rdtgroup.c 74.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * User interface for Resource Alloction in Resource Director Technology(RDT)
 *
 * Copyright (C) 2016 Intel Corporation
 *
 * Author: Fenghua Yu <fenghua.yu@intel.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * More information about RDT be found in the Intel (R) x86 Architecture
 * Software Developer Manual.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

23
#include <linux/cacheinfo.h>
T
Tony Luck 已提交
24
#include <linux/cpu.h>
25
#include <linux/debugfs.h>
26 27 28
#include <linux/fs.h>
#include <linux/sysfs.h>
#include <linux/kernfs.h>
29
#include <linux/seq_buf.h>
30
#include <linux/seq_file.h>
31
#include <linux/sched/signal.h>
32
#include <linux/sched/task.h>
33
#include <linux/slab.h>
F
Fenghua Yu 已提交
34
#include <linux/task_work.h>
35 36 37

#include <uapi/linux/magic.h>

38 39
#include <asm/resctrl_sched.h>
#include "internal.h"
40

41 42
DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
43
DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
44
static struct kernfs_root *rdt_root;
45 46 47
struct rdtgroup rdtgroup_default;
LIST_HEAD(rdt_all_groups);

48 49 50
/* Kernel fs node for "info" directory under root */
static struct kernfs_node *kn_info;

51 52 53 54 55 56
/* Kernel fs node for "mon_groups" directory under root */
static struct kernfs_node *kn_mongrp;

/* Kernel fs node for "mon_data" directory under root */
static struct kernfs_node *kn_mondata;

57 58 59
static struct seq_buf last_cmd_status;
static char last_cmd_status_buf[512];

60 61
struct dentry *debugfs_resctrl;

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
void rdt_last_cmd_clear(void)
{
	lockdep_assert_held(&rdtgroup_mutex);
	seq_buf_clear(&last_cmd_status);
}

void rdt_last_cmd_puts(const char *s)
{
	lockdep_assert_held(&rdtgroup_mutex);
	seq_buf_puts(&last_cmd_status, s);
}

void rdt_last_cmd_printf(const char *fmt, ...)
{
	va_list ap;

	va_start(ap, fmt);
	lockdep_assert_held(&rdtgroup_mutex);
	seq_buf_vprintf(&last_cmd_status, fmt, ap);
	va_end(ap);
}

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
/*
 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
 * we can keep a bitmap of free CLOSIDs in a single integer.
 *
 * Using a global CLOSID across all resources has some advantages and
 * some drawbacks:
 * + We can simply set "current->closid" to assign a task to a resource
 *   group.
 * + Context switch code can avoid extra memory references deciding which
 *   CLOSID to load into the PQR_ASSOC MSR
 * - We give up some options in configuring resource groups across multi-socket
 *   systems.
 * - Our choices on how to configure each resource become progressively more
 *   limited as the number of resources grows.
 */
static int closid_free_map;
100 101 102 103 104 105
static int closid_free_map_len;

int closids_supported(void)
{
	return closid_free_map_len;
}
106 107 108 109 110 111 112

static void closid_init(void)
{
	struct rdt_resource *r;
	int rdt_min_closid = 32;

	/* Compute rdt_min_closid across all resources */
113
	for_each_alloc_enabled_rdt_resource(r)
114 115 116 117 118 119
		rdt_min_closid = min(rdt_min_closid, r->num_closid);

	closid_free_map = BIT_MASK(rdt_min_closid) - 1;

	/* CLOSID 0 is always reserved for the default group */
	closid_free_map &= ~1;
120
	closid_free_map_len = rdt_min_closid;
121 122
}

123
static int closid_alloc(void)
124
{
125
	u32 closid = ffs(closid_free_map);
126 127 128 129 130 131 132 133 134

	if (closid == 0)
		return -ENOSPC;
	closid--;
	closid_free_map &= ~(1 << closid);

	return closid;
}

135
void closid_free(int closid)
136 137 138 139
{
	closid_free_map |= 1 << closid;
}

140 141 142 143 144 145 146
/**
 * closid_allocated - test if provided closid is in use
 * @closid: closid to be tested
 *
 * Return: true if @closid is currently associated with a resource group,
 * false if @closid is free
 */
147
static bool closid_allocated(unsigned int closid)
148 149 150 151
{
	return (closid_free_map & (1 << closid)) == 0;
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/**
 * rdtgroup_mode_by_closid - Return mode of resource group with closid
 * @closid: closid if the resource group
 *
 * Each resource group is associated with a @closid. Here the mode
 * of a resource group can be queried by searching for it using its closid.
 *
 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
 */
enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
{
	struct rdtgroup *rdtgrp;

	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
		if (rdtgrp->closid == closid)
			return rdtgrp->mode;
	}

	return RDT_NUM_MODES;
}

173
static const char * const rdt_mode_str[] = {
174 175 176 177
	[RDT_MODE_SHAREABLE]		= "shareable",
	[RDT_MODE_EXCLUSIVE]		= "exclusive",
	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
};

/**
 * rdtgroup_mode_str - Return the string representation of mode
 * @mode: the resource group mode as &enum rdtgroup_mode
 *
 * Return: string representation of valid mode, "unknown" otherwise
 */
static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
{
	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
		return "unknown";

	return rdt_mode_str[mode];
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/* set uid and gid of rdtgroup dirs and files to that of the creator */
static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
{
	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
				.ia_uid = current_fsuid(),
				.ia_gid = current_fsgid(), };

	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
		return 0;

	return kernfs_setattr(kn, &iattr);
}

static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
{
	struct kernfs_node *kn;
	int ret;

	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
214
				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
				  0, rft->kf_ops, rft, NULL, NULL);
	if (IS_ERR(kn))
		return PTR_ERR(kn);

	ret = rdtgroup_kn_set_ugid(kn);
	if (ret) {
		kernfs_remove(kn);
		return ret;
	}

	return 0;
}

static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct kernfs_open_file *of = m->private;
	struct rftype *rft = of->kn->priv;

	if (rft->seq_show)
		return rft->seq_show(of, m, arg);
	return 0;
}

static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
				   size_t nbytes, loff_t off)
{
	struct rftype *rft = of->kn->priv;

	if (rft->write)
		return rft->write(of, buf, nbytes, off);

	return -EINVAL;
}

static struct kernfs_ops rdtgroup_kf_single_ops = {
	.atomic_write_len	= PAGE_SIZE,
	.write			= rdtgroup_file_write,
	.seq_show		= rdtgroup_seqfile_show,
};

V
Vikas Shivappa 已提交
255 256 257 258 259
static struct kernfs_ops kf_mondata_ops = {
	.atomic_write_len	= PAGE_SIZE,
	.seq_show		= rdtgroup_mondata_show,
};

260 261 262 263 264 265 266
static bool is_cpu_list(struct kernfs_open_file *of)
{
	struct rftype *rft = of->kn->priv;

	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
}

T
Tony Luck 已提交
267 268 269 270
static int rdtgroup_cpus_show(struct kernfs_open_file *of,
			      struct seq_file *s, void *v)
{
	struct rdtgroup *rdtgrp;
271
	struct cpumask *mask;
T
Tony Luck 已提交
272 273 274 275
	int ret = 0;

	rdtgrp = rdtgroup_kn_lock_live(of->kn);

276
	if (rdtgrp) {
277 278 279 280 281 282 283 284 285 286 287 288
		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
			if (!rdtgrp->plr->d) {
				rdt_last_cmd_clear();
				rdt_last_cmd_puts("Cache domain offline\n");
				ret = -ENODEV;
			} else {
				mask = &rdtgrp->plr->d->cpu_mask;
				seq_printf(s, is_cpu_list(of) ?
					   "%*pbl\n" : "%*pb\n",
					   cpumask_pr_args(mask));
			}
		} else {
289 290
			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
				   cpumask_pr_args(&rdtgrp->cpu_mask));
291
		}
292
	} else {
T
Tony Luck 已提交
293
		ret = -ENOENT;
294
	}
T
Tony Luck 已提交
295 296 297 298 299
	rdtgroup_kn_unlock(of->kn);

	return ret;
}

300 301 302
/*
 * This is safe against intel_rdt_sched_in() called from __switch_to()
 * because __switch_to() is executed with interrupts disabled. A local call
303
 * from update_closid_rmid() is proteced against __switch_to() because
304 305
 * preemption is disabled.
 */
306
static void update_cpu_closid_rmid(void *info)
307
{
308 309
	struct rdtgroup *r = info;

310
	if (r) {
311 312
		this_cpu_write(pqr_state.default_closid, r->closid);
		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
313
	}
314

315 316 317 318 319 320 321 322
	/*
	 * We cannot unconditionally write the MSR because the current
	 * executing task might have its own closid selected. Just reuse
	 * the context switch code.
	 */
	intel_rdt_sched_in();
}

323 324 325
/*
 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
 *
326
 * Per task closids/rmids must have been set up before calling this function.
327 328
 */
static void
329
update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
330 331 332 333
{
	int cpu = get_cpu();

	if (cpumask_test_cpu(cpu, cpu_mask))
334 335
		update_cpu_closid_rmid(r);
	smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
336 337 338
	put_cpu();
}

339 340 341 342 343 344 345 346
static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
			  cpumask_var_t tmpmask)
{
	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
	struct list_head *head;

	/* Check whether cpus belong to parent ctrl group */
	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
347 348
	if (cpumask_weight(tmpmask)) {
		rdt_last_cmd_puts("can only add CPUs to mongroup that belong to parent\n");
349
		return -EINVAL;
350
	}
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

	/* Check whether cpus are dropped from this group */
	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
	if (cpumask_weight(tmpmask)) {
		/* Give any dropped cpus to parent rdtgroup */
		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
		update_closid_rmid(tmpmask, prgrp);
	}

	/*
	 * If we added cpus, remove them from previous group that owned them
	 * and update per-cpu rmid
	 */
	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
	if (cpumask_weight(tmpmask)) {
		head = &prgrp->mon.crdtgrp_list;
		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
			if (crgrp == rdtgrp)
				continue;
			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
				       tmpmask);
		}
		update_closid_rmid(tmpmask, rdtgrp);
	}

	/* Done pushing/pulling - update this group with new mask */
	cpumask_copy(&rdtgrp->cpu_mask, newmask);

	return 0;
}

static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
{
	struct rdtgroup *crgrp;

	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
	/* update the child mon group masks as well*/
	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
}

392
static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
393
			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
394
{
395 396
	struct rdtgroup *r, *crgrp;
	struct list_head *head;
397 398 399 400 401

	/* Check whether cpus are dropped from this group */
	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
	if (cpumask_weight(tmpmask)) {
		/* Can't drop from default group */
402 403
		if (rdtgrp == &rdtgroup_default) {
			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
404
			return -EINVAL;
405
		}
406 407 408 409

		/* Give any dropped cpus to rdtgroup_default */
		cpumask_or(&rdtgroup_default.cpu_mask,
			   &rdtgroup_default.cpu_mask, tmpmask);
410
		update_closid_rmid(tmpmask, &rdtgroup_default);
411 412 413
	}

	/*
414 415 416
	 * If we added cpus, remove them from previous group and
	 * the prev group's child groups that owned them
	 * and update per-cpu closid/rmid.
417 418 419 420 421 422
	 */
	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
	if (cpumask_weight(tmpmask)) {
		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
			if (r == rdtgrp)
				continue;
423 424 425
			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
			if (cpumask_weight(tmpmask1))
				cpumask_rdtgrp_clear(r, tmpmask1);
426
		}
427
		update_closid_rmid(tmpmask, rdtgrp);
428 429 430 431 432
	}

	/* Done pushing/pulling - update this group with new mask */
	cpumask_copy(&rdtgrp->cpu_mask, newmask);

433 434 435 436 437 438 439 440 441 442 443
	/*
	 * Clear child mon group masks since there is a new parent mask
	 * now and update the rmid for the cpus the child lost.
	 */
	head = &rdtgrp->mon.crdtgrp_list;
	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
		update_closid_rmid(tmpmask, rdtgrp);
		cpumask_clear(&crgrp->cpu_mask);
	}

444 445 446
	return 0;
}

T
Tony Luck 已提交
447 448 449
static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
				   char *buf, size_t nbytes, loff_t off)
{
450
	cpumask_var_t tmpmask, newmask, tmpmask1;
451
	struct rdtgroup *rdtgrp;
452
	int ret;
T
Tony Luck 已提交
453 454 455 456 457 458 459 460 461 462

	if (!buf)
		return -EINVAL;

	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
		return -ENOMEM;
	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
		free_cpumask_var(tmpmask);
		return -ENOMEM;
	}
463 464 465 466 467
	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
		free_cpumask_var(tmpmask);
		free_cpumask_var(newmask);
		return -ENOMEM;
	}
468

T
Tony Luck 已提交
469
	rdtgrp = rdtgroup_kn_lock_live(of->kn);
470
	rdt_last_cmd_clear();
T
Tony Luck 已提交
471 472
	if (!rdtgrp) {
		ret = -ENOENT;
473
		rdt_last_cmd_puts("directory was removed\n");
T
Tony Luck 已提交
474 475 476
		goto unlock;
	}

477 478 479 480 481 482 483
	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
		ret = -EINVAL;
		rdt_last_cmd_puts("pseudo-locking in progress\n");
		goto unlock;
	}

484 485 486 487 488
	if (is_cpu_list(of))
		ret = cpulist_parse(buf, newmask);
	else
		ret = cpumask_parse(buf, newmask);

489 490
	if (ret) {
		rdt_last_cmd_puts("bad cpu list/mask\n");
T
Tony Luck 已提交
491
		goto unlock;
492
	}
T
Tony Luck 已提交
493 494 495 496 497

	/* check that user didn't specify any offline cpus */
	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
	if (cpumask_weight(tmpmask)) {
		ret = -EINVAL;
498
		rdt_last_cmd_puts("can only assign online cpus\n");
499
		goto unlock;
T
Tony Luck 已提交
500 501
	}

502
	if (rdtgrp->type == RDTCTRL_GROUP)
503 504 505
		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
	else if (rdtgrp->type == RDTMON_GROUP)
		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
506 507
	else
		ret = -EINVAL;
T
Tony Luck 已提交
508 509 510 511 512

unlock:
	rdtgroup_kn_unlock(of->kn);
	free_cpumask_var(tmpmask);
	free_cpumask_var(newmask);
513
	free_cpumask_var(tmpmask1);
T
Tony Luck 已提交
514 515 516 517

	return ret ?: nbytes;
}

F
Fenghua Yu 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
struct task_move_callback {
	struct callback_head	work;
	struct rdtgroup		*rdtgrp;
};

static void move_myself(struct callback_head *head)
{
	struct task_move_callback *callback;
	struct rdtgroup *rdtgrp;

	callback = container_of(head, struct task_move_callback, work);
	rdtgrp = callback->rdtgrp;

	/*
	 * If resource group was deleted before this task work callback
	 * was invoked, then assign the task to root group and free the
	 * resource group.
	 */
	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
	    (rdtgrp->flags & RDT_DELETED)) {
		current->closid = 0;
539
		current->rmid = 0;
F
Fenghua Yu 已提交
540 541 542
		kfree(rdtgrp);
	}

543
	preempt_disable();
F
Fenghua Yu 已提交
544 545
	/* update PQR_ASSOC MSR to make resource group go into effect */
	intel_rdt_sched_in();
546
	preempt_enable();
F
Fenghua Yu 已提交
547

F
Fenghua Yu 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	kfree(callback);
}

static int __rdtgroup_move_task(struct task_struct *tsk,
				struct rdtgroup *rdtgrp)
{
	struct task_move_callback *callback;
	int ret;

	callback = kzalloc(sizeof(*callback), GFP_KERNEL);
	if (!callback)
		return -ENOMEM;
	callback->work.func = move_myself;
	callback->rdtgrp = rdtgrp;

	/*
	 * Take a refcount, so rdtgrp cannot be freed before the
	 * callback has been invoked.
	 */
	atomic_inc(&rdtgrp->waitcount);
	ret = task_work_add(tsk, &callback->work, true);
	if (ret) {
		/*
		 * Task is exiting. Drop the refcount and free the callback.
		 * No need to check the refcount as the group cannot be
		 * deleted before the write function unlocks rdtgroup_mutex.
		 */
		atomic_dec(&rdtgrp->waitcount);
		kfree(callback);
577
		rdt_last_cmd_puts("task exited\n");
F
Fenghua Yu 已提交
578
	} else {
579 580 581 582 583 584 585 586 587
		/*
		 * For ctrl_mon groups move both closid and rmid.
		 * For monitor groups, can move the tasks only from
		 * their parent CTRL group.
		 */
		if (rdtgrp->type == RDTCTRL_GROUP) {
			tsk->closid = rdtgrp->closid;
			tsk->rmid = rdtgrp->mon.rmid;
		} else if (rdtgrp->type == RDTMON_GROUP) {
588
			if (rdtgrp->mon.parent->closid == tsk->closid) {
589
				tsk->rmid = rdtgrp->mon.rmid;
590 591
			} else {
				rdt_last_cmd_puts("Can't move task to different control group\n");
592
				ret = -EINVAL;
593
			}
594
		}
F
Fenghua Yu 已提交
595 596 597 598
	}
	return ret;
}

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
/**
 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
 * @r: Resource group
 *
 * Return: 1 if tasks have been assigned to @r, 0 otherwise
 */
int rdtgroup_tasks_assigned(struct rdtgroup *r)
{
	struct task_struct *p, *t;
	int ret = 0;

	lockdep_assert_held(&rdtgroup_mutex);

	rcu_read_lock();
	for_each_process_thread(p, t) {
		if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
		    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) {
			ret = 1;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

F
Fenghua Yu 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637
static int rdtgroup_task_write_permission(struct task_struct *task,
					  struct kernfs_open_file *of)
{
	const struct cred *tcred = get_task_cred(task);
	const struct cred *cred = current_cred();
	int ret = 0;

	/*
	 * Even if we're attaching all tasks in the thread group, we only
	 * need to check permissions on one of them.
	 */
	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
	    !uid_eq(cred->euid, tcred->uid) &&
638 639
	    !uid_eq(cred->euid, tcred->suid)) {
		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
F
Fenghua Yu 已提交
640
		ret = -EPERM;
641
	}
F
Fenghua Yu 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

	put_cred(tcred);
	return ret;
}

static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
			      struct kernfs_open_file *of)
{
	struct task_struct *tsk;
	int ret;

	rcu_read_lock();
	if (pid) {
		tsk = find_task_by_vpid(pid);
		if (!tsk) {
			rcu_read_unlock();
658
			rdt_last_cmd_printf("No task %d\n", pid);
F
Fenghua Yu 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
			return -ESRCH;
		}
	} else {
		tsk = current;
	}

	get_task_struct(tsk);
	rcu_read_unlock();

	ret = rdtgroup_task_write_permission(tsk, of);
	if (!ret)
		ret = __rdtgroup_move_task(tsk, rdtgrp);

	put_task_struct(tsk);
	return ret;
}

static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
{
	struct rdtgroup *rdtgrp;
	int ret = 0;
	pid_t pid;

	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
		return -EINVAL;
	rdtgrp = rdtgroup_kn_lock_live(of->kn);
686 687 688 689
	if (!rdtgrp) {
		rdtgroup_kn_unlock(of->kn);
		return -ENOENT;
	}
690
	rdt_last_cmd_clear();
F
Fenghua Yu 已提交
691

692 693 694 695 696 697 698 699
	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
		ret = -EINVAL;
		rdt_last_cmd_puts("pseudo-locking in progress\n");
		goto unlock;
	}

	ret = rdtgroup_move_task(pid, rdtgrp, of);
F
Fenghua Yu 已提交
700

701
unlock:
F
Fenghua Yu 已提交
702 703 704 705 706 707 708 709 710 711 712
	rdtgroup_kn_unlock(of->kn);

	return ret ?: nbytes;
}

static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
{
	struct task_struct *p, *t;

	rcu_read_lock();
	for_each_process_thread(p, t) {
713 714
		if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
		    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
F
Fenghua Yu 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
			seq_printf(s, "%d\n", t->pid);
	}
	rcu_read_unlock();
}

static int rdtgroup_tasks_show(struct kernfs_open_file *of,
			       struct seq_file *s, void *v)
{
	struct rdtgroup *rdtgrp;
	int ret = 0;

	rdtgrp = rdtgroup_kn_lock_live(of->kn);
	if (rdtgrp)
		show_rdt_tasks(rdtgrp, s);
	else
		ret = -ENOENT;
	rdtgroup_kn_unlock(of->kn);

	return ret;
}

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
				    struct seq_file *seq, void *v)
{
	int len;

	mutex_lock(&rdtgroup_mutex);
	len = seq_buf_used(&last_cmd_status);
	if (len)
		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
	else
		seq_puts(seq, "ok\n");
	mutex_unlock(&rdtgroup_mutex);
	return 0;
}

751 752 753 754 755 756 757 758 759
static int rdt_num_closids_show(struct kernfs_open_file *of,
				struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%d\n", r->num_closid);
	return 0;
}

760
static int rdt_default_ctrl_show(struct kernfs_open_file *of,
761 762 763 764
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

765
	seq_printf(seq, "%x\n", r->default_ctrl);
766 767 768
	return 0;
}

769 770 771 772 773
static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

774
	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
775 776 777
	return 0;
}

778 779 780 781 782 783 784 785 786
static int rdt_shareable_bits_show(struct kernfs_open_file *of,
				   struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%x\n", r->cache.shareable_bits);
	return 0;
}

787 788 789 790 791 792 793 794 795 796 797 798
/**
 * rdt_bit_usage_show - Display current usage of resources
 *
 * A domain is a shared resource that can now be allocated differently. Here
 * we display the current regions of the domain as an annotated bitmask.
 * For each domain of this resource its allocation bitmask
 * is annotated as below to indicate the current usage of the corresponding bit:
 *   0 - currently unused
 *   X - currently available for sharing and used by software and hardware
 *   H - currently used by hardware only but available for software use
 *   S - currently used and shareable by software only
 *   E - currently used exclusively by one resource group
799
 *   P - currently pseudo-locked by one resource group
800 801 802 803 804
 */
static int rdt_bit_usage_show(struct kernfs_open_file *of,
			      struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;
805 806 807 808 809 810
	/*
	 * Use unsigned long even though only 32 bits are used to ensure
	 * test_bit() is used safely.
	 */
	unsigned long sw_shareable = 0, hw_shareable = 0;
	unsigned long exclusive = 0, pseudo_locked = 0;
811
	struct rdt_domain *dom;
812
	int i, hwb, swb, excl, psl;
813 814 815 816 817 818 819 820 821 822 823 824 825
	enum rdtgrp_mode mode;
	bool sep = false;
	u32 *ctrl;

	mutex_lock(&rdtgroup_mutex);
	hw_shareable = r->cache.shareable_bits;
	list_for_each_entry(dom, &r->domains, list) {
		if (sep)
			seq_putc(seq, ';');
		ctrl = dom->ctrl_val;
		sw_shareable = 0;
		exclusive = 0;
		seq_printf(seq, "%d=", dom->id);
826
		for (i = 0; i < closids_supported(); i++, ctrl++) {
827 828 829 830 831 832 833 834 835 836
			if (!closid_allocated(i))
				continue;
			mode = rdtgroup_mode_by_closid(i);
			switch (mode) {
			case RDT_MODE_SHAREABLE:
				sw_shareable |= *ctrl;
				break;
			case RDT_MODE_EXCLUSIVE:
				exclusive |= *ctrl;
				break;
837
			case RDT_MODE_PSEUDO_LOCKSETUP:
838
			/*
839 840 841 842 843
			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
			 * here but not included since the CBM
			 * associated with this CLOSID in this mode
			 * is not initialized and no task or cpu can be
			 * assigned this CLOSID.
844
			 */
845
				break;
846
			case RDT_MODE_PSEUDO_LOCKED:
847 848 849 850 851 852 853
			case RDT_NUM_MODES:
				WARN(1,
				     "invalid mode for closid %d\n", i);
				break;
			}
		}
		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
854
			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
855 856 857 858
			hwb = test_bit(i, &hw_shareable);
			swb = test_bit(i, &sw_shareable);
			excl = test_bit(i, &exclusive);
			psl = test_bit(i, &pseudo_locked);
859 860 861 862 863 864 865 866
			if (hwb && swb)
				seq_putc(seq, 'X');
			else if (hwb && !swb)
				seq_putc(seq, 'H');
			else if (!hwb && swb)
				seq_putc(seq, 'S');
			else if (excl)
				seq_putc(seq, 'E');
867 868
			else if (psl)
				seq_putc(seq, 'P');
869 870 871 872 873 874 875 876 877 878
			else /* Unused bits remain */
				seq_putc(seq, '0');
		}
		sep = true;
	}
	seq_putc(seq, '\n');
	mutex_unlock(&rdtgroup_mutex);
	return 0;
}

879 880 881 882
static int rdt_min_bw_show(struct kernfs_open_file *of,
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;
883

884 885 886 887
	seq_printf(seq, "%u\n", r->membw.min_bw);
	return 0;
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
static int rdt_num_rmids_show(struct kernfs_open_file *of,
			      struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%d\n", r->num_rmid);

	return 0;
}

static int rdt_mon_features_show(struct kernfs_open_file *of,
				 struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;
	struct mon_evt *mevt;

	list_for_each_entry(mevt, &r->evt_list, list)
		seq_printf(seq, "%s\n", mevt->name);

	return 0;
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
static int rdt_bw_gran_show(struct kernfs_open_file *of,
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%u\n", r->membw.bw_gran);
	return 0;
}

static int rdt_delay_linear_show(struct kernfs_open_file *of,
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%u\n", r->membw.delay_linear);
925 926 927
	return 0;
}

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
static int max_threshold_occ_show(struct kernfs_open_file *of,
				  struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%u\n", intel_cqm_threshold * r->mon_scale);

	return 0;
}

static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
				       char *buf, size_t nbytes, loff_t off)
{
	struct rdt_resource *r = of->kn->parent->priv;
	unsigned int bytes;
	int ret;

	ret = kstrtouint(buf, 0, &bytes);
	if (ret)
		return ret;

	if (bytes > (boot_cpu_data.x86_cache_size * 1024))
		return -EINVAL;

	intel_cqm_threshold = bytes / r->mon_scale;

954
	return nbytes;
955 956
}

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
/*
 * rdtgroup_mode_show - Display mode of this resource group
 */
static int rdtgroup_mode_show(struct kernfs_open_file *of,
			      struct seq_file *s, void *v)
{
	struct rdtgroup *rdtgrp;

	rdtgrp = rdtgroup_kn_lock_live(of->kn);
	if (!rdtgrp) {
		rdtgroup_kn_unlock(of->kn);
		return -ENOENT;
	}

	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));

	rdtgroup_kn_unlock(of->kn);
	return 0;
}

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
/**
 * rdt_cdp_peer_get - Retrieve CDP peer if it exists
 * @r: RDT resource to which RDT domain @d belongs
 * @d: Cache instance for which a CDP peer is requested
 * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
 *         Used to return the result.
 * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
 *         Used to return the result.
 *
 * RDT resources are managed independently and by extension the RDT domains
 * (RDT resource instances) are managed independently also. The Code and
 * Data Prioritization (CDP) RDT resources, while managed independently,
 * could refer to the same underlying hardware. For example,
 * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
 *
 * When provided with an RDT resource @r and an instance of that RDT
 * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
 * resource and the exact instance that shares the same hardware.
 *
 * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
 *         If a CDP peer was found, @r_cdp will point to the peer RDT resource
 *         and @d_cdp will point to the peer RDT domain.
 */
1000 1001 1002
static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
			    struct rdt_resource **r_cdp,
			    struct rdt_domain **d_cdp)
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
{
	struct rdt_resource *_r_cdp = NULL;
	struct rdt_domain *_d_cdp = NULL;
	int ret = 0;

	switch (r->rid) {
	case RDT_RESOURCE_L3DATA:
		_r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
		break;
	case RDT_RESOURCE_L3CODE:
		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L3DATA];
		break;
	case RDT_RESOURCE_L2DATA:
		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2CODE];
		break;
	case RDT_RESOURCE_L2CODE:
		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2DATA];
		break;
	default:
		ret = -ENOENT;
		goto out;
	}

	/*
	 * When a new CPU comes online and CDP is enabled then the new
	 * RDT domains (if any) associated with both CDP RDT resources
	 * are added in the same CPU online routine while the
	 * rdtgroup_mutex is held. It should thus not happen for one
	 * RDT domain to exist and be associated with its RDT CDP
	 * resource but there is no RDT domain associated with the
	 * peer RDT CDP resource. Hence the WARN.
	 */
	_d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1036
	if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		_r_cdp = NULL;
		ret = -EINVAL;
	}

out:
	*r_cdp = _r_cdp;
	*d_cdp = _d_cdp;

	return ret;
}

1048
/**
1049
 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
 * @r: Resource to which domain instance @d belongs.
 * @d: The domain instance for which @closid is being tested.
 * @cbm: Capacity bitmask being tested.
 * @closid: Intended closid for @cbm.
 * @exclusive: Only check if overlaps with exclusive resource groups
 *
 * Checks if provided @cbm intended to be used for @closid on domain
 * @d overlaps with any other closids or other hardware usage associated
 * with this domain. If @exclusive is true then only overlaps with
 * resource groups in exclusive mode will be considered. If @exclusive
 * is false then overlaps with any resource group or hardware entities
 * will be considered.
 *
1063 1064 1065
 * @cbm is unsigned long, even if only 32 bits are used, to make the
 * bitmap functions work correctly.
 *
1066 1067
 * Return: false if CBM does not overlap, true if it does.
 */
1068 1069
static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
				    unsigned long cbm, int closid, bool exclusive)
1070 1071
{
	enum rdtgrp_mode mode;
1072
	unsigned long ctrl_b;
1073 1074 1075 1076 1077
	u32 *ctrl;
	int i;

	/* Check for any overlap with regions used by hardware directly */
	if (!exclusive) {
1078 1079
		ctrl_b = r->cache.shareable_bits;
		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1080 1081 1082 1083 1084
			return true;
	}

	/* Check for overlap with other resource groups */
	ctrl = d->ctrl_val;
1085
	for (i = 0; i < closids_supported(); i++, ctrl++) {
1086
		ctrl_b = *ctrl;
1087 1088 1089
		mode = rdtgroup_mode_by_closid(i);
		if (closid_allocated(i) && i != closid &&
		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1090
			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
				if (exclusive) {
					if (mode == RDT_MODE_EXCLUSIVE)
						return true;
					continue;
				}
				return true;
			}
		}
	}

	return false;
}

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
/**
 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
 * @r: Resource to which domain instance @d belongs.
 * @d: The domain instance for which @closid is being tested.
 * @cbm: Capacity bitmask being tested.
 * @closid: Intended closid for @cbm.
 * @exclusive: Only check if overlaps with exclusive resource groups
 *
 * Resources that can be allocated using a CBM can use the CBM to control
 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
 * for overlap. Overlap test is not limited to the specific resource for
 * which the CBM is intended though - when dealing with CDP resources that
 * share the underlying hardware the overlap check should be performed on
 * the CDP resource sharing the hardware also.
 *
 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
 * overlap test.
 *
 * Return: true if CBM overlap detected, false if there is no overlap
 */
bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
			   unsigned long cbm, int closid, bool exclusive)
{
	struct rdt_resource *r_cdp;
	struct rdt_domain *d_cdp;

	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
		return true;

	if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
		return false;

	return  __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/**
 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
 *
 * An exclusive resource group implies that there should be no sharing of
 * its allocated resources. At the time this group is considered to be
 * exclusive this test can determine if its current schemata supports this
 * setting by testing for overlap with all other resource groups.
 *
 * Return: true if resource group can be exclusive, false if there is overlap
 * with allocations of other resource groups and thus this resource group
 * cannot be exclusive.
 */
static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
{
	int closid = rdtgrp->closid;
	struct rdt_resource *r;
1155
	bool has_cache = false;
1156 1157 1158
	struct rdt_domain *d;

	for_each_alloc_enabled_rdt_resource(r) {
1159 1160 1161
		if (r->rid == RDT_RESOURCE_MBA)
			continue;
		has_cache = true;
1162 1163
		list_for_each_entry(d, &r->domains, list) {
			if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1164 1165
						  rdtgrp->closid, false)) {
				rdt_last_cmd_puts("schemata overlaps\n");
1166
				return false;
1167
			}
1168 1169 1170
		}
	}

1171 1172 1173 1174 1175
	if (!has_cache) {
		rdt_last_cmd_puts("cannot be exclusive without CAT/CDP\n");
		return false;
	}

1176 1177 1178 1179 1180 1181 1182
	return true;
}

/**
 * rdtgroup_mode_write - Modify the resource group's mode
 *
 */
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
				   char *buf, size_t nbytes, loff_t off)
{
	struct rdtgroup *rdtgrp;
	enum rdtgrp_mode mode;
	int ret = 0;

	/* Valid input requires a trailing newline */
	if (nbytes == 0 || buf[nbytes - 1] != '\n')
		return -EINVAL;
	buf[nbytes - 1] = '\0';

	rdtgrp = rdtgroup_kn_lock_live(of->kn);
	if (!rdtgrp) {
		rdtgroup_kn_unlock(of->kn);
		return -ENOENT;
	}

	rdt_last_cmd_clear();

	mode = rdtgrp->mode;

1205
	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1206 1207 1208 1209
	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
	    (!strcmp(buf, "pseudo-locksetup") &&
	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1210 1211
		goto out;

1212 1213 1214 1215 1216 1217
	if (mode == RDT_MODE_PSEUDO_LOCKED) {
		rdt_last_cmd_printf("cannot change pseudo-locked group\n");
		ret = -EINVAL;
		goto out;
	}

1218
	if (!strcmp(buf, "shareable")) {
1219 1220 1221 1222 1223
		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
			ret = rdtgroup_locksetup_exit(rdtgrp);
			if (ret)
				goto out;
		}
1224
		rdtgrp->mode = RDT_MODE_SHAREABLE;
1225 1226 1227 1228 1229
	} else if (!strcmp(buf, "exclusive")) {
		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
			ret = -EINVAL;
			goto out;
		}
1230 1231 1232 1233 1234
		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
			ret = rdtgroup_locksetup_exit(rdtgrp);
			if (ret)
				goto out;
		}
1235
		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1236 1237 1238 1239 1240
	} else if (!strcmp(buf, "pseudo-locksetup")) {
		ret = rdtgroup_locksetup_enter(rdtgrp);
		if (ret)
			goto out;
		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	} else {
		rdt_last_cmd_printf("unknown/unsupported mode\n");
		ret = -EINVAL;
	}

out:
	rdtgroup_kn_unlock(of->kn);
	return ret ?: nbytes;
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/**
 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
 * @r: RDT resource to which @d belongs.
 * @d: RDT domain instance.
 * @cbm: bitmask for which the size should be computed.
 *
 * The bitmask provided associated with the RDT domain instance @d will be
 * translated into how many bytes it represents. The size in bytes is
 * computed by first dividing the total cache size by the CBM length to
 * determine how many bytes each bit in the bitmask represents. The result
 * is multiplied with the number of bits set in the bitmask.
1262 1263 1264
 *
 * @cbm is unsigned long, even if only 32 bits are used to make the
 * bitmap functions work correctly.
1265 1266
 */
unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1267
				  struct rdt_domain *d, unsigned long cbm)
1268 1269 1270 1271 1272
{
	struct cpu_cacheinfo *ci;
	unsigned int size = 0;
	int num_b, i;

1273
	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
	for (i = 0; i < ci->num_leaves; i++) {
		if (ci->info_list[i].level == r->cache_level) {
			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
			break;
		}
	}

	return size;
}

/**
 * rdtgroup_size_show - Display size in bytes of allocated regions
 *
 * The "size" file mirrors the layout of the "schemata" file, printing the
 * size in bytes of each region instead of the capacity bitmask.
 *
 */
static int rdtgroup_size_show(struct kernfs_open_file *of,
			      struct seq_file *s, void *v)
{
	struct rdtgroup *rdtgrp;
	struct rdt_resource *r;
	struct rdt_domain *d;
	unsigned int size;
1299
	int ret = 0;
1300 1301
	bool sep;
	u32 ctrl;
1302 1303 1304 1305 1306 1307 1308

	rdtgrp = rdtgroup_kn_lock_live(of->kn);
	if (!rdtgrp) {
		rdtgroup_kn_unlock(of->kn);
		return -ENOENT;
	}

1309
	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
		if (!rdtgrp->plr->d) {
			rdt_last_cmd_clear();
			rdt_last_cmd_puts("Cache domain offline\n");
			ret = -ENODEV;
		} else {
			seq_printf(s, "%*s:", max_name_width,
				   rdtgrp->plr->r->name);
			size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
						    rdtgrp->plr->d,
						    rdtgrp->plr->cbm);
			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
		}
1322 1323 1324
		goto out;
	}

1325
	for_each_alloc_enabled_rdt_resource(r) {
1326
		sep = false;
1327 1328 1329 1330
		seq_printf(s, "%*s:", max_name_width, r->name);
		list_for_each_entry(d, &r->domains, list) {
			if (sep)
				seq_putc(s, ';');
1331 1332 1333
			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
				size = 0;
			} else {
1334 1335 1336 1337 1338 1339 1340
				ctrl = (!is_mba_sc(r) ?
						d->ctrl_val[rdtgrp->closid] :
						d->mbps_val[rdtgrp->closid]);
				if (r->rid == RDT_RESOURCE_MBA)
					size = ctrl;
				else
					size = rdtgroup_cbm_to_size(r, d, ctrl);
1341
			}
1342 1343 1344 1345 1346 1347
			seq_printf(s, "%d=%u", d->id, size);
			sep = true;
		}
		seq_putc(s, '\n');
	}

1348
out:
1349 1350
	rdtgroup_kn_unlock(of->kn);

1351
	return ret;
1352 1353
}

1354
/* rdtgroup information files for one cache resource. */
1355
static struct rftype res_common_files[] = {
1356 1357 1358 1359 1360 1361 1362
	{
		.name		= "last_cmd_status",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_last_cmd_status_show,
		.fflags		= RF_TOP_INFO,
	},
1363 1364 1365 1366 1367
	{
		.name		= "num_closids",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_num_closids_show,
1368
		.fflags		= RF_CTRL_INFO,
1369
	},
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	{
		.name		= "mon_features",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_mon_features_show,
		.fflags		= RF_MON_INFO,
	},
	{
		.name		= "num_rmids",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_num_rmids_show,
		.fflags		= RF_MON_INFO,
	},
1384 1385 1386 1387
	{
		.name		= "cbm_mask",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
1388
		.seq_show	= rdt_default_ctrl_show,
1389
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1390
	},
1391 1392 1393 1394 1395
	{
		.name		= "min_cbm_bits",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_min_cbm_bits_show,
1396
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1397
	},
1398 1399 1400 1401 1402 1403 1404
	{
		.name		= "shareable_bits",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_shareable_bits_show,
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
	},
1405 1406 1407 1408 1409 1410 1411
	{
		.name		= "bit_usage",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_bit_usage_show,
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
	},
1412 1413 1414 1415 1416
	{
		.name		= "min_bandwidth",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_min_bw_show,
1417
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1418 1419 1420 1421 1422 1423
	},
	{
		.name		= "bandwidth_gran",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_bw_gran_show,
1424
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1425 1426 1427 1428 1429 1430
	},
	{
		.name		= "delay_linear",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_delay_linear_show,
1431 1432
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
	},
1433 1434 1435 1436 1437 1438 1439 1440
	{
		.name		= "max_threshold_occupancy",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= max_threshold_occ_write,
		.seq_show	= max_threshold_occ_show,
		.fflags		= RF_MON_INFO | RFTYPE_RES_CACHE,
	},
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	{
		.name		= "cpus",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_cpus_write,
		.seq_show	= rdtgroup_cpus_show,
		.fflags		= RFTYPE_BASE,
	},
	{
		.name		= "cpus_list",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_cpus_write,
		.seq_show	= rdtgroup_cpus_show,
		.flags		= RFTYPE_FLAGS_CPUS_LIST,
		.fflags		= RFTYPE_BASE,
	},
	{
		.name		= "tasks",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_tasks_write,
		.seq_show	= rdtgroup_tasks_show,
		.fflags		= RFTYPE_BASE,
	},
	{
		.name		= "schemata",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_schemata_write,
		.seq_show	= rdtgroup_schemata_show,
		.fflags		= RF_CTRL_BASE,
1473
	},
1474 1475 1476 1477 1478 1479 1480 1481
	{
		.name		= "mode",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_mode_write,
		.seq_show	= rdtgroup_mode_show,
		.fflags		= RF_CTRL_BASE,
	},
1482 1483 1484 1485 1486 1487 1488 1489
	{
		.name		= "size",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdtgroup_size_show,
		.fflags		= RF_CTRL_BASE,
	},

1490 1491
};

1492
static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1493
{
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	struct rftype *rfts, *rft;
	int ret, len;

	rfts = res_common_files;
	len = ARRAY_SIZE(res_common_files);

	lockdep_assert_held(&rdtgroup_mutex);

	for (rft = rfts; rft < rfts + len; rft++) {
		if ((fflags & rft->fflags) == rft->fflags) {
			ret = rdtgroup_add_file(kn, rft);
			if (ret)
				goto error;
		}
	}

	return 0;
error:
	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
	while (--rft >= rfts) {
		if ((fflags & rft->fflags) == rft->fflags)
			kernfs_remove_by_name(kn, rft->name);
	}
	return ret;
1518 1519
}

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
/**
 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
 * @r: The resource group with which the file is associated.
 * @name: Name of the file
 *
 * The permissions of named resctrl file, directory, or link are modified
 * to not allow read, write, or execute by any user.
 *
 * WARNING: This function is intended to communicate to the user that the
 * resctrl file has been locked down - that it is not relevant to the
 * particular state the system finds itself in. It should not be relied
 * on to protect from user access because after the file's permissions
 * are restricted the user can still change the permissions using chmod
 * from the command line.
 *
 * Return: 0 on success, <0 on failure.
 */
int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
{
	struct iattr iattr = {.ia_valid = ATTR_MODE,};
	struct kernfs_node *kn;
	int ret = 0;

	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
	if (!kn)
		return -ENOENT;

	switch (kernfs_type(kn)) {
	case KERNFS_DIR:
		iattr.ia_mode = S_IFDIR;
		break;
	case KERNFS_FILE:
		iattr.ia_mode = S_IFREG;
		break;
	case KERNFS_LINK:
		iattr.ia_mode = S_IFLNK;
		break;
	}

	ret = kernfs_setattr(kn, &iattr);
	kernfs_put(kn);
	return ret;
}

/**
 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
 * @r: The resource group with which the file is associated.
 * @name: Name of the file
1568
 * @mask: Mask of permissions that should be restored
1569 1570 1571 1572 1573 1574
 *
 * Restore the permissions of the named file. If @name is a directory the
 * permissions of its parent will be used.
 *
 * Return: 0 on success, <0 on failure.
 */
1575 1576
int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
			     umode_t mask)
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
{
	struct iattr iattr = {.ia_valid = ATTR_MODE,};
	struct kernfs_node *kn, *parent;
	struct rftype *rfts, *rft;
	int ret, len;

	rfts = res_common_files;
	len = ARRAY_SIZE(res_common_files);

	for (rft = rfts; rft < rfts + len; rft++) {
		if (!strcmp(rft->name, name))
1588
			iattr.ia_mode = rft->mode & mask;
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	}

	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
	if (!kn)
		return -ENOENT;

	switch (kernfs_type(kn)) {
	case KERNFS_DIR:
		parent = kernfs_get_parent(kn);
		if (parent) {
			iattr.ia_mode |= parent->mode;
			kernfs_put(parent);
		}
		iattr.ia_mode |= S_IFDIR;
		break;
	case KERNFS_FILE:
		iattr.ia_mode |= S_IFREG;
		break;
	case KERNFS_LINK:
		iattr.ia_mode |= S_IFLNK;
		break;
	}

	ret = kernfs_setattr(kn, &iattr);
	kernfs_put(kn);
	return ret;
}

1617 1618
static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
				      unsigned long fflags)
1619
{
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	struct kernfs_node *kn_subdir;
	int ret;

	kn_subdir = kernfs_create_dir(kn_info, name,
				      kn_info->mode, r);
	if (IS_ERR(kn_subdir))
		return PTR_ERR(kn_subdir);

	kernfs_get(kn_subdir);
	ret = rdtgroup_kn_set_ugid(kn_subdir);
	if (ret)
		return ret;

	ret = rdtgroup_add_files(kn_subdir, fflags);
	if (!ret)
		kernfs_activate(kn_subdir);

	return ret;
1638 1639
}

1640 1641 1642
static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
{
	struct rdt_resource *r;
1643
	unsigned long fflags;
1644
	char name[32];
1645
	int ret;
1646 1647 1648 1649 1650 1651 1652

	/* create the directory */
	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
	if (IS_ERR(kn_info))
		return PTR_ERR(kn_info);
	kernfs_get(kn_info);

1653 1654 1655 1656
	ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
	if (ret)
		goto out_destroy;

1657
	for_each_alloc_enabled_rdt_resource(r) {
1658 1659
		fflags =  r->fflags | RF_CTRL_INFO;
		ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1660 1661 1662
		if (ret)
			goto out_destroy;
	}
1663 1664 1665 1666 1667 1668 1669 1670 1671

	for_each_mon_enabled_rdt_resource(r) {
		fflags =  r->fflags | RF_MON_INFO;
		sprintf(name, "%s_MON", r->name);
		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
		if (ret)
			goto out_destroy;
	}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	/*
	 * This extra ref will be put in kernfs_remove() and guarantees
	 * that @rdtgrp->kn is always accessible.
	 */
	kernfs_get(kn_info);

	ret = rdtgroup_kn_set_ugid(kn_info);
	if (ret)
		goto out_destroy;

	kernfs_activate(kn_info);

	return 0;

out_destroy:
	kernfs_remove(kn_info);
	return ret;
}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
static int
mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
		    char *name, struct kernfs_node **dest_kn)
{
	struct kernfs_node *kn;
	int ret;

	/* create the directory */
	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
	if (IS_ERR(kn))
		return PTR_ERR(kn);

	if (dest_kn)
		*dest_kn = kn;

	/*
	 * This extra ref will be put in kernfs_remove() and guarantees
	 * that @rdtgrp->kn is always accessible.
	 */
	kernfs_get(kn);

	ret = rdtgroup_kn_set_ugid(kn);
	if (ret)
		goto out_destroy;

	kernfs_activate(kn);

	return 0;

out_destroy:
	kernfs_remove(kn);
	return ret;
}
1724

1725 1726 1727 1728 1729 1730 1731
static void l3_qos_cfg_update(void *arg)
{
	bool *enable = arg;

	wrmsrl(IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
}

1732
static void l2_qos_cfg_update(void *arg)
1733
{
1734 1735 1736 1737 1738
	bool *enable = arg;

	wrmsrl(IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
}

1739 1740 1741 1742 1743
static inline bool is_mba_linear(void)
{
	return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
}

1744 1745 1746 1747
static int set_cache_qos_cfg(int level, bool enable)
{
	void (*update)(void *arg);
	struct rdt_resource *r_l;
1748 1749 1750 1751 1752 1753 1754
	cpumask_var_t cpu_mask;
	struct rdt_domain *d;
	int cpu;

	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
		return -ENOMEM;

1755 1756 1757 1758 1759 1760 1761 1762 1763
	if (level == RDT_RESOURCE_L3)
		update = l3_qos_cfg_update;
	else if (level == RDT_RESOURCE_L2)
		update = l2_qos_cfg_update;
	else
		return -EINVAL;

	r_l = &rdt_resources_all[level];
	list_for_each_entry(d, &r_l->domains, list) {
1764 1765 1766 1767 1768 1769
		/* Pick one CPU from each domain instance to update MSR */
		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
	}
	cpu = get_cpu();
	/* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
	if (cpumask_test_cpu(cpu, cpu_mask))
1770
		update(&enable);
1771
	/* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1772
	smp_call_function_many(cpu_mask, update, &enable, 1);
1773 1774 1775 1776 1777 1778 1779
	put_cpu();

	free_cpumask_var(cpu_mask);

	return 0;
}

1780 1781 1782 1783 1784 1785 1786 1787 1788
/*
 * Enable or disable the MBA software controller
 * which helps user specify bandwidth in MBps.
 * MBA software controller is supported only if
 * MBM is supported and MBA is in linear scale.
 */
static int set_mba_sc(bool mba_sc)
{
	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1789
	struct rdt_domain *d;
1790 1791 1792 1793 1794 1795

	if (!is_mbm_enabled() || !is_mba_linear() ||
	    mba_sc == is_mba_sc(r))
		return -EINVAL;

	r->membw.mba_sc = mba_sc;
1796 1797
	list_for_each_entry(d, &r->domains, list)
		setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1798 1799 1800 1801

	return 0;
}

1802
static int cdp_enable(int level, int data_type, int code_type)
1803
{
1804 1805 1806
	struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
	struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
	struct rdt_resource *r_l = &rdt_resources_all[level];
1807 1808
	int ret;

1809 1810
	if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
	    !r_lcode->alloc_capable)
1811 1812
		return -EINVAL;

1813
	ret = set_cache_qos_cfg(level, true);
1814
	if (!ret) {
1815 1816 1817
		r_l->alloc_enabled = false;
		r_ldata->alloc_enabled = true;
		r_lcode->alloc_enabled = true;
1818 1819 1820 1821
	}
	return ret;
}

1822 1823 1824 1825 1826 1827 1828
static int cdpl3_enable(void)
{
	return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
			  RDT_RESOURCE_L3CODE);
}

static int cdpl2_enable(void)
1829
{
1830 1831 1832 1833 1834 1835 1836
	return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
			  RDT_RESOURCE_L2CODE);
}

static void cdp_disable(int level, int data_type, int code_type)
{
	struct rdt_resource *r = &rdt_resources_all[level];
1837

1838
	r->alloc_enabled = r->alloc_capable;
1839

1840 1841 1842 1843
	if (rdt_resources_all[data_type].alloc_enabled) {
		rdt_resources_all[data_type].alloc_enabled = false;
		rdt_resources_all[code_type].alloc_enabled = false;
		set_cache_qos_cfg(level, false);
1844 1845 1846
	}
}

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
static void cdpl3_disable(void)
{
	cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
}

static void cdpl2_disable(void)
{
	cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
}

static void cdp_disable_all(void)
{
	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
		cdpl3_disable();
	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
		cdpl2_disable();
}

1865 1866 1867 1868 1869 1870
static int parse_rdtgroupfs_options(char *data)
{
	char *token, *o = data;
	int ret = 0;

	while ((token = strsep(&o, ",")) != NULL) {
1871 1872 1873 1874
		if (!*token) {
			ret = -EINVAL;
			goto out;
		}
1875

1876 1877 1878 1879 1880 1881 1882 1883
		if (!strcmp(token, "cdp")) {
			ret = cdpl3_enable();
			if (ret)
				goto out;
		} else if (!strcmp(token, "cdpl2")) {
			ret = cdpl2_enable();
			if (ret)
				goto out;
1884 1885 1886 1887
		} else if (!strcmp(token, "mba_MBps")) {
			ret = set_mba_sc(true);
			if (ret)
				goto out;
1888 1889 1890 1891
		} else {
			ret = -EINVAL;
			goto out;
		}
1892 1893
	}

1894 1895 1896 1897 1898
	return 0;

out:
	pr_err("Invalid mount option \"%s\"\n", token);

1899 1900 1901
	return ret;
}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
/*
 * We don't allow rdtgroup directories to be created anywhere
 * except the root directory. Thus when looking for the rdtgroup
 * structure for a kernfs node we are either looking at a directory,
 * in which case the rdtgroup structure is pointed at by the "priv"
 * field, otherwise we have a file, and need only look to the parent
 * to find the rdtgroup.
 */
static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
{
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	if (kernfs_type(kn) == KERNFS_DIR) {
		/*
		 * All the resource directories use "kn->priv"
		 * to point to the "struct rdtgroup" for the
		 * resource. "info" and its subdirectories don't
		 * have rdtgroup structures, so return NULL here.
		 */
		if (kn == kn_info || kn->parent == kn_info)
			return NULL;
		else
			return kn->priv;
	} else {
1924
		return kn->parent->priv;
1925
	}
1926 1927 1928 1929 1930 1931
}

struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
{
	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);

1932 1933 1934
	if (!rdtgrp)
		return NULL;

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	atomic_inc(&rdtgrp->waitcount);
	kernfs_break_active_protection(kn);

	mutex_lock(&rdtgroup_mutex);

	/* Was this group deleted while we waited? */
	if (rdtgrp->flags & RDT_DELETED)
		return NULL;

	return rdtgrp;
}

void rdtgroup_kn_unlock(struct kernfs_node *kn)
{
	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);

1951 1952 1953
	if (!rdtgrp)
		return;

1954 1955 1956 1957
	mutex_unlock(&rdtgroup_mutex);

	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
	    (rdtgrp->flags & RDT_DELETED)) {
1958 1959 1960
		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
			rdtgroup_pseudo_lock_remove(rdtgrp);
1961
		kernfs_unbreak_active_protection(kn);
1962
		kernfs_put(rdtgrp->kn);
1963 1964 1965 1966 1967 1968
		kfree(rdtgrp);
	} else {
		kernfs_unbreak_active_protection(kn);
	}
}

1969 1970 1971 1972
static int mkdir_mondata_all(struct kernfs_node *parent_kn,
			     struct rdtgroup *prgrp,
			     struct kernfs_node **mon_data_kn);

1973 1974 1975 1976
static struct dentry *rdt_mount(struct file_system_type *fs_type,
				int flags, const char *unused_dev_name,
				void *data)
{
1977 1978
	struct rdt_domain *dom;
	struct rdt_resource *r;
1979 1980 1981
	struct dentry *dentry;
	int ret;

1982
	cpus_read_lock();
1983 1984 1985 1986
	mutex_lock(&rdtgroup_mutex);
	/*
	 * resctrl file system can only be mounted once.
	 */
1987
	if (static_branch_unlikely(&rdt_enable_key)) {
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
		dentry = ERR_PTR(-EBUSY);
		goto out;
	}

	ret = parse_rdtgroupfs_options(data);
	if (ret) {
		dentry = ERR_PTR(ret);
		goto out_cdp;
	}

1998 1999
	closid_init();

2000
	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2001 2002
	if (ret) {
		dentry = ERR_PTR(ret);
2003
		goto out_cdp;
2004
	}
2005

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	if (rdt_mon_capable) {
		ret = mongroup_create_dir(rdtgroup_default.kn,
					  NULL, "mon_groups",
					  &kn_mongrp);
		if (ret) {
			dentry = ERR_PTR(ret);
			goto out_info;
		}
		kernfs_get(kn_mongrp);

		ret = mkdir_mondata_all(rdtgroup_default.kn,
					&rdtgroup_default, &kn_mondata);
		if (ret) {
			dentry = ERR_PTR(ret);
			goto out_mongrp;
		}
		kernfs_get(kn_mondata);
		rdtgroup_default.mon.mon_data_kn = kn_mondata;
	}

2026 2027 2028 2029 2030 2031
	ret = rdt_pseudo_lock_init();
	if (ret) {
		dentry = ERR_PTR(ret);
		goto out_mondata;
	}

2032 2033 2034
	dentry = kernfs_mount(fs_type, flags, rdt_root,
			      RDTGROUP_SUPER_MAGIC, NULL);
	if (IS_ERR(dentry))
2035
		goto out_psl;
2036 2037

	if (rdt_alloc_capable)
2038
		static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2039
	if (rdt_mon_capable)
2040
		static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2041

2042
	if (rdt_alloc_capable || rdt_mon_capable)
2043
		static_branch_enable_cpuslocked(&rdt_enable_key);
2044 2045 2046 2047

	if (is_mbm_enabled()) {
		r = &rdt_resources_all[RDT_RESOURCE_L3];
		list_for_each_entry(dom, &r->domains, list)
2048
			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2049 2050
	}

2051 2052
	goto out;

2053 2054
out_psl:
	rdt_pseudo_lock_release();
2055 2056 2057 2058 2059 2060 2061
out_mondata:
	if (rdt_mon_capable)
		kernfs_remove(kn_mondata);
out_mongrp:
	if (rdt_mon_capable)
		kernfs_remove(kn_mongrp);
out_info:
2062
	kernfs_remove(kn_info);
2063
out_cdp:
2064
	cdp_disable_all();
2065
out:
2066
	rdt_last_cmd_clear();
2067
	mutex_unlock(&rdtgroup_mutex);
2068
	cpus_read_unlock();
2069 2070 2071 2072

	return dentry;
}

2073
static int reset_all_ctrls(struct rdt_resource *r)
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
{
	struct msr_param msr_param;
	cpumask_var_t cpu_mask;
	struct rdt_domain *d;
	int i, cpu;

	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
		return -ENOMEM;

	msr_param.res = r;
	msr_param.low = 0;
	msr_param.high = r->num_closid;

	/*
	 * Disable resource control for this resource by setting all
	 * CBMs in all domains to the maximum mask value. Pick one CPU
	 * from each domain to update the MSRs below.
	 */
	list_for_each_entry(d, &r->domains, list) {
		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);

		for (i = 0; i < r->num_closid; i++)
2096
			d->ctrl_val[i] = r->default_ctrl;
2097 2098 2099 2100
	}
	cpu = get_cpu();
	/* Update CBM on this cpu if it's in cpu_mask. */
	if (cpumask_test_cpu(cpu, cpu_mask))
2101
		rdt_ctrl_update(&msr_param);
2102
	/* Update CBM on all other cpus in cpu_mask. */
2103
	smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2104 2105 2106 2107 2108 2109 2110
	put_cpu();

	free_cpumask_var(cpu_mask);

	return 0;
}

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
{
	return (rdt_alloc_capable &&
		(r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
}

static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
{
	return (rdt_mon_capable &&
		(r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
}

2123
/*
2124 2125 2126 2127 2128 2129
 * Move tasks from one to the other group. If @from is NULL, then all tasks
 * in the systems are moved unconditionally (used for teardown).
 *
 * If @mask is not NULL the cpus on which moved tasks are running are set
 * in that mask so the update smp function call is restricted to affected
 * cpus.
2130
 */
2131 2132
static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
				 struct cpumask *mask)
2133
{
F
Fenghua Yu 已提交
2134 2135 2136
	struct task_struct *p, *t;

	read_lock(&tasklist_lock);
2137
	for_each_process_thread(p, t) {
2138 2139
		if (!from || is_closid_match(t, from) ||
		    is_rmid_match(t, from)) {
2140
			t->closid = to->closid;
2141 2142
			t->rmid = to->mon.rmid;

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
#ifdef CONFIG_SMP
			/*
			 * This is safe on x86 w/o barriers as the ordering
			 * of writing to task_cpu() and t->on_cpu is
			 * reverse to the reading here. The detection is
			 * inaccurate as tasks might move or schedule
			 * before the smp function call takes place. In
			 * such a case the function call is pointless, but
			 * there is no other side effect.
			 */
			if (mask && t->on_cpu)
				cpumask_set_cpu(task_cpu(t), mask);
#endif
		}
	}
F
Fenghua Yu 已提交
2158
	read_unlock(&tasklist_lock);
2159 2160
}

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
{
	struct rdtgroup *sentry, *stmp;
	struct list_head *head;

	head = &rdtgrp->mon.crdtgrp_list;
	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
		free_rmid(sentry->mon.rmid);
		list_del(&sentry->mon.crdtgrp_list);
		kfree(sentry);
	}
}

2174 2175 2176 2177 2178 2179 2180 2181 2182
/*
 * Forcibly remove all of subdirectories under root.
 */
static void rmdir_all_sub(void)
{
	struct rdtgroup *rdtgrp, *tmp;

	/* Move all tasks to the default resource group */
	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2183 2184

	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2185 2186 2187
		/* Free any child rmids */
		free_all_child_rdtgrp(rdtgrp);

2188 2189 2190
		/* Remove each rdtgroup other than root */
		if (rdtgrp == &rdtgroup_default)
			continue;
2191

2192 2193 2194 2195
		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
			rdtgroup_pseudo_lock_remove(rdtgrp);

2196 2197 2198 2199 2200 2201 2202 2203
		/*
		 * Give any CPUs back to the default group. We cannot copy
		 * cpu_online_mask because a CPU might have executed the
		 * offline callback already, but is still marked online.
		 */
		cpumask_or(&rdtgroup_default.cpu_mask,
			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);

2204 2205
		free_rmid(rdtgrp->mon.rmid);

2206 2207 2208 2209
		kernfs_remove(rdtgrp->kn);
		list_del(&rdtgrp->rdtgroup_list);
		kfree(rdtgrp);
	}
2210
	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2211
	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2212

2213
	kernfs_remove(kn_info);
2214 2215
	kernfs_remove(kn_mongrp);
	kernfs_remove(kn_mondata);
2216 2217
}

2218 2219 2220 2221
static void rdt_kill_sb(struct super_block *sb)
{
	struct rdt_resource *r;

2222
	cpus_read_lock();
2223 2224
	mutex_lock(&rdtgroup_mutex);

2225 2226
	set_mba_sc(false);

2227
	/*Put everything back to default values. */
2228
	for_each_alloc_enabled_rdt_resource(r)
2229
		reset_all_ctrls(r);
2230
	cdp_disable_all();
2231
	rmdir_all_sub();
2232
	rdt_pseudo_lock_release();
2233
	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2234 2235 2236
	static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
	static_branch_disable_cpuslocked(&rdt_mon_enable_key);
	static_branch_disable_cpuslocked(&rdt_enable_key);
2237 2238
	kernfs_kill_sb(sb);
	mutex_unlock(&rdtgroup_mutex);
2239
	cpus_read_unlock();
2240 2241 2242 2243 2244 2245 2246 2247
}

static struct file_system_type rdt_fs_type = {
	.name    = "resctrl",
	.mount   = rdt_mount,
	.kill_sb = rdt_kill_sb,
};

V
Vikas Shivappa 已提交
2248 2249 2250 2251 2252 2253
static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
		       void *priv)
{
	struct kernfs_node *kn;
	int ret = 0;

2254 2255
	kn = __kernfs_create_file(parent_kn, name, 0444,
				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
V
Vikas Shivappa 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
				  &kf_mondata_ops, priv, NULL, NULL);
	if (IS_ERR(kn))
		return PTR_ERR(kn);

	ret = rdtgroup_kn_set_ugid(kn);
	if (ret) {
		kernfs_remove(kn);
		return ret;
	}

	return ret;
}

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
/*
 * Remove all subdirectories of mon_data of ctrl_mon groups
 * and monitor groups with given domain id.
 */
void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
{
	struct rdtgroup *prgrp, *crgrp;
	char name[32];

	if (!r->mon_enabled)
		return;

	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
		sprintf(name, "mon_%s_%02d", r->name, dom_id);
		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);

		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
	}
}

V
Vikas Shivappa 已提交
2290 2291 2292 2293 2294 2295 2296
static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
				struct rdt_domain *d,
				struct rdt_resource *r, struct rdtgroup *prgrp)
{
	union mon_data_bits priv;
	struct kernfs_node *kn;
	struct mon_evt *mevt;
2297
	struct rmid_read rr;
V
Vikas Shivappa 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	char name[32];
	int ret;

	sprintf(name, "mon_%s_%02d", r->name, d->id);
	/* create the directory */
	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
	if (IS_ERR(kn))
		return PTR_ERR(kn);

	/*
	 * This extra ref will be put in kernfs_remove() and guarantees
	 * that kn is always accessible.
	 */
	kernfs_get(kn);
	ret = rdtgroup_kn_set_ugid(kn);
	if (ret)
		goto out_destroy;

	if (WARN_ON(list_empty(&r->evt_list))) {
		ret = -EPERM;
		goto out_destroy;
	}

	priv.u.rid = r->rid;
	priv.u.domid = d->id;
	list_for_each_entry(mevt, &r->evt_list, list) {
		priv.u.evtid = mevt->evtid;
		ret = mon_addfile(kn, mevt->name, priv.priv);
		if (ret)
			goto out_destroy;
2328 2329 2330

		if (is_mbm_event(mevt->evtid))
			mon_event_read(&rr, d, prgrp, mevt->evtid, true);
V
Vikas Shivappa 已提交
2331 2332 2333 2334 2335 2336 2337 2338 2339
	}
	kernfs_activate(kn);
	return 0;

out_destroy:
	kernfs_remove(kn);
	return ret;
}

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
/*
 * Add all subdirectories of mon_data for "ctrl_mon" groups
 * and "monitor" groups with given domain id.
 */
void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
				    struct rdt_domain *d)
{
	struct kernfs_node *parent_kn;
	struct rdtgroup *prgrp, *crgrp;
	struct list_head *head;

	if (!r->mon_enabled)
		return;

	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
		parent_kn = prgrp->mon.mon_data_kn;
		mkdir_mondata_subdir(parent_kn, d, r, prgrp);

		head = &prgrp->mon.crdtgrp_list;
		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
			parent_kn = crgrp->mon.mon_data_kn;
			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
		}
	}
}

V
Vikas Shivappa 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
				       struct rdt_resource *r,
				       struct rdtgroup *prgrp)
{
	struct rdt_domain *dom;
	int ret;

	list_for_each_entry(dom, &r->domains, list) {
		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
		if (ret)
			return ret;
	}

	return 0;
}

/*
 * This creates a directory mon_data which contains the monitored data.
 *
 * mon_data has one directory for each domain whic are named
 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
 * with L3 domain looks as below:
 * ./mon_data:
 * mon_L3_00
 * mon_L3_01
 * mon_L3_02
 * ...
 *
 * Each domain directory has one file per event:
 * ./mon_L3_00/:
 * llc_occupancy
 *
 */
static int mkdir_mondata_all(struct kernfs_node *parent_kn,
			     struct rdtgroup *prgrp,
			     struct kernfs_node **dest_kn)
{
	struct rdt_resource *r;
	struct kernfs_node *kn;
	int ret;

	/*
	 * Create the mon_data directory first.
	 */
	ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn);
	if (ret)
		return ret;

	if (dest_kn)
		*dest_kn = kn;

	/*
	 * Create the subdirectories for each domain. Note that all events
	 * in a domain like L3 are grouped into a resource whose domain is L3
	 */
	for_each_mon_enabled_rdt_resource(r) {
		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
		if (ret)
			goto out_destroy;
	}

	return 0;

out_destroy:
	kernfs_remove(kn);
	return ret;
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
/**
 * cbm_ensure_valid - Enforce validity on provided CBM
 * @_val:	Candidate CBM
 * @r:		RDT resource to which the CBM belongs
 *
 * The provided CBM represents all cache portions available for use. This
 * may be represented by a bitmap that does not consist of contiguous ones
 * and thus be an invalid CBM.
 * Here the provided CBM is forced to be a valid CBM by only considering
 * the first set of contiguous bits as valid and clearing all bits.
 * The intention here is to provide a valid default CBM with which a new
 * resource group is initialized. The user can follow this with a
 * modification to the CBM if the default does not satisfy the
 * requirements.
 */
static void cbm_ensure_valid(u32 *_val, struct rdt_resource *r)
{
2451
	unsigned long val = *_val;
2452 2453 2454
	unsigned int cbm_len = r->cache.cbm_len;
	unsigned long first_bit, zero_bit;

2455
	if (val == 0)
2456 2457
		return;

2458 2459
	first_bit = find_first_bit(&val, cbm_len);
	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2460 2461

	/* Clear any remaining bits to ensure contiguous region */
2462 2463
	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
	*_val = (u32)val;
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
}

/**
 * rdtgroup_init_alloc - Initialize the new RDT group's allocations
 *
 * A new RDT group is being created on an allocation capable (CAT)
 * supporting system. Set this group up to start off with all usable
 * allocations. That is, all shareable and unused bits.
 *
 * All-zero CBM is invalid. If there are no more shareable bits available
 * on any domain then the entire allocation will fail.
 */
static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
{
	u32 used_b = 0, unused_b = 0;
	u32 closid = rdtgrp->closid;
	struct rdt_resource *r;
2481
	unsigned long tmp_cbm;
2482 2483 2484 2485 2486 2487
	enum rdtgrp_mode mode;
	struct rdt_domain *d;
	int i, ret;
	u32 *ctrl;

	for_each_alloc_enabled_rdt_resource(r) {
2488 2489 2490 2491 2492 2493
		/*
		 * Only initialize default allocations for CBM cache
		 * resources
		 */
		if (r->rid == RDT_RESOURCE_MBA)
			continue;
2494 2495 2496 2497 2498
		list_for_each_entry(d, &r->domains, list) {
			d->have_new_ctrl = false;
			d->new_ctrl = r->cache.shareable_bits;
			used_b = r->cache.shareable_bits;
			ctrl = d->ctrl_val;
2499
			for (i = 0; i < closids_supported(); i++, ctrl++) {
2500 2501
				if (closid_allocated(i) && i != closid) {
					mode = rdtgroup_mode_by_closid(i);
2502
					if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2503
						continue;
2504 2505 2506 2507 2508
					used_b |= *ctrl;
					if (mode == RDT_MODE_SHAREABLE)
						d->new_ctrl |= *ctrl;
				}
			}
2509 2510
			if (d->plr && d->plr->cbm > 0)
				used_b |= d->plr->cbm;
2511 2512 2513 2514 2515 2516 2517 2518
			unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
			unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
			d->new_ctrl |= unused_b;
			/*
			 * Force the initial CBM to be valid, user can
			 * modify the CBM based on system availability.
			 */
			cbm_ensure_valid(&d->new_ctrl, r);
2519 2520 2521 2522 2523 2524 2525 2526
			/*
			 * Assign the u32 CBM to an unsigned long to ensure
			 * that bitmap_weight() does not access out-of-bound
			 * memory.
			 */
			tmp_cbm = d->new_ctrl;
			if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) <
			    r->cache.min_cbm_bits) {
2527 2528 2529 2530 2531 2532 2533 2534 2535
				rdt_last_cmd_printf("no space on %s:%d\n",
						    r->name, d->id);
				return -ENOSPC;
			}
			d->have_new_ctrl = true;
		}
	}

	for_each_alloc_enabled_rdt_resource(r) {
2536 2537 2538 2539 2540 2541
		/*
		 * Only initialize default allocations for CBM cache
		 * resources
		 */
		if (r->rid == RDT_RESOURCE_MBA)
			continue;
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
		ret = update_domains(r, rdtgrp->closid);
		if (ret < 0) {
			rdt_last_cmd_puts("failed to initialize allocations\n");
			return ret;
		}
		rdtgrp->mode = RDT_MODE_SHAREABLE;
	}

	return 0;
}

2553 2554 2555
static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
			     struct kernfs_node *prgrp_kn,
			     const char *name, umode_t mode,
2556
			     enum rdt_group_type rtype, struct rdtgroup **r)
2557
{
2558
	struct rdtgroup *prdtgrp, *rdtgrp;
2559
	struct kernfs_node *kn;
2560 2561
	uint files = 0;
	int ret;
2562

2563
	prdtgrp = rdtgroup_kn_lock_live(prgrp_kn);
2564
	rdt_last_cmd_clear();
2565
	if (!prdtgrp) {
2566
		ret = -ENODEV;
2567
		rdt_last_cmd_puts("directory was removed\n");
2568 2569 2570
		goto out_unlock;
	}

2571 2572 2573 2574 2575 2576 2577 2578
	if (rtype == RDTMON_GROUP &&
	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
		ret = -EINVAL;
		rdt_last_cmd_puts("pseudo-locking in progress\n");
		goto out_unlock;
	}

2579 2580 2581 2582
	/* allocate the rdtgroup. */
	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
	if (!rdtgrp) {
		ret = -ENOSPC;
2583
		rdt_last_cmd_puts("kernel out of memory\n");
2584
		goto out_unlock;
2585
	}
2586
	*r = rdtgrp;
2587 2588 2589
	rdtgrp->mon.parent = prdtgrp;
	rdtgrp->type = rtype;
	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2590 2591

	/* kernfs creates the directory for rdtgrp */
2592
	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2593 2594
	if (IS_ERR(kn)) {
		ret = PTR_ERR(kn);
2595
		rdt_last_cmd_puts("kernfs create error\n");
2596
		goto out_free_rgrp;
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
	}
	rdtgrp->kn = kn;

	/*
	 * kernfs_remove() will drop the reference count on "kn" which
	 * will free it. But we still need it to stick around for the
	 * rdtgroup_kn_unlock(kn} call below. Take one extra reference
	 * here, which will be dropped inside rdtgroup_kn_unlock().
	 */
	kernfs_get(kn);

	ret = rdtgroup_kn_set_ugid(kn);
2609 2610
	if (ret) {
		rdt_last_cmd_puts("kernfs perm error\n");
2611
		goto out_destroy;
2612
	}
2613

2614
	files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2615
	ret = rdtgroup_add_files(kn, files);
2616 2617
	if (ret) {
		rdt_last_cmd_puts("kernfs fill error\n");
T
Tony Luck 已提交
2618
		goto out_destroy;
2619
	}
T
Tony Luck 已提交
2620

2621 2622
	if (rdt_mon_capable) {
		ret = alloc_rmid();
2623 2624
		if (ret < 0) {
			rdt_last_cmd_puts("out of RMIDs\n");
2625
			goto out_destroy;
2626
		}
2627
		rdtgrp->mon.rmid = ret;
V
Vikas Shivappa 已提交
2628 2629

		ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2630 2631
		if (ret) {
			rdt_last_cmd_puts("kernfs subdir error\n");
V
Vikas Shivappa 已提交
2632
			goto out_idfree;
2633
		}
2634
	}
2635 2636
	kernfs_activate(kn);

2637 2638 2639 2640
	/*
	 * The caller unlocks the prgrp_kn upon success.
	 */
	return 0;
2641

V
Vikas Shivappa 已提交
2642 2643
out_idfree:
	free_rmid(rdtgrp->mon.rmid);
2644 2645
out_destroy:
	kernfs_remove(rdtgrp->kn);
2646
out_free_rgrp:
2647 2648
	kfree(rdtgrp);
out_unlock:
2649 2650 2651 2652 2653 2654 2655
	rdtgroup_kn_unlock(prgrp_kn);
	return ret;
}

static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
{
	kernfs_remove(rgrp->kn);
2656
	free_rmid(rgrp->mon.rmid);
2657 2658 2659
	kfree(rgrp);
}

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
/*
 * Create a monitor group under "mon_groups" directory of a control
 * and monitor group(ctrl_mon). This is a resource group
 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
 */
static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
			      struct kernfs_node *prgrp_kn,
			      const char *name,
			      umode_t mode)
{
	struct rdtgroup *rdtgrp, *prgrp;
	int ret;

	ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
				&rdtgrp);
	if (ret)
		return ret;

	prgrp = rdtgrp->mon.parent;
	rdtgrp->closid = prgrp->closid;

	/*
	 * Add the rdtgrp to the list of rdtgrps the parent
	 * ctrl_mon group has to track.
	 */
	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);

	rdtgroup_kn_unlock(prgrp_kn);
	return ret;
}

2691 2692
/*
 * These are rdtgroups created under the root directory. Can be used
2693
 * to allocate and monitor resources.
2694
 */
2695 2696 2697
static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
				   struct kernfs_node *prgrp_kn,
				   const char *name, umode_t mode)
2698 2699 2700 2701 2702 2703
{
	struct rdtgroup *rdtgrp;
	struct kernfs_node *kn;
	u32 closid;
	int ret;

2704 2705
	ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
				&rdtgrp);
2706 2707 2708 2709 2710
	if (ret)
		return ret;

	kn = rdtgrp->kn;
	ret = closid_alloc();
2711 2712
	if (ret < 0) {
		rdt_last_cmd_puts("out of CLOSIDs\n");
2713
		goto out_common_fail;
2714
	}
2715
	closid = ret;
2716
	ret = 0;
2717 2718

	rdtgrp->closid = closid;
2719 2720 2721 2722
	ret = rdtgroup_init_alloc(rdtgrp);
	if (ret < 0)
		goto out_id_free;

2723 2724
	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);

2725 2726 2727 2728 2729 2730
	if (rdt_mon_capable) {
		/*
		 * Create an empty mon_groups directory to hold the subset
		 * of tasks and cpus to monitor.
		 */
		ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL);
2731 2732
		if (ret) {
			rdt_last_cmd_puts("kernfs subdir error\n");
2733
			goto out_del_list;
2734
		}
2735 2736
	}

2737 2738
	goto out_unlock;

2739 2740
out_del_list:
	list_del(&rdtgrp->rdtgroup_list);
2741 2742
out_id_free:
	closid_free(closid);
2743 2744 2745 2746
out_common_fail:
	mkdir_rdt_prepare_clean(rdtgrp);
out_unlock:
	rdtgroup_kn_unlock(prgrp_kn);
2747 2748 2749
	return ret;
}

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
/*
 * We allow creating mon groups only with in a directory called "mon_groups"
 * which is present in every ctrl_mon group. Check if this is a valid
 * "mon_groups" directory.
 *
 * 1. The directory should be named "mon_groups".
 * 2. The mon group itself should "not" be named "mon_groups".
 *   This makes sure "mon_groups" directory always has a ctrl_mon group
 *   as parent.
 */
static bool is_mon_groups(struct kernfs_node *kn, const char *name)
{
	return (!strcmp(kn->name, "mon_groups") &&
		strcmp(name, "mon_groups"));
}

2766 2767 2768 2769 2770 2771 2772 2773 2774
static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
			  umode_t mode)
{
	/* Do not accept '\n' to avoid unparsable situation. */
	if (strchr(name, '\n'))
		return -EINVAL;

	/*
	 * If the parent directory is the root directory and RDT
2775 2776
	 * allocation is supported, add a control and monitoring
	 * subdirectory
2777 2778
	 */
	if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2779 2780 2781 2782 2783 2784 2785 2786
		return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);

	/*
	 * If RDT monitoring is supported and the parent directory is a valid
	 * "mon_groups" directory, add a monitoring subdirectory.
	 */
	if (rdt_mon_capable && is_mon_groups(parent_kn, name))
		return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
2787 2788 2789 2790

	return -EPERM;
}

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
			      cpumask_var_t tmpmask)
{
	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
	int cpu;

	/* Give any tasks back to the parent group */
	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);

	/* Update per cpu rmid of the moved CPUs first */
	for_each_cpu(cpu, &rdtgrp->cpu_mask)
2802
		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
	/*
	 * Update the MSR on moved CPUs and CPUs which have moved
	 * task running on them.
	 */
	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
	update_closid_rmid(tmpmask, NULL);

	rdtgrp->flags = RDT_DELETED;
	free_rmid(rdtgrp->mon.rmid);

	/*
	 * Remove the rdtgrp from the parent ctrl_mon group's list
	 */
	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
	list_del(&rdtgrp->mon.crdtgrp_list);

	/*
	 * one extra hold on this, will drop when we kfree(rdtgrp)
	 * in rdtgroup_kn_unlock()
	 */
	kernfs_get(kn);
	kernfs_remove(rdtgrp->kn);

	return 0;
}

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
				struct rdtgroup *rdtgrp)
{
	rdtgrp->flags = RDT_DELETED;
	list_del(&rdtgrp->rdtgroup_list);

	/*
	 * one extra hold on this, will drop when we kfree(rdtgrp)
	 * in rdtgroup_kn_unlock()
	 */
	kernfs_get(kn);
	kernfs_remove(rdtgrp->kn);
	return 0;
}

2844 2845
static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
			       cpumask_var_t tmpmask)
2846
{
2847
	int cpu;
2848

F
Fenghua Yu 已提交
2849
	/* Give any tasks back to the default group */
2850
	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
F
Fenghua Yu 已提交
2851

T
Tony Luck 已提交
2852 2853 2854
	/* Give any CPUs back to the default group */
	cpumask_or(&rdtgroup_default.cpu_mask,
		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2855

2856 2857
	/* Update per cpu closid and rmid of the moved CPUs first */
	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
2858 2859
		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
2860 2861
	}

2862 2863 2864 2865 2866
	/*
	 * Update the MSR on moved CPUs and CPUs which have moved
	 * task running on them.
	 */
	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2867
	update_closid_rmid(tmpmask, NULL);
T
Tony Luck 已提交
2868

2869
	closid_free(rdtgrp->closid);
2870 2871 2872 2873 2874 2875 2876
	free_rmid(rdtgrp->mon.rmid);

	/*
	 * Free all the child monitor group rmids.
	 */
	free_all_child_rdtgrp(rdtgrp);

2877
	rdtgroup_ctrl_remove(kn, rdtgrp);
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899

	return 0;
}

static int rdtgroup_rmdir(struct kernfs_node *kn)
{
	struct kernfs_node *parent_kn = kn->parent;
	struct rdtgroup *rdtgrp;
	cpumask_var_t tmpmask;
	int ret = 0;

	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
		return -ENOMEM;

	rdtgrp = rdtgroup_kn_lock_live(kn);
	if (!rdtgrp) {
		ret = -EPERM;
		goto out;
	}

	/*
	 * If the rdtgroup is a ctrl_mon group and parent directory
2900 2901 2902 2903
	 * is the root directory, remove the ctrl_mon group.
	 *
	 * If the rdtgroup is a mon group and parent directory
	 * is a valid "mon_groups" directory, remove the mon group.
2904
	 */
2905 2906 2907 2908 2909 2910 2911 2912 2913
	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn) {
		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
			ret = rdtgroup_ctrl_remove(kn, rdtgrp);
		} else {
			ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
		}
	} else if (rdtgrp->type == RDTMON_GROUP &&
		 is_mon_groups(parent_kn, kn->name)) {
2914
		ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
2915
	} else {
2916
		ret = -EPERM;
2917
	}
2918

2919
out:
2920
	rdtgroup_kn_unlock(kn);
2921 2922
	free_cpumask_var(tmpmask);
	return ret;
2923 2924
}

2925 2926
static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
{
2927
	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
2928
		seq_puts(seq, ",cdp");
2929 2930 2931 2932 2933 2934 2935

	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
		seq_puts(seq, ",cdpl2");

	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
		seq_puts(seq, ",mba_MBps");

2936 2937 2938
	return 0;
}

2939
static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
2940 2941 2942
	.mkdir		= rdtgroup_mkdir,
	.rmdir		= rdtgroup_rmdir,
	.show_options	= rdtgroup_show_options,
2943 2944 2945 2946
};

static int __init rdtgroup_setup_root(void)
{
T
Tony Luck 已提交
2947 2948
	int ret;

2949
	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
2950 2951
				      KERNFS_ROOT_CREATE_DEACTIVATED |
				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
2952 2953 2954 2955 2956 2957 2958
				      &rdtgroup_default);
	if (IS_ERR(rdt_root))
		return PTR_ERR(rdt_root);

	mutex_lock(&rdtgroup_mutex);

	rdtgroup_default.closid = 0;
2959 2960 2961 2962
	rdtgroup_default.mon.rmid = 0;
	rdtgroup_default.type = RDTCTRL_GROUP;
	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);

2963 2964
	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);

2965
	ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
T
Tony Luck 已提交
2966 2967 2968 2969 2970
	if (ret) {
		kernfs_destroy_root(rdt_root);
		goto out;
	}

2971 2972 2973
	rdtgroup_default.kn = rdt_root->kn;
	kernfs_activate(rdtgroup_default.kn);

T
Tony Luck 已提交
2974
out:
2975 2976
	mutex_unlock(&rdtgroup_mutex);

T
Tony Luck 已提交
2977
	return ret;
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
}

/*
 * rdtgroup_init - rdtgroup initialization
 *
 * Setup resctrl file system including set up root, create mount point,
 * register rdtgroup filesystem, and initialize files under root directory.
 *
 * Return: 0 on success or -errno
 */
int __init rdtgroup_init(void)
{
	int ret = 0;

2992 2993 2994
	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
		     sizeof(last_cmd_status_buf));

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
	ret = rdtgroup_setup_root();
	if (ret)
		return ret;

	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
	if (ret)
		goto cleanup_root;

	ret = register_filesystem(&rdt_fs_type);
	if (ret)
		goto cleanup_mountpoint;

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
	/*
	 * Adding the resctrl debugfs directory here may not be ideal since
	 * it would let the resctrl debugfs directory appear on the debugfs
	 * filesystem before the resctrl filesystem is mounted.
	 * It may also be ok since that would enable debugging of RDT before
	 * resctrl is mounted.
	 * The reason why the debugfs directory is created here and not in
	 * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and
	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
	 * (the lockdep class of inode->i_rwsem). Other filesystem
	 * interactions (eg. SyS_getdents) have the lock ordering:
	 * &sb->s_type->i_mutex_key --> &mm->mmap_sem
	 * During mmap(), called with &mm->mmap_sem, the rdtgroup_mutex
	 * is taken, thus creating dependency:
	 * &mm->mmap_sem --> rdtgroup_mutex for the latter that can cause
	 * issues considering the other two lock dependencies.
	 * By creating the debugfs directory here we avoid a dependency
	 * that may cause deadlock (even though file operations cannot
	 * occur until the filesystem is mounted, but I do not know how to
	 * tell lockdep that).
	 */
	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);

3030 3031 3032 3033 3034 3035 3036 3037 3038
	return 0;

cleanup_mountpoint:
	sysfs_remove_mount_point(fs_kobj, "resctrl");
cleanup_root:
	kernfs_destroy_root(rdt_root);

	return ret;
}
3039 3040 3041

void __exit rdtgroup_exit(void)
{
3042
	debugfs_remove_recursive(debugfs_resctrl);
3043 3044 3045 3046
	unregister_filesystem(&rdt_fs_type);
	sysfs_remove_mount_point(fs_kobj, "resctrl");
	kernfs_destroy_root(rdt_root);
}