Kconfig 6.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
#
# Security configuration
#

menu "Security options"

7
source security/keys/Kconfig
L
Linus Torvalds 已提交
8

9 10 11 12 13 14 15 16 17 18 19 20
config SECURITY_DMESG_RESTRICT
	bool "Restrict unprivileged access to the kernel syslog"
	default n
	help
	  This enforces restrictions on unprivileged users reading the kernel
	  syslog via dmesg(8).

	  If this option is not selected, no restrictions will be enforced
	  unless the dmesg_restrict sysctl is explicitly set to (1).

	  If you are unsure how to answer this question, answer N.

L
Linus Torvalds 已提交
21 22
config SECURITY
	bool "Enable different security models"
23
	depends on SYSFS
24
	depends on MULTIUSER
L
Linus Torvalds 已提交
25 26 27 28 29 30 31 32 33
	help
	  This allows you to choose different security modules to be
	  configured into your kernel.

	  If this option is not selected, the default Linux security
	  model will be used.

	  If you are unsure how to answer this question, answer N.

34 35 36 37
config SECURITYFS
	bool "Enable the securityfs filesystem"
	help
	  This will build the securityfs filesystem.  It is currently used by
38 39
	  the TPM bios character driver and IMA, an integrity provider.  It is
	  not used by SELinux or SMACK.
40 41 42

	  If you are unsure how to answer this question, answer N.

L
Linus Torvalds 已提交
43 44 45 46 47 48 49 50
config SECURITY_NETWORK
	bool "Socket and Networking Security Hooks"
	depends on SECURITY
	help
	  This enables the socket and networking security hooks.
	  If enabled, a security module can use these hooks to
	  implement socket and networking access controls.
	  If you are unsure how to answer this question, answer N.
51 52 53 54 55 56 57 58 59 60 61 62 63

config SECURITY_NETWORK_XFRM
	bool "XFRM (IPSec) Networking Security Hooks"
	depends on XFRM && SECURITY_NETWORK
	help
	  This enables the XFRM (IPSec) networking security hooks.
	  If enabled, a security module can use these hooks to
	  implement per-packet access controls based on labels
	  derived from IPSec policy.  Non-IPSec communications are
	  designated as unlabelled, and only sockets authorized
	  to communicate unlabelled data can send without using
	  IPSec.
	  If you are unsure how to answer this question, answer N.
L
Linus Torvalds 已提交
64

65 66 67 68 69 70 71 72 73
config SECURITY_PATH
	bool "Security hooks for pathname based access control"
	depends on SECURITY
	help
	  This enables the security hooks for pathname based access control.
	  If enabled, a security module can use these hooks to
	  implement pathname based access controls.
	  If you are unsure how to answer this question, answer N.

74 75
config INTEL_TXT
	bool "Enable Intel(R) Trusted Execution Technology (Intel(R) TXT)"
76
	depends on HAVE_INTEL_TXT
77 78 79 80 81 82 83
	help
	  This option enables support for booting the kernel with the
	  Trusted Boot (tboot) module. This will utilize
	  Intel(R) Trusted Execution Technology to perform a measured launch
	  of the kernel. If the system does not support Intel(R) TXT, this
	  will have no effect.

84
	  Intel TXT will provide higher assurance of system configuration and
85 86 87 88 89 90 91 92
	  initial state as well as data reset protection.  This is used to
	  create a robust initial kernel measurement and verification, which
	  helps to ensure that kernel security mechanisms are functioning
	  correctly. This level of protection requires a root of trust outside
	  of the kernel itself.

	  Intel TXT also helps solve real end user concerns about having
	  confidence that their hardware is running the VMM or kernel that
93
	  it was configured with, especially since they may be responsible for
94 95 96 97 98 99 100 101 102 103
	  providing such assurances to VMs and services running on it.

	  See <http://www.intel.com/technology/security/> for more information
	  about Intel(R) TXT.
	  See <http://tboot.sourceforge.net> for more information about tboot.
	  See Documentation/intel_txt.txt for a description of how to enable
	  Intel TXT support in a kernel boot.

	  If you are unsure as to whether this is required, answer N.

104
config LSM_MMAP_MIN_ADDR
105
	int "Low address space for LSM to protect from user allocation"
106
	depends on SECURITY && SECURITY_SELINUX
107
	default 32768 if ARM || (ARM64 && COMPAT)
108
	default 65536
109 110 111 112 113 114 115 116 117 118 119 120
	help
	  This is the portion of low virtual memory which should be protected
	  from userspace allocation.  Keeping a user from writing to low pages
	  can help reduce the impact of kernel NULL pointer bugs.

	  For most ia64, ppc64 and x86 users with lots of address space
	  a value of 65536 is reasonable and should cause no problems.
	  On arm and other archs it should not be higher than 32768.
	  Programs which use vm86 functionality or have some need to map
	  this low address space will need the permission specific to the
	  systems running LSM.

K
Kees Cook 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
config HAVE_HARDENED_USERCOPY_ALLOCATOR
	bool
	help
	  The heap allocator implements __check_heap_object() for
	  validating memory ranges against heap object sizes in
	  support of CONFIG_HARDENED_USERCOPY.

config HAVE_ARCH_HARDENED_USERCOPY
	bool
	help
	  The architecture supports CONFIG_HARDENED_USERCOPY by
	  calling check_object_size() just before performing the
	  userspace copies in the low level implementation of
	  copy_to_user() and copy_from_user().

config HARDENED_USERCOPY
	bool "Harden memory copies between kernel and userspace"
	depends on HAVE_ARCH_HARDENED_USERCOPY
139
	depends on HAVE_HARDENED_USERCOPY_ALLOCATOR
K
Kees Cook 已提交
140 141 142 143 144 145 146 147 148 149
	select BUG
	help
	  This option checks for obviously wrong memory regions when
	  copying memory to/from the kernel (via copy_to_user() and
	  copy_from_user() functions) by rejecting memory ranges that
	  are larger than the specified heap object, span multiple
	  separately allocates pages, are not on the process stack,
	  or are part of the kernel text. This kills entire classes
	  of heap overflow exploits and similar kernel memory exposures.

L
Linus Torvalds 已提交
150
source security/selinux/Kconfig
151
source security/smack/Kconfig
K
Kentaro Takeda 已提交
152
source security/tomoyo/Kconfig
153
source security/apparmor/Kconfig
154
source security/loadpin/Kconfig
K
Kees Cook 已提交
155
source security/yama/Kconfig
L
Linus Torvalds 已提交
156

157
source security/integrity/Kconfig
158

J
John Johansen 已提交
159 160 161 162 163
choice
	prompt "Default security module"
	default DEFAULT_SECURITY_SELINUX if SECURITY_SELINUX
	default DEFAULT_SECURITY_SMACK if SECURITY_SMACK
	default DEFAULT_SECURITY_TOMOYO if SECURITY_TOMOYO
164
	default DEFAULT_SECURITY_APPARMOR if SECURITY_APPARMOR
J
John Johansen 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
	default DEFAULT_SECURITY_DAC

	help
	  Select the security module that will be used by default if the
	  kernel parameter security= is not specified.

	config DEFAULT_SECURITY_SELINUX
		bool "SELinux" if SECURITY_SELINUX=y

	config DEFAULT_SECURITY_SMACK
		bool "Simplified Mandatory Access Control" if SECURITY_SMACK=y

	config DEFAULT_SECURITY_TOMOYO
		bool "TOMOYO" if SECURITY_TOMOYO=y

180 181 182
	config DEFAULT_SECURITY_APPARMOR
		bool "AppArmor" if SECURITY_APPARMOR=y

J
John Johansen 已提交
183 184 185 186 187 188 189 190 191 192
	config DEFAULT_SECURITY_DAC
		bool "Unix Discretionary Access Controls"

endchoice

config DEFAULT_SECURITY
	string
	default "selinux" if DEFAULT_SECURITY_SELINUX
	default "smack" if DEFAULT_SECURITY_SMACK
	default "tomoyo" if DEFAULT_SECURITY_TOMOYO
193
	default "apparmor" if DEFAULT_SECURITY_APPARMOR
J
John Johansen 已提交
194 195
	default "" if DEFAULT_SECURITY_DAC

L
Linus Torvalds 已提交
196 197
endmenu