rtc-bfin.c 13.7 KB
Newer Older
1 2
/*
 * Blackfin On-Chip Real Time Clock Driver
3
 *  Supports BF51x/BF52x/BF53[123]/BF53[467]/BF54x
4
 *
5
 * Copyright 2004-2010 Analog Devices Inc.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 * Enter bugs at http://blackfin.uclinux.org/
 *
 * Licensed under the GPL-2 or later.
 */

/* The biggest issue we deal with in this driver is that register writes are
 * synced to the RTC frequency of 1Hz.  So if you write to a register and
 * attempt to write again before the first write has completed, the new write
 * is simply discarded.  This can easily be troublesome if userspace disables
 * one event (say periodic) and then right after enables an event (say alarm).
 * Since all events are maintained in the same interrupt mask register, if
 * we wrote to it to disable the first event and then wrote to it again to
 * enable the second event, that second event would not be enabled as the
 * write would be discarded and things quickly fall apart.
 *
 * To keep this delay from significantly degrading performance (we, in theory,
 * would have to sleep for up to 1 second everytime we wanted to write a
 * register), we only check the write pending status before we start to issue
 * a new write.  We bank on the idea that it doesnt matter when the sync
 * happens so long as we don't attempt another write before it does.  The only
 * time userspace would take this penalty is when they try and do multiple
 * operations right after another ... but in this case, they need to take the
 * sync penalty, so we should be OK.
 *
 * Also note that the RTC_ISTAT register does not suffer this penalty; its
 * writes to clear status registers complete immediately.
 */

35 36 37 38 39 40 41 42 43
/* It may seem odd that there is no SWCNT code in here (which would be exposed
 * via the periodic interrupt event, or PIE).  Since the Blackfin RTC peripheral
 * runs in units of seconds (N/HZ) but the Linux framework runs in units of HZ
 * (2^N HZ), there is no point in keeping code that only provides 1 HZ PIEs.
 * The same exact behavior can be accomplished by using the update interrupt
 * event (UIE).  Maybe down the line the RTC peripheral will suck less in which
 * case we can re-introduce PIE support.
 */

44
#include <linux/bcd.h>
45 46
#include <linux/completion.h>
#include <linux/delay.h>
47
#include <linux/init.h>
48 49 50
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
51
#include <linux/platform_device.h>
52
#include <linux/rtc.h>
53
#include <linux/seq_file.h>
54
#include <linux/slab.h>
55 56 57

#include <asm/blackfin.h>

58
#define dev_dbg_stamp(dev) dev_dbg(dev, "%s:%i: here i am\n", __func__, __LINE__)
59 60 61 62

struct bfin_rtc {
	struct rtc_device *rtc_dev;
	struct rtc_time rtc_alarm;
63
	u16 rtc_wrote_regs;
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
};

/* Bit values for the ISTAT / ICTL registers */
#define RTC_ISTAT_WRITE_COMPLETE  0x8000
#define RTC_ISTAT_WRITE_PENDING   0x4000
#define RTC_ISTAT_ALARM_DAY       0x0040
#define RTC_ISTAT_24HR            0x0020
#define RTC_ISTAT_HOUR            0x0010
#define RTC_ISTAT_MIN             0x0008
#define RTC_ISTAT_SEC             0x0004
#define RTC_ISTAT_ALARM           0x0002
#define RTC_ISTAT_STOPWATCH       0x0001

/* Shift values for RTC_STAT register */
#define DAY_BITS_OFF    17
#define HOUR_BITS_OFF   12
#define MIN_BITS_OFF    6
#define SEC_BITS_OFF    0

/* Some helper functions to convert between the common RTC notion of time
84
 * and the internal Blackfin notion that is encoded in 32bits.
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
 */
static inline u32 rtc_time_to_bfin(unsigned long now)
{
	u32 sec  = (now % 60);
	u32 min  = (now % (60 * 60)) / 60;
	u32 hour = (now % (60 * 60 * 24)) / (60 * 60);
	u32 days = (now / (60 * 60 * 24));
	return (sec  << SEC_BITS_OFF) +
	       (min  << MIN_BITS_OFF) +
	       (hour << HOUR_BITS_OFF) +
	       (days << DAY_BITS_OFF);
}
static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin)
{
	return (((rtc_bfin >> SEC_BITS_OFF)  & 0x003F)) +
	       (((rtc_bfin >> MIN_BITS_OFF)  & 0x003F) * 60) +
	       (((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) +
	       (((rtc_bfin >> DAY_BITS_OFF)  & 0x7FFF) * 60 * 60 * 24);
}
static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm)
{
	rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm);
}

109 110 111 112
/**
 *	bfin_rtc_sync_pending - make sure pending writes have complete
 *
 * Wait for the previous write to a RTC register to complete.
113 114 115 116 117 118 119 120 121 122 123 124 125 126
 * Unfortunately, we can't sleep here as that introduces a race condition when
 * turning on interrupt events.  Consider this:
 *  - process sets alarm
 *  - process enables alarm
 *  - process sleeps while waiting for rtc write to sync
 *  - interrupt fires while process is sleeping
 *  - interrupt acks the event by writing to ISTAT
 *  - interrupt sets the WRITE PENDING bit
 *  - interrupt handler finishes
 *  - process wakes up, sees WRITE PENDING bit set, goes to sleep
 *  - interrupt fires while process is sleeping
 * If anyone can point out the obvious solution here, i'm listening :).  This
 * shouldn't be an issue on an SMP or preempt system as this function should
 * only be called with the rtc lock held.
127 128 129 130 131
 *
 * Other options:
 *  - disable PREN so the sync happens at 32.768kHZ ... but this changes the
 *    inc rate for all RTC registers from 1HZ to 32.768kHZ ...
 *  - use the write complete IRQ
132
 */
133 134
/*
static void bfin_rtc_sync_pending_polled(void)
135
{
136
	while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE))
137 138 139 140
		if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING))
			break;
	bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
}
141 142 143 144 145 146 147 148 149
*/
static DECLARE_COMPLETION(bfin_write_complete);
static void bfin_rtc_sync_pending(struct device *dev)
{
	dev_dbg_stamp(dev);
	while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
		wait_for_completion_timeout(&bfin_write_complete, HZ * 5);
	dev_dbg_stamp(dev);
}
150

151 152 153 154 155 156
/**
 *	bfin_rtc_reset - set RTC to sane/known state
 *
 * Initialize the RTC.  Enable pre-scaler to scale RTC clock
 * to 1Hz and clear interrupt/status registers.
 */
157
static void bfin_rtc_reset(struct device *dev, u16 rtc_ictl)
158
{
159
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
160 161
	dev_dbg_stamp(dev);
	bfin_rtc_sync_pending(dev);
162
	bfin_write_RTC_PREN(0x1);
163
	bfin_write_RTC_ICTL(rtc_ictl);
164 165
	bfin_write_RTC_ALARM(0);
	bfin_write_RTC_ISTAT(0xFFFF);
166
	rtc->rtc_wrote_regs = 0;
167 168
}

169 170 171 172 173 174 175 176 177 178 179
/**
 *	bfin_rtc_interrupt - handle interrupt from RTC
 *
 * Since we handle all RTC events here, we have to make sure the requested
 * interrupt is enabled (in RTC_ICTL) as the event status register (RTC_ISTAT)
 * always gets updated regardless of the interrupt being enabled.  So when one
 * even we care about (e.g. stopwatch) goes off, we don't want to turn around
 * and say that other events have happened as well (e.g. second).  We do not
 * have to worry about pending writes to the RTC_ICTL register as interrupts
 * only fire if they are enabled in the RTC_ICTL register.
 */
180 181
static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id)
{
182 183
	struct device *dev = dev_id;
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
184
	unsigned long events = 0;
185
	bool write_complete = false;
186
	u16 rtc_istat, rtc_istat_clear, rtc_ictl, bits;
187

188
	dev_dbg_stamp(dev);
189 190

	rtc_istat = bfin_read_RTC_ISTAT();
191
	rtc_ictl = bfin_read_RTC_ICTL();
192
	rtc_istat_clear = 0;
193

194 195 196
	bits = RTC_ISTAT_WRITE_COMPLETE;
	if (rtc_istat & bits) {
		rtc_istat_clear |= bits;
197 198
		write_complete = true;
		complete(&bfin_write_complete);
199 200
	}

201 202 203 204
	bits = (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY);
	if (rtc_ictl & bits) {
		if (rtc_istat & bits) {
			rtc_istat_clear |= bits;
205 206
			events |= RTC_AF | RTC_IRQF;
		}
207 208
	}

209 210 211 212
	bits = RTC_ISTAT_SEC;
	if (rtc_ictl & bits) {
		if (rtc_istat & bits) {
			rtc_istat_clear |= bits;
213 214 215
			events |= RTC_UF | RTC_IRQF;
		}
	}
216

217 218
	if (events)
		rtc_update_irq(rtc->rtc_dev, 1, events);
219

220 221
	if (write_complete || events) {
		bfin_write_RTC_ISTAT(rtc_istat_clear);
222
		return IRQ_HANDLED;
223
	} else
224
		return IRQ_NONE;
225 226
}

227
static void bfin_rtc_int_set(u16 rtc_int)
228 229 230 231
{
	bfin_write_RTC_ISTAT(rtc_int);
	bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | rtc_int);
}
232
static void bfin_rtc_int_clear(u16 rtc_int)
233 234 235 236 237 238 239 240
{
	bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & rtc_int);
}
static void bfin_rtc_int_set_alarm(struct bfin_rtc *rtc)
{
	/* Blackfin has different bits for whether the alarm is
	 * more than 24 hours away.
	 */
241
	bfin_rtc_int_set(rtc->rtc_alarm.tm_yday == -1 ? RTC_ISTAT_ALARM : RTC_ISTAT_ALARM_DAY);
242
}
243 244 245
static int bfin_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
246
	int ret = 0;
247

248
	dev_dbg_stamp(dev);
249

250 251
	bfin_rtc_sync_pending(dev);

252 253
	switch (cmd) {
	case RTC_UIE_ON:
254
		dev_dbg_stamp(dev);
255
		bfin_rtc_int_set(RTC_ISTAT_SEC);
256
		break;
257
	case RTC_UIE_OFF:
258
		dev_dbg_stamp(dev);
259
		bfin_rtc_int_clear(~RTC_ISTAT_SEC);
260
		break;
261

262
	case RTC_AIE_ON:
263
		dev_dbg_stamp(dev);
264 265
		bfin_rtc_int_set_alarm(rtc);
		break;
266
	case RTC_AIE_OFF:
267
		dev_dbg_stamp(dev);
268
		bfin_rtc_int_clear(~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
269 270 271 272 273
		break;

	default:
		dev_dbg_stamp(dev);
		ret = -ENOIOCTLCMD;
274 275
	}

276
	return ret;
277 278 279 280 281 282
}

static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);

283
	dev_dbg_stamp(dev);
284

285 286 287
	if (rtc->rtc_wrote_regs & 0x1)
		bfin_rtc_sync_pending(dev);

288 289 290 291 292 293 294 295 296 297 298
	rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm);

	return 0;
}

static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
	int ret;
	unsigned long now;

299
	dev_dbg_stamp(dev);
300 301 302

	ret = rtc_tm_to_time(tm, &now);
	if (ret == 0) {
303 304
		if (rtc->rtc_wrote_regs & 0x1)
			bfin_rtc_sync_pending(dev);
305
		bfin_write_RTC_STAT(rtc_time_to_bfin(now));
306
		rtc->rtc_wrote_regs = 0x1;
307 308 309 310 311 312 313 314
	}

	return ret;
}

static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
315
	dev_dbg_stamp(dev);
316
	alrm->time = rtc->rtc_alarm;
317
	bfin_rtc_sync_pending(dev);
318
	alrm->enabled = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
319 320 321 322 323 324
	return 0;
}

static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
325 326
	unsigned long rtc_alarm;

327
	dev_dbg_stamp(dev);
328 329 330 331

	if (rtc_tm_to_time(&alrm->time, &rtc_alarm))
		return -EINVAL;

332
	rtc->rtc_alarm = alrm->time;
333 334 335 336 337 338

	bfin_rtc_sync_pending(dev);
	bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm));
	if (alrm->enabled)
		bfin_rtc_int_set_alarm(rtc);

339 340 341 342 343
	return 0;
}

static int bfin_rtc_proc(struct device *dev, struct seq_file *seq)
{
344
#define yesno(x) ((x) ? "yes" : "no")
345
	u16 ictl = bfin_read_RTC_ICTL();
346
	dev_dbg_stamp(dev);
347 348 349
	seq_printf(seq,
		"alarm_IRQ\t: %s\n"
		"wkalarm_IRQ\t: %s\n"
350
		"seconds_IRQ\t: %s\n",
351 352
		yesno(ictl & RTC_ISTAT_ALARM),
		yesno(ictl & RTC_ISTAT_ALARM_DAY),
353
		yesno(ictl & RTC_ISTAT_SEC));
354
	return 0;
355
#undef yesno
356 357 358 359 360 361 362 363 364 365 366 367 368 369
}

static struct rtc_class_ops bfin_rtc_ops = {
	.ioctl         = bfin_rtc_ioctl,
	.read_time     = bfin_rtc_read_time,
	.set_time      = bfin_rtc_set_time,
	.read_alarm    = bfin_rtc_read_alarm,
	.set_alarm     = bfin_rtc_set_alarm,
	.proc          = bfin_rtc_proc,
};

static int __devinit bfin_rtc_probe(struct platform_device *pdev)
{
	struct bfin_rtc *rtc;
370
	struct device *dev = &pdev->dev;
371
	int ret = 0;
372
	unsigned long timeout = jiffies + HZ;
373

374
	dev_dbg_stamp(dev);
375

376
	/* Allocate memory for our RTC struct */
377 378 379
	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
	if (unlikely(!rtc))
		return -ENOMEM;
380
	platform_set_drvdata(pdev, rtc);
381
	device_init_wakeup(dev, 1);
382

383 384 385 386 387 388 389 390
	/* Register our RTC with the RTC framework */
	rtc->rtc_dev = rtc_device_register(pdev->name, dev, &bfin_rtc_ops,
						THIS_MODULE);
	if (unlikely(IS_ERR(rtc->rtc_dev))) {
		ret = PTR_ERR(rtc->rtc_dev);
		goto err;
	}

391
	/* Grab the IRQ and init the hardware */
392
	ret = request_irq(IRQ_RTC, bfin_rtc_interrupt, 0, pdev->name, dev);
393
	if (unlikely(ret))
394
		goto err_reg;
395 396 397 398 399 400
	/* sometimes the bootloader touched things, but the write complete was not
	 * enabled, so let's just do a quick timeout here since the IRQ will not fire ...
	 */
	while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
		if (time_after(jiffies, timeout))
			break;
401
	bfin_rtc_reset(dev, RTC_ISTAT_WRITE_COMPLETE);
402
	bfin_write_RTC_SWCNT(0);
403 404 405

	return 0;

406 407 408
err_reg:
	rtc_device_unregister(rtc->rtc_dev);
err:
409 410 411 412 413 414 415
	kfree(rtc);
	return ret;
}

static int __devexit bfin_rtc_remove(struct platform_device *pdev)
{
	struct bfin_rtc *rtc = platform_get_drvdata(pdev);
416
	struct device *dev = &pdev->dev;
417

418 419
	bfin_rtc_reset(dev, 0);
	free_irq(IRQ_RTC, dev);
420 421 422 423 424 425 426
	rtc_device_unregister(rtc->rtc_dev);
	platform_set_drvdata(pdev, NULL);
	kfree(rtc);

	return 0;
}

427 428 429
#ifdef CONFIG_PM
static int bfin_rtc_suspend(struct platform_device *pdev, pm_message_t state)
{
430 431 432 433 434
	struct device *dev = &pdev->dev;

	dev_dbg_stamp(dev);

	if (device_may_wakeup(dev)) {
435
		enable_irq_wake(IRQ_RTC);
436
		bfin_rtc_sync_pending(dev);
437
	} else
438
		bfin_rtc_int_clear(0);
439

440 441 442 443 444
	return 0;
}

static int bfin_rtc_resume(struct platform_device *pdev)
{
445 446 447 448 449
	struct device *dev = &pdev->dev;

	dev_dbg_stamp(dev);

	if (device_may_wakeup(dev))
450
		disable_irq_wake(IRQ_RTC);
451 452 453 454 455 456 457 458 459 460 461

	/*
	 * Since only some of the RTC bits are maintained externally in the
	 * Vbat domain, we need to wait for the RTC MMRs to be synced into
	 * the core after waking up.  This happens every RTC 1HZ.  Once that
	 * has happened, we can go ahead and re-enable the important write
	 * complete interrupt event.
	 */
	while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_SEC))
		continue;
	bfin_rtc_int_set(RTC_ISTAT_WRITE_COMPLETE);
462

463 464
	return 0;
}
465 466 467
#else
# define bfin_rtc_suspend NULL
# define bfin_rtc_resume  NULL
468 469
#endif

470 471 472 473 474 475 476
static struct platform_driver bfin_rtc_driver = {
	.driver		= {
		.name	= "rtc-bfin",
		.owner	= THIS_MODULE,
	},
	.probe		= bfin_rtc_probe,
	.remove		= __devexit_p(bfin_rtc_remove),
477 478
	.suspend	= bfin_rtc_suspend,
	.resume		= bfin_rtc_resume,
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
};

static int __init bfin_rtc_init(void)
{
	return platform_driver_register(&bfin_rtc_driver);
}

static void __exit bfin_rtc_exit(void)
{
	platform_driver_unregister(&bfin_rtc_driver);
}

module_init(bfin_rtc_init);
module_exit(bfin_rtc_exit);

MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver");
MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>");
MODULE_LICENSE("GPL");
497
MODULE_ALIAS("platform:rtc-bfin");