cfq-iosched.c 76.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
R
Randy Dunlap 已提交
12
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
13
#include <linux/rbtree.h>
14
#include <linux/ioprio.h>
15
#include <linux/blktrace_api.h>
L
Linus Torvalds 已提交
16 17 18 19

/*
 * tunables
 */
20 21
/* max queue in one round of service */
static const int cfq_quantum = 4;
22
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 24 25 26
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
27
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
28
static int cfq_slice_async = HZ / 25;
29
static const int cfq_slice_async_rq = 2;
30
static int cfq_slice_idle = HZ / 125;
31 32
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
33

34
/*
35
 * offset from end of service tree
36
 */
37
#define CFQ_IDLE_DELAY		(HZ / 5)
38 39 40 41 42 43

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

44 45 46 47 48 49
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

50
#define CFQ_SLICE_SCALE		(5)
51
#define CFQ_HW_QUEUE_MIN	(5)
52

53 54
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
55
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
56

57 58
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
59

60
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61
static struct completion *ioc_gone;
62
static DEFINE_SPINLOCK(ioc_gone_lock);
63

64 65 66 67
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

68 69
#define sample_valid(samples)	((samples) > 80)

70 71 72 73 74 75 76 77 78
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
79
	unsigned count;
80
};
81
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, }
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

125 126 127 128
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
129
	unsigned long seeky_start;
130

131
	pid_t pid;
J
Jeff Moyer 已提交
132

133
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
134
	struct cfq_queue *new_cfqq;
135 136
};

137
/*
138
 * First index in the service_trees.
139 140 141 142 143 144 145 146
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	IDLE_WORKLOAD = -1,
	BE_WORKLOAD = 0,
	RT_WORKLOAD = 1
};

147 148 149 150 151 152 153 154 155 156
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};


157 158 159
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
160
struct cfq_data {
161
	struct request_queue *queue;
162 163

	/*
164 165 166
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
167
	struct cfq_rb_root service_trees[2][3];
168 169 170
	struct cfq_rb_root service_tree_idle;
	/*
	 * The priority currently being served
171
	 */
172
	enum wl_prio_t serving_prio;
173 174
	enum wl_type_t serving_type;
	unsigned long workload_expires;
175 176 177 178 179 180 181 182

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

183
	unsigned int busy_queues;
184
	unsigned int busy_queues_avg[2];
185

186
	int rq_in_driver[2];
187
	int sync_flight;
188 189 190 191 192

	/*
	 * queue-depth detection
	 */
	int rq_queued;
193
	int hw_tag;
194 195
	int hw_tag_samples;
	int rq_in_driver_peak;
L
Linus Torvalds 已提交
196

197 198 199 200
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
201
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
202

203 204 205
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

206 207 208 209 210
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
211

J
Jens Axboe 已提交
212
	sector_t last_position;
L
Linus Torvalds 已提交
213 214 215 216 217

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
218
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
219 220
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
221 222 223
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
224
	unsigned int cfq_latency;
225 226

	struct list_head cic_list;
L
Linus Torvalds 已提交
227

228 229 230 231
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
232 233

	unsigned long last_end_sync_rq;
L
Linus Torvalds 已提交
234 235
};

236
static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
237
					    enum wl_type_t type,
238 239 240 241 242
					    struct cfq_data *cfqd)
{
	if (prio == IDLE_WORKLOAD)
		return &cfqd->service_tree_idle;

243
	return &cfqd->service_trees[prio][type];
244 245
}

J
Jens Axboe 已提交
246
enum cfqq_state_flags {
247 248
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
249
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
250 251 252 253
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
254
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
255
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
256
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
J
Jens Axboe 已提交
257 258 259 260 261
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
262
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
263 264 265
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
266
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
267 268 269
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
270
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
271 272 273 274
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
275
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
276 277 278 279
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
280
CFQ_CFQQ_FNS(slice_new);
281
CFQ_CFQQ_FNS(sync);
282
CFQ_CFQQ_FNS(coop);
J
Jens Axboe 已提交
283 284
#undef CFQ_CFQQ_FNS

285 286 287 288 289
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

290 291 292 293 294 295 296 297 298
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

299 300 301 302 303 304 305 306 307 308

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

309 310 311 312 313
static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
{
	if (wl == IDLE_WORKLOAD)
		return cfqd->service_tree_idle.count;

314 315 316
	return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqd->service_trees[wl][SYNC_WORKLOAD].count;
317 318
}

319
static void cfq_dispatch_insert(struct request_queue *, struct request *);
320
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
321
				       struct io_context *, gfp_t);
322
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
323 324
						struct io_context *);

325 326 327 328 329
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

330
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
331
					    bool is_sync)
332
{
333
	return cic->cfqq[is_sync];
334 335 336
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
337
				struct cfq_queue *cfqq, bool is_sync)
338
{
339
	cic->cfqq[is_sync] = cfqq;
340 341 342 343 344 345
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
346
static inline bool cfq_bio_sync(struct bio *bio)
347
{
348
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
349
}
L
Linus Torvalds 已提交
350

A
Andrew Morton 已提交
351 352 353 354
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
355
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
356
{
357 358
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
359
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
360
	}
A
Andrew Morton 已提交
361 362
}

363
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
364 365 366
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

367
	return !cfqd->busy_queues;
A
Andrew Morton 已提交
368 369
}

370 371 372 373 374
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
375
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
376
				 unsigned short prio)
377
{
378
	const int base_slice = cfqd->cfq_slice[sync];
379

380 381 382 383
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
384

385 386 387 388
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
389 390
}

391 392 393 394 395 396
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

397 398
static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
{
399 400 401
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
402
	unsigned busy = cfq_busy_queues_wl(rt, cfqd);
403 404 405 406 407 408 409 410

	min_q = min(cfqd->busy_queues_avg[rt], busy);
	max_q = max(cfqd->busy_queues_avg[rt], busy);
	cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
		cfq_hist_divisor;
	return cfqd->busy_queues_avg[rt];
}

411 412 413
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
		/* interested queues (we consider only the ones with the same
		 * priority class) */
		unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
		if (expect_latency > cfq_target_latency) {
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
			slice = max(slice * cfq_target_latency / expect_latency,
				    low_slice);
		}
	}
	cfqq->slice_end = jiffies + slice;
434
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
435 436 437 438 439 440 441
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
442
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
443 444 445 446 447 448 449 450 451
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
452
/*
J
Jens Axboe 已提交
453
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
454
 * We choose the request that is closest to the head right now. Distance
455
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
456
 */
J
Jens Axboe 已提交
457
static struct request *
458
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
L
Linus Torvalds 已提交
459
{
460
	sector_t s1, s2, d1 = 0, d2 = 0;
L
Linus Torvalds 已提交
461
	unsigned long back_max;
462 463 464
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
465

J
Jens Axboe 已提交
466 467 468 469
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
470

J
Jens Axboe 已提交
471 472 473 474
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
475 476 477 478
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
479

480 481
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
498
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
499 500 501 502 503 504

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
505
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
506 507

	/* Found required data */
508 509 510 511 512 513

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
514
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
515
		if (d1 < d2)
J
Jens Axboe 已提交
516
			return rq1;
517
		else if (d2 < d1)
J
Jens Axboe 已提交
518
			return rq2;
519 520
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
521
				return rq1;
522
			else
J
Jens Axboe 已提交
523
				return rq2;
524
		}
L
Linus Torvalds 已提交
525

526
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
527
		return rq1;
528
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
529 530
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
531 532 533 534 535 536 537 538
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
539
			return rq1;
L
Linus Torvalds 已提交
540
		else
J
Jens Axboe 已提交
541
			return rq2;
L
Linus Torvalds 已提交
542 543 544
	}
}

545 546 547
/*
 * The below is leftmost cache rbtree addon
 */
548
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
549 550 551 552
{
	if (!root->left)
		root->left = rb_first(&root->rb);

553 554 555 556
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
557 558
}

559 560 561 562 563 564
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

565 566 567 568
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
569
	rb_erase_init(n, &root->rb);
570
	--root->count;
571 572
}

L
Linus Torvalds 已提交
573 574 575
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
576 577 578
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
579
{
580 581
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
582
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
583

584
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
585 586

	if (rbprev)
J
Jens Axboe 已提交
587
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
588

589
	if (rbnext)
J
Jens Axboe 已提交
590
		next = rb_entry_rq(rbnext);
591 592 593
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
594
			next = rb_entry_rq(rbnext);
595
	}
L
Linus Torvalds 已提交
596

597
	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
L
Linus Torvalds 已提交
598 599
}

600 601
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
602
{
603 604 605
	/*
	 * just an approximation, should be ok.
	 */
606 607
	return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
608 609
}

610
/*
611
 * The cfqd->service_trees holds all pending cfq_queue's that have
612 613 614
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
615
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
616
				 bool add_front)
617
{
618 619
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
620
	unsigned long rb_key;
621
	struct cfq_rb_root *service_tree;
622
	int left;
623

624
	service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
625 626
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
627
		parent = rb_last(&service_tree->rb);
628 629 630 631 632 633
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
634 635 636 637 638 639
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
640
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
641
		rb_key -= cfqq->slice_resid;
642
		cfqq->slice_resid = 0;
643 644
	} else {
		rb_key = -HZ;
645
		__cfqq = cfq_rb_first(service_tree);
646 647
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
648

649
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
650
		/*
651
		 * same position, nothing more to do
652
		 */
653 654
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
655
			return;
L
Linus Torvalds 已提交
656

657 658
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
659
	}
660

661
	left = 1;
662
	parent = NULL;
663 664
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
665
	while (*p) {
666
		struct rb_node **n;
667

668 669 670
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

671
		/*
672
		 * sort by key, that represents service time.
673
		 */
674
		if (time_before(rb_key, __cfqq->rb_key))
675
			n = &(*p)->rb_left;
676
		else {
677
			n = &(*p)->rb_right;
678
			left = 0;
679
		}
680 681

		p = n;
682 683
	}

684
	if (left)
685
		service_tree->left = &cfqq->rb_node;
686

687 688
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
689 690
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
L
Linus Torvalds 已提交
691 692
}

693
static struct cfq_queue *
694 695 696
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
713
		if (sector > blk_rq_pos(cfqq->next_rq))
714
			n = &(*p)->rb_right;
715
		else if (sector < blk_rq_pos(cfqq->next_rq))
716 717 718 719
			n = &(*p)->rb_left;
		else
			break;
		p = n;
720
		cfqq = NULL;
721 722 723 724 725
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
726
	return cfqq;
727 728 729 730 731 732 733
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

734 735 736 737
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
738 739 740 741 742 743

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

744
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
745 746
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
747 748
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
749 750 751
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
752 753
}

754 755 756
/*
 * Update cfqq's position in the service tree.
 */
757
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
758 759 760 761
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
762
	if (cfq_cfqq_on_rr(cfqq)) {
763
		cfq_service_tree_add(cfqd, cfqq, 0);
764 765
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
766 767
}

L
Linus Torvalds 已提交
768 769
/*
 * add to busy list of queues for service, trying to be fair in ordering
770
 * the pending list according to last request service
L
Linus Torvalds 已提交
771
 */
J
Jens Axboe 已提交
772
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
773
{
774
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
775 776
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
777 778
	cfqd->busy_queues++;

779
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
780 781
}

782 783 784 785
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
786
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
787
{
788
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
789 790
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
791

792 793 794 795
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
796 797 798 799
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
800

L
Linus Torvalds 已提交
801 802 803 804 805 806 807
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
808
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
809
{
J
Jens Axboe 已提交
810
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
811
	struct cfq_data *cfqd = cfqq->cfqd;
J
Jens Axboe 已提交
812
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
813

814 815
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
816

J
Jens Axboe 已提交
817
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
818

819
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
820
		cfq_del_cfqq_rr(cfqd, cfqq);
L
Linus Torvalds 已提交
821 822
}

J
Jens Axboe 已提交
823
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
824
{
J
Jens Axboe 已提交
825
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
826
	struct cfq_data *cfqd = cfqq->cfqd;
827
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
828

829
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
830 831 832 833 834

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
835
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
836
		cfq_dispatch_insert(cfqd->queue, __alias);
837 838 839

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
840 841 842 843

	/*
	 * check if this request is a better next-serve candidate
	 */
844
	prev = cfqq->next_rq;
845
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
846 847 848 849 850 851 852

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

853
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
854 855
}

J
Jens Axboe 已提交
856
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
857
{
858 859
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
860
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
861 862
}

863 864
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
865
{
866
	struct task_struct *tsk = current;
867
	struct cfq_io_context *cic;
868
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
869

870
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
871 872 873 874
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
875 876 877
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

878
		return elv_rb_find(&cfqq->sort_list, sector);
879
	}
L
Linus Torvalds 已提交
880 881 882 883

	return NULL;
}

884
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
885
{
886
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
887

888
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
889
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
890
						rq_in_driver(cfqd));
891

892
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
893 894
}

895
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
896
{
897
	struct cfq_data *cfqd = q->elevator->elevator_data;
898
	const int sync = rq_is_sync(rq);
899

900 901
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
902
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
903
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
904 905
}

906
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
907
{
J
Jens Axboe 已提交
908
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
909

J
Jens Axboe 已提交
910 911
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
912

913
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
914
	cfq_del_rq_rb(rq);
915

916
	cfqq->cfqd->rq_queued--;
917 918 919 920
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
921 922
}

923 924
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
925 926 927 928
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

929
	__rq = cfq_find_rq_fmerge(cfqd, bio);
930
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
931 932
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
933 934 935 936 937
	}

	return ELEVATOR_NO_MERGE;
}

938
static void cfq_merged_request(struct request_queue *q, struct request *req,
939
			       int type)
L
Linus Torvalds 已提交
940
{
941
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
942
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
943

J
Jens Axboe 已提交
944
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
945 946 947 948
	}
}

static void
949
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
950 951
		    struct request *next)
{
952
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
953 954 955 956
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
957
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
958
		list_move(&rq->queuelist, &next->queuelist);
959 960
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
961

962 963
	if (cfqq->next_rq == next)
		cfqq->next_rq = rq;
964
	cfq_remove_request(next);
965 966
}

967
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
968 969 970
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
971
	struct cfq_io_context *cic;
972 973 974
	struct cfq_queue *cfqq;

	/*
975
	 * Disallow merge of a sync bio into an async request.
976
	 */
977
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
978
		return false;
979 980

	/*
981 982
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
983
	 */
984
	cic = cfq_cic_lookup(cfqd, current->io_context);
985
	if (!cic)
986
		return false;
987

988
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
989
	return cfqq == RQ_CFQQ(rq);
990 991
}

J
Jens Axboe 已提交
992 993
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
994 995
{
	if (cfqq) {
996
		cfq_log_cfqq(cfqd, cfqq, "set_active");
997
		cfqq->slice_end = 0;
998 999 1000
		cfqq->slice_dispatch = 0;

		cfq_clear_cfqq_wait_request(cfqq);
1001
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1002 1003
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1004
		cfq_mark_cfqq_slice_new(cfqq);
1005 1006

		del_timer(&cfqd->idle_slice_timer);
1007 1008 1009 1010 1011
	}

	cfqd->active_queue = cfqq;
}

1012 1013 1014 1015 1016
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1017
		    bool timed_out)
1018
{
1019 1020
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1021 1022 1023 1024 1025 1026
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);

	/*
1027
	 * store what was left of this slice, if the queue idled/timed out
1028
	 */
1029
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1030
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1031 1032
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1033

1034
	cfq_resort_rr_list(cfqd, cfqq);
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1045
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1046 1047 1048 1049
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1050
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1051 1052
}

1053 1054 1055 1056
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1057
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1058
{
1059
	struct cfq_rb_root *service_tree =
1060
		service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
1061

1062 1063 1064
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1065 1066
}

1067 1068 1069
/*
 * Get and set a new active queue for service.
 */
1070 1071
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1072
{
1073
	if (!cfqq)
1074
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1075

1076
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1077
	return cfqq;
1078 1079
}

1080 1081 1082
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1083 1084
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1085
	else
1086
		return cfqd->last_position - blk_rq_pos(rq);
1087 1088
}

1089 1090
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1091

1092 1093
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1094
{
1095
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1096

1097 1098
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1099

1100
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1101 1102
}

1103 1104 1105
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1106
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1118
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1119 1120 1121 1122 1123 1124 1125 1126
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1127
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1128 1129
		return __cfqq;

1130
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1131 1132 1133 1134 1135 1136 1137
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1138
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1155
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1156
{
1157 1158
	struct cfq_queue *cfqq;

1159 1160 1161 1162 1163
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

J
Jens Axboe 已提交
1164
	/*
1165 1166 1167
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1168
	 */
1169 1170 1171 1172
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

J
Jeff Moyer 已提交
1173 1174 1175 1176 1177
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1178 1179
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1180

1181 1182 1183 1184 1185 1186
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1187
	return cfqq;
J
Jens Axboe 已提交
1188 1189
}

1190 1191 1192 1193 1194 1195 1196
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1197
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
	if (cfq_cfqq_idle_window(cfqq))
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1211 1212 1213
	if (!service_tree)
		service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);

1214 1215 1216 1217 1218 1219
	if (service_tree->count == 0)
		return true;

	return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
}

J
Jens Axboe 已提交
1220
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1221
{
1222
	struct cfq_queue *cfqq = cfqd->active_queue;
1223
	struct cfq_io_context *cic;
1224 1225
	unsigned long sl;

1226
	/*
J
Jens Axboe 已提交
1227 1228 1229
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1230
	 */
J
Jens Axboe 已提交
1231
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1232 1233
		return;

1234
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1235
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1236 1237 1238 1239

	/*
	 * idle is disabled, either manually or by past process history
	 */
1240
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1241 1242
		return;

1243 1244 1245
	/*
	 * still requests with the driver, don't idle
	 */
1246
	if (rq_in_driver(cfqd))
1247 1248
		return;

1249 1250 1251
	/*
	 * task has exited, don't wait
	 */
1252
	cic = cfqd->active_cic;
1253
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1254 1255
		return;

1256 1257 1258 1259 1260 1261 1262 1263 1264
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1265
	cfq_mark_cfqq_wait_request(cfqq);
1266

J
Jens Axboe 已提交
1267
	sl = cfqd->cfq_slice_idle;
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	/* are we servicing noidle tree, and there are more queues?
	 * non-rotational or NCQ: no idle
	 * non-NCQ rotational : very small idle, to allow
	 *     fair distribution of slice time for a process doing back-to-back
	 *     seeks.
	 */
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    service_tree_for(cfqd->serving_prio, SYNC_NOIDLE_WORKLOAD, cfqd)
		->count > 0) {
		if (blk_queue_nonrot(cfqd->queue) || cfqd->hw_tag)
			return;
1279
		sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1280
	}
1281

1282
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1283
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1284 1285
}

1286 1287 1288
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1289
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1290
{
1291
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1292
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1293

1294 1295
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1296
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1297
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1298
	cfqq->dispatched++;
1299
	elv_dispatch_sort(q, rq);
1300 1301 1302

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
L
Linus Torvalds 已提交
1303 1304 1305 1306 1307
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1308
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1309
{
1310
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1311

J
Jens Axboe 已提交
1312
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1313
		return NULL;
1314 1315 1316

	cfq_mark_cfqq_fifo_expire(cfqq);

1317 1318
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1319

1320
	rq = rq_entry_fifo(cfqq->fifo.next);
1321
	if (time_before(jiffies, rq_fifo_time(rq)))
1322
		rq = NULL;
L
Linus Torvalds 已提交
1323

1324
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1325
	return rq;
L
Linus Torvalds 已提交
1326 1327
}

1328 1329 1330 1331
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1332

1333
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1334

1335
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1336 1337
}

J
Jeff Moyer 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1353
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1382 1383
}

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
				    bool prio_changed)
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
		if (service_tree_for(prio, cur_best, cfqd)->count)
			return cur_best;
		cur_best = SYNC_WORKLOAD;
		if (service_tree_for(prio, cur_best, cfqd)->count)
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
		queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

static void choose_service_tree(struct cfq_data *cfqd)
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;

	/* Choose next priority. RT > BE > IDLE */
	if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
		cfqd->serving_prio = RT_WORKLOAD;
	else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
	count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
		->count;

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
		cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
	count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
		->count;

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
	slice = cfq_target_latency * count /
		max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
		      cfq_busy_queues_wl(cfqd->serving_prio, cfqd));

	if (cfqd->serving_type == ASYNC_WORKLOAD)
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
	else
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
}

1484
/*
1485 1486
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
1487
 */
1488
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
1489
{
1490
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
1491

1492 1493 1494
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
1495

1496
	/*
J
Jens Axboe 已提交
1497
	 * The active queue has run out of time, expire it and select new.
1498
	 */
1499
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
J
Jens Axboe 已提交
1500
		goto expire;
L
Linus Torvalds 已提交
1501

1502
	/*
J
Jens Axboe 已提交
1503 1504
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
1505
	 */
1506
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1507
		goto keep_queue;
J
Jens Axboe 已提交
1508

1509 1510 1511 1512
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
1513
	 * tree.  If possible, merge the expiring queue with the new cfqq.
1514
	 */
1515
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
1516 1517 1518
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
1519
		goto expire;
J
Jeff Moyer 已提交
1520
	}
1521

J
Jens Axboe 已提交
1522 1523 1524 1525 1526
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
1527
	if (timer_pending(&cfqd->idle_slice_timer) ||
1528
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1529 1530
		cfqq = NULL;
		goto keep_queue;
1531 1532
	}

J
Jens Axboe 已提交
1533
expire:
1534
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
1535
new_queue:
1536 1537 1538 1539 1540 1541 1542
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
		choose_service_tree(cfqd);

1543
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1544
keep_queue:
J
Jens Axboe 已提交
1545
	return cfqq;
1546 1547
}

J
Jens Axboe 已提交
1548
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
	return dispatched;
}

1561 1562 1563 1564
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
1565
static int cfq_forced_dispatch(struct cfq_data *cfqd)
1566
{
1567
	struct cfq_queue *cfqq;
1568
	int dispatched = 0;
1569
	int i, j;
1570
	for (i = 0; i < 2; ++i)
1571 1572 1573 1574
		for (j = 0; j < 3; ++j)
			while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
				!= NULL)
				dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1575

1576
	while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
1577
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1578

1579
	cfq_slice_expired(cfqd, 0);
1580 1581 1582

	BUG_ON(cfqd->busy_queues);

1583
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1584 1585 1586
	return dispatched;
}

1587
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1588 1589
{
	unsigned int max_dispatch;
1590

1591 1592 1593
	/*
	 * Drain async requests before we start sync IO
	 */
1594
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1595
		return false;
1596

1597 1598 1599 1600
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1601
		return false;
1602 1603 1604 1605

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
1606

1607 1608 1609 1610 1611 1612 1613
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
1614
		if (cfq_class_idle(cfqq))
1615
			return false;
1616

1617 1618 1619 1620
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
1621
			return false;
1622

1623
		/*
1624
		 * Sole queue user, allow bigger slice
1625
		 */
1626 1627 1628 1629 1630 1631 1632 1633
		max_dispatch *= 4;
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
1634
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1635 1636
		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
		unsigned int depth;
1637

1638
		depth = last_sync / cfqd->cfq_slice[1];
1639 1640
		if (!depth && !cfqq->dispatched)
			depth = 1;
1641 1642
		if (depth < max_dispatch)
			max_dispatch = depth;
1643
	}
1644

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
1703 1704
		return 0;

1705
	/*
1706
	 * Dispatch a request from this cfqq, if it is allowed
1707
	 */
1708 1709 1710
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

1711
	cfqq->slice_dispatch++;
1712
	cfq_clear_cfqq_must_dispatch(cfqq);
1713

1714 1715 1716 1717 1718 1719 1720 1721 1722
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
1723 1724
	}

1725
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1726
	return 1;
L
Linus Torvalds 已提交
1727 1728 1729
}

/*
J
Jens Axboe 已提交
1730 1731
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
1732 1733 1734 1735 1736
 *
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
1737 1738 1739
	struct cfq_data *cfqd = cfqq->cfqd;

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
1740 1741 1742 1743

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

1744
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
1745
	BUG_ON(rb_first(&cfqq->sort_list));
1746
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
J
Jens Axboe 已提交
1747
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
1748

1749
	if (unlikely(cfqd->active_queue == cfqq)) {
1750
		__cfq_slice_expired(cfqd, cfqq, 0);
1751
		cfq_schedule_dispatch(cfqd);
1752
	}
1753

L
Linus Torvalds 已提交
1754 1755 1756
	kmem_cache_free(cfq_pool, cfqq);
}

1757 1758 1759
/*
 * Must always be called with the rcu_read_lock() held
 */
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

1771
/*
1772
 * Call func for each cic attached to this ioc.
1773
 */
1774
static void
1775 1776
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
1777
{
1778
	rcu_read_lock();
1779
	__call_for_each_cic(ioc, func);
1780
	rcu_read_unlock();
1781 1782 1783 1784 1785 1786 1787 1788 1789
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
1790
	elv_ioc_count_dec(cfq_ioc_count);
1791

1792 1793 1794 1795 1796 1797 1798
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
1799
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1800 1801 1802 1803 1804
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
1805
}
1806

1807 1808 1809
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1820
	hlist_del_rcu(&cic->cic_list);
1821 1822
	spin_unlock_irqrestore(&ioc->lock, flags);

1823
	cfq_cic_free(cic);
1824 1825
}

1826 1827 1828 1829 1830
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
1831 1832 1833
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
1834 1835 1836 1837
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
1838
	 */
1839
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
1840 1841
}

1842
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1843
{
J
Jeff Moyer 已提交
1844 1845
	struct cfq_queue *__cfqq, *next;

1846
	if (unlikely(cfqq == cfqd->active_queue)) {
1847
		__cfq_slice_expired(cfqd, cfqq, 0);
1848
		cfq_schedule_dispatch(cfqd);
1849
	}
1850

J
Jeff Moyer 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

1867 1868
	cfq_put_queue(cfqq);
}
1869

1870 1871 1872
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
1873 1874
	struct io_context *ioc = cic->ioc;

1875
	list_del_init(&cic->queue_list);
1876 1877 1878 1879

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
1880
	smp_wmb();
1881
	cic->dead_key = (unsigned long) cic->key;
1882 1883
	cic->key = NULL;

1884 1885 1886
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

1887 1888 1889
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
1890 1891
	}

1892 1893 1894
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
1895
	}
1896 1897
}

1898 1899
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
1900 1901 1902 1903
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
1904
		struct request_queue *q = cfqd->queue;
1905
		unsigned long flags;
1906

1907
		spin_lock_irqsave(q->queue_lock, flags);
1908 1909 1910 1911 1912 1913 1914 1915 1916

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

1917
		spin_unlock_irqrestore(q->queue_lock, flags);
1918
	}
L
Linus Torvalds 已提交
1919 1920
}

1921 1922 1923 1924
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
1925
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
1926
{
1927
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
1928 1929
}

1930
static struct cfq_io_context *
A
Al Viro 已提交
1931
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1932
{
1933
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
1934

1935 1936
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
1937
	if (cic) {
1938
		cic->last_end_request = jiffies;
1939
		INIT_LIST_HEAD(&cic->queue_list);
1940
		INIT_HLIST_NODE(&cic->cic_list);
1941 1942
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
1943
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
1944 1945 1946 1947 1948
	}

	return cic;
}

1949
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1950 1951 1952 1953
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
1954
	if (!cfq_cfqq_prio_changed(cfqq))
1955 1956
		return;

1957
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1958
	switch (ioprio_class) {
1959 1960 1961 1962
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
1963
		 * no prio set, inherit CPU scheduling settings
1964 1965
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
1966
		cfqq->ioprio_class = task_nice_ioclass(tsk);
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
1981 1982 1983 1984 1985 1986 1987 1988
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
1989
	cfq_clear_cfqq_prio_changed(cfqq);
1990 1991
}

J
Jens Axboe 已提交
1992
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1993
{
1994 1995
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
1996
	unsigned long flags;
1997

1998 1999 2000
	if (unlikely(!cfqd))
		return;

2001
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2002

2003
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2004 2005
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2006 2007
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2008
		if (new_cfqq) {
2009
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2010 2011
			cfq_put_queue(cfqq);
		}
2012
	}
2013

2014
	cfqq = cic->cfqq[BLK_RW_SYNC];
2015 2016 2017
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2018
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2019 2020
}

2021
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2022
{
2023
	call_for_each_cic(ioc, changed_ioprio);
2024
	ioc->ioprio_changed = 0;
2025 2026
}

2027
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2028
			  pid_t pid, bool is_sync)
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2047
static struct cfq_queue *
2048
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2049
		     struct io_context *ioc, gfp_t gfp_mask)
2050 2051
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2052
	struct cfq_io_context *cic;
2053 2054

retry:
2055
	cic = cfq_cic_lookup(cfqd, ioc);
2056 2057
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2058

2059 2060 2061 2062 2063 2064
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2065 2066 2067 2068 2069
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2070
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2071
					gfp_mask | __GFP_ZERO,
2072
					cfqd->queue->node);
2073
			spin_lock_irq(cfqd->queue->queue_lock);
2074 2075
			if (new_cfqq)
				goto retry;
2076
		} else {
2077 2078 2079
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2080 2081
		}

2082 2083 2084 2085 2086 2087
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2088 2089 2090 2091 2092 2093 2094 2095
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2096 2097 2098
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2099
	switch (ioprio_class) {
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2111
static struct cfq_queue *
2112
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2113 2114
	      gfp_t gfp_mask)
{
2115 2116
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2117
	struct cfq_queue **async_cfqq = NULL;
2118 2119
	struct cfq_queue *cfqq = NULL;

2120 2121 2122 2123 2124
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2125
	if (!cfqq)
2126
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2127 2128 2129 2130

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2131
	if (!is_sync && !(*async_cfqq)) {
2132
		atomic_inc(&cfqq->ref);
2133
		*async_cfqq = cfqq;
2134 2135 2136 2137 2138 2139
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2140 2141 2142
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2143
static void
2144 2145
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2146
{
2147 2148
	unsigned long flags;

2149
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2150

2151 2152
	spin_lock_irqsave(&ioc->lock, flags);

2153
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2154

2155
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2156
	hlist_del_rcu(&cic->cic_list);
2157 2158 2159
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2160 2161
}

2162
static struct cfq_io_context *
2163
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2164 2165
{
	struct cfq_io_context *cic;
2166
	unsigned long flags;
2167
	void *k;
2168

2169 2170 2171
	if (unlikely(!ioc))
		return NULL;

2172 2173
	rcu_read_lock();

J
Jens Axboe 已提交
2174 2175 2176
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2177
	cic = rcu_dereference(ioc->ioc_data);
2178 2179
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2180
		return cic;
2181
	}
J
Jens Axboe 已提交
2182

2183 2184 2185 2186 2187
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2188 2189 2190
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2191
			cfq_drop_dead_cic(cfqd, ioc, cic);
2192
			rcu_read_lock();
2193
			continue;
2194
		}
2195

2196
		spin_lock_irqsave(&ioc->lock, flags);
2197
		rcu_assign_pointer(ioc->ioc_data, cic);
2198
		spin_unlock_irqrestore(&ioc->lock, flags);
2199 2200
		break;
	} while (1);
2201

2202
	return cic;
2203 2204
}

2205 2206 2207 2208 2209
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2210 2211
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2212
{
2213
	unsigned long flags;
2214
	int ret;
2215

2216 2217 2218 2219
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2220

2221 2222 2223
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2224 2225
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2226
		spin_unlock_irqrestore(&ioc->lock, flags);
2227

2228 2229 2230 2231 2232 2233 2234
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2235 2236
	}

2237 2238
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2239

2240
	return ret;
2241 2242
}

L
Linus Torvalds 已提交
2243 2244 2245
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2246
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2247 2248
 */
static struct cfq_io_context *
2249
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2250
{
2251
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2252 2253
	struct cfq_io_context *cic;

2254
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2255

2256
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2257 2258 2259
	if (!ioc)
		return NULL;

2260
	cic = cfq_cic_lookup(cfqd, ioc);
2261 2262
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2263

2264 2265 2266
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2267

2268 2269 2270
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2271
out:
2272 2273 2274 2275
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

L
Linus Torvalds 已提交
2276
	return cic;
2277 2278
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2279 2280 2281 2282 2283
err:
	put_io_context(ioc);
	return NULL;
}

2284 2285
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2286
{
2287 2288
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2289

2290 2291 2292 2293
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2294

2295
static void
2296
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2297
		       struct request *rq)
2298 2299 2300 2301
{
	sector_t sdist;
	u64 total;

2302
	if (!cfqq->last_request_pos)
2303
		sdist = 0;
2304 2305
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2306
	else
2307
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2308 2309 2310 2311 2312

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
2313 2314
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2315
	else
2316
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2317

2318 2319 2320 2321 2322
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
2336
}
L
Linus Torvalds 已提交
2337

2338 2339 2340 2341 2342 2343 2344 2345
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
2346
	int old_idle, enable_idle;
2347

2348 2349 2350 2351
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2352 2353
		return;

2354
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
2355

2356
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2357
	    (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq)))
2358 2359
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
2360
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
2361 2362 2363
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
2364 2365
	}

2366 2367 2368 2369 2370 2371 2372
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
2373
}
L
Linus Torvalds 已提交
2374

2375 2376 2377 2378
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
2379
static bool
2380
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
2381
		   struct request *rq)
2382
{
J
Jens Axboe 已提交
2383
	struct cfq_queue *cfqq;
2384

J
Jens Axboe 已提交
2385 2386
	cfqq = cfqd->active_queue;
	if (!cfqq)
2387
		return false;
2388

J
Jens Axboe 已提交
2389
	if (cfq_slice_used(cfqq))
2390
		return true;
J
Jens Axboe 已提交
2391 2392

	if (cfq_class_idle(new_cfqq))
2393
		return false;
2394 2395

	if (cfq_class_idle(cfqq))
2396
		return true;
2397

2398 2399 2400 2401
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD
	    && new_cfqq->service_tree == cfqq->service_tree)
		return true;

2402 2403 2404 2405
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
2406
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2407
		return true;
2408

2409 2410 2411 2412 2413
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
2414
		return true;
2415

2416 2417 2418 2419
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2420
		return true;
2421

2422
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2423
		return false;
2424 2425 2426 2427 2428

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
2429
	if (cfq_rq_close(cfqd, cfqq, rq))
2430
		return true;
2431

2432
	return false;
2433 2434 2435 2436 2437 2438 2439 2440
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
2441
	cfq_log_cfqq(cfqd, cfqq, "preempt");
2442
	cfq_slice_expired(cfqd, 1);
2443

2444 2445 2446 2447 2448
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2449 2450

	cfq_service_tree_add(cfqd, cfqq, 1);
2451

2452 2453
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
2454 2455 2456
}

/*
J
Jens Axboe 已提交
2457
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2458 2459 2460
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
2461 2462
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
2463
{
J
Jens Axboe 已提交
2464
	struct cfq_io_context *cic = RQ_CIC(rq);
2465

2466
	cfqd->rq_queued++;
2467 2468 2469
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
2470
	cfq_update_io_thinktime(cfqd, cic);
2471
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
2472 2473
	cfq_update_idle_window(cfqd, cfqq, cic);

2474
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2475 2476 2477

	if (cfqq == cfqd->active_queue) {
		/*
2478 2479 2480
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
2481 2482
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
2483 2484 2485
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
2486
		 */
2487
		if (cfq_cfqq_wait_request(cfqq)) {
2488 2489
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
2490
				del_timer(&cfqd->idle_slice_timer);
T
Tejun Heo 已提交
2491
			__blk_run_queue(cfqd->queue);
2492
			}
2493
			cfq_mark_cfqq_must_dispatch(cfqq);
2494
		}
J
Jens Axboe 已提交
2495
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2496 2497 2498
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
2499 2500
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
2501 2502
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
2503
		__blk_run_queue(cfqd->queue);
2504
	}
L
Linus Torvalds 已提交
2505 2506
}

2507
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2508
{
2509
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
2510
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2511

2512
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2513
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2514

2515
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2516
	list_add_tail(&rq->queuelist, &cfqq->fifo);
2517
	cfq_add_rq_rb(rq);
2518

J
Jens Axboe 已提交
2519
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
2520 2521
}

2522 2523 2524 2525 2526 2527
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
2528 2529
	struct cfq_queue *cfqq = cfqd->active_queue;

2530 2531
	if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
		cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2532 2533

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2534
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2535 2536
		return;

S
Shaohua Li 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	if (cfqd->hw_tag_samples++ < 50)
		return;

	if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;

	cfqd->hw_tag_samples = 0;
	cfqd->rq_in_driver_peak = 0;
}

2559
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2560
{
J
Jens Axboe 已提交
2561
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2562
	struct cfq_data *cfqd = cfqq->cfqd;
2563
	const int sync = rq_is_sync(rq);
2564
	unsigned long now;
L
Linus Torvalds 已提交
2565

2566
	now = jiffies;
2567
	cfq_log_cfqq(cfqd, cfqq, "complete");
L
Linus Torvalds 已提交
2568

2569 2570
	cfq_update_hw_tag(cfqd);

2571
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
2572
	WARN_ON(!cfqq->dispatched);
2573
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
2574
	cfqq->dispatched--;
L
Linus Torvalds 已提交
2575

2576 2577 2578
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

2579
	if (sync) {
J
Jens Axboe 已提交
2580
		RQ_CIC(rq)->last_end_request = now;
2581 2582
		cfqd->last_end_sync_rq = now;
	}
2583 2584 2585 2586 2587 2588

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
2589 2590
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

2591 2592 2593 2594
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
2595 2596 2597 2598 2599 2600 2601
		/*
		 * If there are no requests waiting in this queue, and
		 * there are other queues ready to issue requests, AND
		 * those other queues are issuing requests within our
		 * mean seek distance, give them a chance to run instead
		 * of idling.
		 */
2602
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2603
			cfq_slice_expired(cfqd, 1);
2604
		else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
2605
			 sync && !rq_noidle(rq))
J
Jens Axboe 已提交
2606
			cfq_arm_slice_timer(cfqd);
2607
	}
J
Jens Axboe 已提交
2608

2609
	if (!rq_in_driver(cfqd))
2610
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2611 2612
}

2613 2614 2615 2616 2617
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2618
{
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
2630
		 * unboost the queue (if needed)
2631
		 */
2632 2633
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
2634 2635
	}
}
L
Linus Torvalds 已提交
2636

2637
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2638
{
2639
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
2640
		cfq_mark_cfqq_must_alloc_slice(cfqq);
2641
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
2642
	}
L
Linus Torvalds 已提交
2643

2644 2645 2646
	return ELV_MQUEUE_MAY;
}

2647
static int cfq_may_queue(struct request_queue *q, int rw)
2648 2649 2650
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
2651
	struct cfq_io_context *cic;
2652 2653 2654 2655 2656 2657 2658 2659
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
2660
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2661 2662 2663
	if (!cic)
		return ELV_MQUEUE_MAY;

2664
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2665
	if (cfqq) {
2666
		cfq_init_prio_data(cfqq, cic->ioc);
2667 2668
		cfq_prio_boost(cfqq);

2669
		return __cfq_may_queue(cfqq);
2670 2671 2672
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
2673 2674 2675 2676 2677
}

/*
 * queue lock held here
 */
2678
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
2679
{
J
Jens Axboe 已提交
2680
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
2681

J
Jens Axboe 已提交
2682
	if (cfqq) {
2683
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
2684

2685 2686
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
2687

J
Jens Axboe 已提交
2688
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2689 2690

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
2691
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
2692 2693 2694 2695 2696

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
2697 2698 2699 2700 2701 2702
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2703
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
2704 2705 2706 2707
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
2734
/*
2735
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
2736
 */
2737
static int
2738
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2739 2740 2741 2742
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
2743
	const bool is_sync = rq_is_sync(rq);
2744
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
2745 2746 2747 2748
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

2749
	cic = cfq_get_io_context(cfqd, gfp_mask);
2750

L
Linus Torvalds 已提交
2751 2752
	spin_lock_irqsave(q->queue_lock, flags);

2753 2754 2755
	if (!cic)
		goto queue_fail;

2756
new_queue:
2757
	cfqq = cic_to_cfqq(cic, is_sync);
2758
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2759
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2760
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
2761
	} else {
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
2772 2773 2774 2775 2776 2777 2778 2779
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2780
	}
L
Linus Torvalds 已提交
2781 2782

	cfqq->allocated[rw]++;
2783
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
2784

J
Jens Axboe 已提交
2785
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
2786

J
Jens Axboe 已提交
2787 2788 2789
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
2790

2791 2792 2793
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
2794

2795
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2796
	spin_unlock_irqrestore(q->queue_lock, flags);
2797
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
2798 2799 2800
	return 1;
}

2801
static void cfq_kick_queue(struct work_struct *work)
2802
{
2803
	struct cfq_data *cfqd =
2804
		container_of(work, struct cfq_data, unplug_work);
2805
	struct request_queue *q = cfqd->queue;
2806

2807
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
2808
	__blk_run_queue(cfqd->queue);
2809
	spin_unlock_irq(q->queue_lock);
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
2820
	int timed_out = 1;
2821

2822 2823
	cfq_log(cfqd, "idle timer fired");

2824 2825
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

2826 2827
	cfqq = cfqd->active_queue;
	if (cfqq) {
2828 2829
		timed_out = 0;

2830 2831 2832 2833 2834 2835
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

2836 2837 2838
		/*
		 * expired
		 */
2839
		if (cfq_slice_used(cfqq))
2840 2841 2842 2843 2844 2845
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
2846
		if (!cfqd->busy_queues)
2847 2848 2849 2850 2851
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
2852
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2853 2854 2855
			goto out_kick;
	}
expire:
2856
	cfq_slice_expired(cfqd, timed_out);
2857
out_kick:
2858
	cfq_schedule_dispatch(cfqd);
2859 2860 2861 2862
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
2863 2864 2865
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
2866
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
2867
}
2868

2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
2879 2880 2881

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
2882 2883
}

J
Jens Axboe 已提交
2884
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
2885
{
2886
	struct cfq_data *cfqd = e->elevator_data;
2887
	struct request_queue *q = cfqd->queue;
2888

J
Jens Axboe 已提交
2889
	cfq_shutdown_timer_wq(cfqd);
2890

2891
	spin_lock_irq(q->queue_lock);
2892

2893
	if (cfqd->active_queue)
2894
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2895 2896

	while (!list_empty(&cfqd->cic_list)) {
2897 2898 2899
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
2900 2901

		__cfq_exit_single_io_context(cfqd, cic);
2902
	}
2903

2904
	cfq_put_async_queues(cfqd);
2905

2906
	spin_unlock_irq(q->queue_lock);
2907 2908 2909 2910

	cfq_shutdown_timer_wq(cfqd);

	kfree(cfqd);
L
Linus Torvalds 已提交
2911 2912
}

2913
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
2914 2915
{
	struct cfq_data *cfqd;
2916
	int i, j;
L
Linus Torvalds 已提交
2917

2918
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
2919
	if (!cfqd)
J
Jens Axboe 已提交
2920
		return NULL;
L
Linus Torvalds 已提交
2921

2922
	for (i = 0; i < 2; ++i)
2923 2924
		for (j = 0; j < 3; ++j)
			cfqd->service_trees[i][j] = CFQ_RB_ROOT;
2925
	cfqd->service_tree_idle = CFQ_RB_ROOT;
2926 2927 2928 2929 2930 2931 2932 2933 2934

	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

2935 2936 2937 2938 2939 2940 2941 2942
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);

2943
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
2944 2945 2946

	cfqd->queue = q;

2947 2948 2949 2950
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

2951
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2952

L
Linus Torvalds 已提交
2953
	cfqd->cfq_quantum = cfq_quantum;
2954 2955
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
2956 2957
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
2958 2959 2960 2961
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
2962
	cfqd->cfq_latency = 1;
2963
	cfqd->hw_tag = 1;
2964
	cfqd->last_end_sync_rq = jiffies;
J
Jens Axboe 已提交
2965
	return cfqd;
L
Linus Torvalds 已提交
2966 2967 2968 2969
}

static void cfq_slab_kill(void)
{
2970 2971 2972 2973
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
2974 2975 2976 2977 2978 2979 2980 2981
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
2982
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
2983 2984 2985
	if (!cfq_pool)
		goto fail;

2986
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3015
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3016
{									\
3017
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3018 3019 3020 3021 3022 3023
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3024 3025
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3026 3027
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3028 3029 3030 3031
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3032
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
L
Linus Torvalds 已提交
3033 3034 3035
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3036
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3037
{									\
3038
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3052 3053 3054 3055
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3056
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3057 3058
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3059 3060 3061
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3062 3063
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3064
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
L
Linus Torvalds 已提交
3065 3066
#undef STORE_FUNCTION

3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3080
	CFQ_ATTR(low_latency),
3081
	__ATTR_NULL
L
Linus Torvalds 已提交
3082 3083 3084 3085 3086 3087 3088
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3089
		.elevator_allow_merge_fn =	cfq_allow_merge,
3090
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3091
		.elevator_add_req_fn =		cfq_insert_request,
3092
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3093 3094 3095
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3096 3097
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3098 3099 3100 3101 3102
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3103
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3104
	},
3105
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3106 3107 3108 3109 3110 3111
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

static int __init cfq_init(void)
{
3112 3113 3114 3115 3116 3117 3118 3119
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3120 3121 3122
	if (cfq_slab_setup())
		return -ENOMEM;

3123
	elv_register(&iosched_cfq);
L
Linus Torvalds 已提交
3124

3125
	return 0;
L
Linus Torvalds 已提交
3126 3127 3128 3129
}

static void __exit cfq_exit(void)
{
3130
	DECLARE_COMPLETION_ONSTACK(all_gone);
L
Linus Torvalds 已提交
3131
	elv_unregister(&iosched_cfq);
3132
	ioc_gone = &all_gone;
3133 3134
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3135 3136 3137 3138 3139

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3140
	if (elv_ioc_count_read(cfq_ioc_count))
3141
		wait_for_completion(&all_gone);
3142
	cfq_slab_kill();
L
Linus Torvalds 已提交
3143 3144 3145 3146 3147 3148 3149 3150
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");