

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
		__skb_checksum_complete(skb);
		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
	}

	delta = remcsum_adjust(ptr, skb->csum, start, offset);

	/* Adjust skb->csum since we changed the packet */
	skb->csum = csum_add(skb->csum, delta);
}

3543
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3544
void nf_conntrack_destroy(struct nf_conntrack *nfct);
L
Linus Torvalds 已提交
3545 3546 3547
static inline void nf_conntrack_put(struct nf_conntrack *nfct)
{
	if (nfct && atomic_dec_and_test(&nfct->use))
3548
		nf_conntrack_destroy(nfct);
L
Linus Torvalds 已提交
3549 3550 3551 3552 3553 3554
}
static inline void nf_conntrack_get(struct nf_conntrack *nfct)
{
	if (nfct)
		atomic_inc(&nfct->use);
}
3555
#endif
3556
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
L
Linus Torvalds 已提交
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
{
	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
		kfree(nf_bridge);
}
static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
{
	if (nf_bridge)
		atomic_inc(&nf_bridge->use);
}
#endif /* CONFIG_BRIDGE_NETFILTER */
3568 3569
static inline void nf_reset(struct sk_buff *skb)
{
3570
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3571 3572
	nf_conntrack_put(skb->nfct);
	skb->nfct = NULL;
3573
#endif
3574
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3575 3576 3577 3578 3579
	nf_bridge_put(skb->nf_bridge);
	skb->nf_bridge = NULL;
#endif
}

3580 3581
static inline void nf_reset_trace(struct sk_buff *skb)
{
3582
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
G
Gao feng 已提交
3583 3584
	skb->nf_trace = 0;
#endif
3585 3586
}

3587
/* Note: This doesn't put any conntrack and bridge info in dst. */
3588 3589
static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
			     bool copy)
3590
{
3591
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3592 3593
	dst->nfct = src->nfct;
	nf_conntrack_get(src->nfct);
3594 3595
	if (copy)
		dst->nfctinfo = src->nfctinfo;
3596
#endif
3597
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3598 3599 3600
	dst->nf_bridge  = src->nf_bridge;
	nf_bridge_get(src->nf_bridge);
#endif
3601
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3602 3603
	if (copy)
		dst->nf_trace = src->nf_trace;
3604
#endif
3605 3606
}

3607 3608 3609
static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
{
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3610
	nf_conntrack_put(dst->nfct);
3611
#endif
3612
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3613 3614
	nf_bridge_put(dst->nf_bridge);
#endif
3615
	__nf_copy(dst, src, true);
3616 3617
}

3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
#ifdef CONFIG_NETWORK_SECMARK
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{
	to->secmark = from->secmark;
}

static inline void skb_init_secmark(struct sk_buff *skb)
{
	skb->secmark = 0;
}
#else
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{ }

static inline void skb_init_secmark(struct sk_buff *skb)
{ }
#endif

3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
static inline bool skb_irq_freeable(const struct sk_buff *skb)
{
	return !skb->destructor &&
#if IS_ENABLED(CONFIG_XFRM)
		!skb->sp &&
#endif
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
		!skb->nfct &&
#endif
		!skb->_skb_refdst &&
		!skb_has_frag_list(skb);
}

3649 3650 3651 3652 3653
static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
{
	skb->queue_mapping = queue_mapping;
}

3654
static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3655 3656 3657 3658
{
	return skb->queue_mapping;
}

3659 3660 3661 3662 3663
static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
{
	to->queue_mapping = from->queue_mapping;
}

3664 3665 3666 3667 3668
static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
{
	skb->queue_mapping = rx_queue + 1;
}

3669
static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3670 3671 3672 3673
{
	return skb->queue_mapping - 1;
}

3674
static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3675
{
E
Eric Dumazet 已提交
3676
	return skb->queue_mapping != 0;
3677 3678
}

3679 3680
static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
{
3681
#ifdef CONFIG_XFRM
3682 3683 3684 3685
	return skb->sp;
#else
	return NULL;
#endif
3686
}
3687

3688 3689 3690
/* Keeps track of mac header offset relative to skb->head.
 * It is useful for TSO of Tunneling protocol. e.g. GRE.
 * For non-tunnel skb it points to skb_mac_header() and for
3691 3692 3693
 * tunnel skb it points to outer mac header.
 * Keeps track of level of encapsulation of network headers.
 */
3694
struct skb_gso_cb {
3695 3696 3697 3698
	union {
		int	mac_offset;
		int	data_offset;
	};
3699
	int	encap_level;
3700
	__wsum	csum;
3701
	__u16	csum_start;
3702
};
3703 3704
#define SKB_SGO_CB_OFFSET	32
#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3705 3706 3707 3708 3709 3710 3711

static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
{
	return (skb_mac_header(inner_skb) - inner_skb->head) -
		SKB_GSO_CB(inner_skb)->mac_offset;
}

3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
{
	int new_headroom, headroom;
	int ret;

	headroom = skb_headroom(skb);
	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
	if (ret)
		return ret;

	new_headroom = skb_headroom(skb);
	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
	return 0;
}

3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
{
	/* Do not update partial checksums if remote checksum is enabled. */
	if (skb->remcsum_offload)
		return;

	SKB_GSO_CB(skb)->csum = res;
	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
}

3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
/* Compute the checksum for a gso segment. First compute the checksum value
 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
 * then add in skb->csum (checksum from csum_start to end of packet).
 * skb->csum and csum_start are then updated to reflect the checksum of the
 * resultant packet starting from the transport header-- the resultant checksum
 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
 * header.
 */
static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
{
3747 3748 3749
	unsigned char *csum_start = skb_transport_header(skb);
	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
	__wsum partial = SKB_GSO_CB(skb)->csum;
3750

3751 3752
	SKB_GSO_CB(skb)->csum = res;
	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3753

3754
	return csum_fold(csum_partial(csum_start, plen, partial));
3755 3756
}

3757
static inline bool skb_is_gso(const struct sk_buff *skb)
H
Herbert Xu 已提交
3758 3759 3760 3761
{
	return skb_shinfo(skb)->gso_size;
}

3762
/* Note: Should be called only if skb_is_gso(skb) is true */
3763
static inline bool skb_is_gso_v6(const struct sk_buff *skb)
B
Brice Goglin 已提交
3764 3765 3766 3767
{
	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
}

3768 3769 3770 3771 3772 3773 3774
static inline void skb_gso_reset(struct sk_buff *skb)
{
	skb_shinfo(skb)->gso_size = 0;
	skb_shinfo(skb)->gso_segs = 0;
	skb_shinfo(skb)->gso_type = 0;
}

3775
void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3776 3777 3778 3779 3780

static inline bool skb_warn_if_lro(const struct sk_buff *skb)
{
	/* LRO sets gso_size but not gso_type, whereas if GSO is really
	 * wanted then gso_type will be set. */
3781 3782
	const struct skb_shared_info *shinfo = skb_shinfo(skb);

3783 3784
	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
	    unlikely(shinfo->gso_type == 0)) {
3785 3786 3787 3788 3789 3790
		__skb_warn_lro_forwarding(skb);
		return true;
	}
	return false;
}

3791 3792 3793 3794 3795 3796 3797
static inline void skb_forward_csum(struct sk_buff *skb)
{
	/* Unfortunately we don't support this one.  Any brave souls? */
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
}

3798 3799 3800 3801 3802 3803 3804 3805
/**
 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
 * @skb: skb to check
 *
 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
 * use this helper, to document places where we make this assertion.
 */
3806
static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3807 3808 3809 3810 3811 3812
{
#ifdef DEBUG
	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
#endif
}

3813
bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3814

P
Paul Durrant 已提交
3815
int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3816 3817 3818
struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
				     unsigned int transport_len,
				     __sum16(*skb_chkf)(struct sk_buff *skb));
P
Paul Durrant 已提交
3819

3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
/**
 * skb_head_is_locked - Determine if the skb->head is locked down
 * @skb: skb to check
 *
 * The head on skbs build around a head frag can be removed if they are
 * not cloned.  This function returns true if the skb head is locked down
 * due to either being allocated via kmalloc, or by being a clone with
 * multiple references to the head.
 */
static inline bool skb_head_is_locked(const struct sk_buff *skb)
{
	return !skb->head_frag || skb_cloned(skb);
}
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849

/**
 * skb_gso_network_seglen - Return length of individual segments of a gso packet
 *
 * @skb: GSO skb
 *
 * skb_gso_network_seglen is used to determine the real size of the
 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
 *
 * The MAC/L2 header is not accounted for.
 */
static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
{
	unsigned int hdr_len = skb_transport_header(skb) -
			       skb_network_header(skb);
	return hdr_len + skb_gso_transport_seglen(skb);
}
T
Thomas Graf 已提交
3850

3851 3852 3853
/* Local Checksum Offload.
 * Compute outer checksum based on the assumption that the
 * inner checksum will be offloaded later.
3854 3855
 * See Documentation/networking/checksum-offloads.txt for
 * explanation of how this works.
3856 3857 3858 3859 3860 3861
 * Fill in outer checksum adjustment (e.g. with sum of outer
 * pseudo-header) before calling.
 * Also ensure that inner checksum is in linear data area.
 */
static inline __wsum lco_csum(struct sk_buff *skb)
{
3862 3863 3864
	unsigned char *csum_start = skb_checksum_start(skb);
	unsigned char *l4_hdr = skb_transport_header(skb);
	__wsum partial;
3865 3866

	/* Start with complement of inner checksum adjustment */
3867 3868 3869
	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
						    skb->csum_offset));

3870
	/* Add in checksum of our headers (incl. outer checksum
3871
	 * adjustment filled in by caller) and return result.
3872
	 */
3873
	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
3874 3875
}

L
Linus Torvalds 已提交
3876 3877
#endif	/* __KERNEL__ */
#endif	/* _LINUX_SKBUFF_H */