rt2x00dev.c 32.8 KB
Newer Older
1
/*
2
	Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2x00lib
	Abstract: rt2x00 generic device routines.
 */

#include <linux/kernel.h>
#include <linux/module.h>

#include "rt2x00.h"
#include "rt2x00lib.h"
31
#include "rt2x00dump.h"
32 33 34 35

/*
 * Link tuning handlers
 */
36
void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
37
{
38 39 40 41 42 43 44 45 46 47 48
	if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
		return;

	/*
	 * Reset link information.
	 * Both the currently active vgc level as well as
	 * the link tuner counter should be reset. Resetting
	 * the counter is important for devices where the
	 * device should only perform link tuning during the
	 * first minute after being enabled.
	 */
49 50 51
	rt2x00dev->link.count = 0;
	rt2x00dev->link.vgc_level = 0;

52 53 54 55 56 57 58 59 60 61 62
	/*
	 * Reset the link tuner.
	 */
	rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
}

static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Clear all (possibly) pre-existing quality statistics.
	 */
63 64 65 66 67 68 69 70 71 72 73 74
	memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));

	/*
	 * The RX and TX percentage should start at 50%
	 * this will assure we will get at least get some
	 * decent value when the link tuner starts.
	 * The value will be dropped and overwritten with
	 * the correct (measured )value anyway during the
	 * first run of the link tuner.
	 */
	rt2x00dev->link.qual.rx_percentage = 50;
	rt2x00dev->link.qual.tx_percentage = 50;
75

76
	rt2x00lib_reset_link_tuner(rt2x00dev);
77 78 79 80 81 82 83

	queue_delayed_work(rt2x00dev->hw->workqueue,
			   &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
}

static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
{
84
	cancel_delayed_work_sync(&rt2x00dev->link.work);
85 86 87 88 89 90 91 92 93 94 95 96 97 98
}

/*
 * Radio control handlers.
 */
int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	int status;

	/*
	 * Don't enable the radio twice.
	 * And check if the hardware button has been disabled.
	 */
	if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99
	    test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100 101
		return 0;

102
	/*
103
	 * Initialize all data queues.
104
	 */
105 106
	rt2x00queue_init_rx(rt2x00dev);
	rt2x00queue_init_tx(rt2x00dev);
107

108 109 110 111 112 113 114 115 116 117 118 119 120
	/*
	 * Enable radio.
	 */
	status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
						       STATE_RADIO_ON);
	if (status)
		return status;

	__set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);

	/*
	 * Enable RX.
	 */
121
	rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

	/*
	 * Start the TX queues.
	 */
	ieee80211_start_queues(rt2x00dev->hw);

	return 0;
}

void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
		return;

	/*
137
	 * Stop all scheduled work.
138
	 */
139 140
	if (work_pending(&rt2x00dev->intf_work))
		cancel_work_sync(&rt2x00dev->intf_work);
141 142
	if (work_pending(&rt2x00dev->filter_work))
		cancel_work_sync(&rt2x00dev->filter_work);
143 144 145 146 147 148 149 150 151

	/*
	 * Stop the TX queues.
	 */
	ieee80211_stop_queues(rt2x00dev->hw);

	/*
	 * Disable RX.
	 */
152
	rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
153 154 155 156 157 158 159

	/*
	 * Disable radio.
	 */
	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
}

160
void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
161 162 163 164
{
	/*
	 * When we are disabling the RX, we should also stop the link tuner.
	 */
165
	if (state == STATE_RADIO_RX_OFF)
166 167 168 169 170 171 172
		rt2x00lib_stop_link_tuner(rt2x00dev);

	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);

	/*
	 * When we are enabling the RX, we should also start the link tuner.
	 */
173
	if (state == STATE_RADIO_RX_ON &&
174
	    (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
175 176 177
		rt2x00lib_start_link_tuner(rt2x00dev);
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
{
	enum antenna rx = rt2x00dev->link.ant.active.rx;
	enum antenna tx = rt2x00dev->link.ant.active.tx;
	int sample_a =
	    rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
	int sample_b =
	    rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);

	/*
	 * We are done sampling. Now we should evaluate the results.
	 */
	rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;

	/*
	 * During the last period we have sampled the RSSI
	 * from both antenna's. It now is time to determine
	 * which antenna demonstrated the best performance.
	 * When we are already on the antenna with the best
	 * performance, then there really is nothing for us
	 * left to do.
	 */
	if (sample_a == sample_b)
		return;

203 204
	if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
		rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
205

206 207
	if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
		tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

	rt2x00lib_config_antenna(rt2x00dev, rx, tx);
}

static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
{
	enum antenna rx = rt2x00dev->link.ant.active.rx;
	enum antenna tx = rt2x00dev->link.ant.active.tx;
	int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
	int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);

	/*
	 * Legacy driver indicates that we should swap antenna's
	 * when the difference in RSSI is greater that 5. This
	 * also should be done when the RSSI was actually better
	 * then the previous sample.
	 * When the difference exceeds the threshold we should
	 * sample the rssi from the other antenna to make a valid
	 * comparison between the 2 antennas.
	 */
228
	if (abs(rssi_curr - rssi_old) < 5)
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
		return;

	rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;

	if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
		rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;

	if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
		tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;

	rt2x00lib_config_antenna(rt2x00dev, rx, tx);
}

static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Determine if software diversity is enabled for
	 * either the TX or RX antenna (or both).
	 * Always perform this check since within the link
	 * tuner interval the configuration might have changed.
	 */
	rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
	rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;

	if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
254
	    rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
255 256
		rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
	if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
257
	    rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
258 259 260 261
		rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;

	if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
	    !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
262
		rt2x00dev->link.ant.flags = 0;
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
		return;
	}

	/*
	 * If we have only sampled the data over the last period
	 * we should now harvest the data. Otherwise just evaluate
	 * the data. The latter should only be performed once
	 * every 2 seconds.
	 */
	if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
		rt2x00lib_evaluate_antenna_sample(rt2x00dev);
	else if (rt2x00dev->link.count & 1)
		rt2x00lib_evaluate_antenna_eval(rt2x00dev);
}

static void rt2x00lib_update_link_stats(struct link *link, int rssi)
{
	int avg_rssi = rssi;

	/*
	 * Update global RSSI
	 */
	if (link->qual.avg_rssi)
		avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
	link->qual.avg_rssi = avg_rssi;

	/*
	 * Update antenna RSSI
	 */
	if (link->ant.rssi_ant)
		rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
	link->ant.rssi_ant = rssi;
}

297
static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
298
{
299 300 301 302
	if (qual->rx_failed || qual->rx_success)
		qual->rx_percentage =
		    (qual->rx_success * 100) /
		    (qual->rx_failed + qual->rx_success);
303
	else
304
		qual->rx_percentage = 50;
305

306 307 308 309
	if (qual->tx_failed || qual->tx_success)
		qual->tx_percentage =
		    (qual->tx_success * 100) /
		    (qual->tx_failed + qual->tx_success);
310
	else
311
		qual->tx_percentage = 50;
312

313 314 315 316
	qual->rx_success = 0;
	qual->rx_failed = 0;
	qual->tx_success = 0;
	qual->tx_failed = 0;
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
}

static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
					   int rssi)
{
	int rssi_percentage = 0;
	int signal;

	/*
	 * We need a positive value for the RSSI.
	 */
	if (rssi < 0)
		rssi += rt2x00dev->rssi_offset;

	/*
	 * Calculate the different percentages,
	 * which will be used for the signal.
	 */
	if (rt2x00dev->rssi_offset)
		rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;

	/*
	 * Add the individual percentages and use the WEIGHT
	 * defines to calculate the current link signal.
	 */
	signal = ((WEIGHT_RSSI * rssi_percentage) +
343 344
		  (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
		  (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
345 346 347 348 349 350 351 352 353

	return (signal > 100) ? 100 : signal;
}

static void rt2x00lib_link_tuner(struct work_struct *work)
{
	struct rt2x00_dev *rt2x00dev =
	    container_of(work, struct rt2x00_dev, link.work.work);

354 355 356 357 358 359 360
	/*
	 * When the radio is shutting down we should
	 * immediately cease all link tuning.
	 */
	if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
		return;

361 362 363
	/*
	 * Update statistics.
	 */
364
	rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
365
	rt2x00dev->low_level_stats.dot11FCSErrorCount +=
366
	    rt2x00dev->link.qual.rx_failed;
367 368 369 370 371 372 373 374

	/*
	 * Only perform the link tuning when Link tuning
	 * has been enabled (This could have been disabled from the EEPROM).
	 */
	if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
		rt2x00dev->ops->lib->link_tuner(rt2x00dev);

375 376 377 378
	/*
	 * Precalculate a portion of the link signal which is
	 * in based on the tx/rx success/failure counters.
	 */
379
	rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
380

381 382 383 384 385
	/*
	 * Send a signal to the led to update the led signal strength.
	 */
	rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);

386 387 388 389 390 391
	/*
	 * Evaluate antenna setup, make this the last step since this could
	 * possibly reset some statistics.
	 */
	rt2x00lib_evaluate_antenna(rt2x00dev);

392 393 394 395 396 397 398 399
	/*
	 * Increase tuner counter, and reschedule the next link tuner run.
	 */
	rt2x00dev->link.count++;
	queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
			   LINK_TUNE_INTERVAL);
}

400 401 402 403
static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
{
	struct rt2x00_dev *rt2x00dev =
	    container_of(work, struct rt2x00_dev, filter_work);
404
	unsigned int filter = rt2x00dev->packet_filter;
405 406

	/*
407
	 * Since we had stored the filter inside rt2x00dev->packet_filter,
408 409
	 * we should now clear that field. Otherwise the driver will
	 * assume nothing has changed (*total_flags will be compared
410
	 * to rt2x00dev->packet_filter to determine if any action is required).
411
	 */
412
	rt2x00dev->packet_filter = 0;
413 414

	rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
415
					     filter, &filter, 0, NULL);
416 417
}

418 419
static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
					  struct ieee80211_vif *vif)
420
{
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
	struct rt2x00_dev *rt2x00dev = data;
	struct rt2x00_intf *intf = vif_to_intf(vif);
	struct sk_buff *skb;
	struct ieee80211_tx_control control;
	struct ieee80211_bss_conf conf;
	int delayed_flags;

	/*
	 * Copy all data we need during this action under the protection
	 * of a spinlock. Otherwise race conditions might occur which results
	 * into an invalid configuration.
	 */
	spin_lock(&intf->lock);

	memcpy(&conf, &intf->conf, sizeof(conf));
	delayed_flags = intf->delayed_flags;
	intf->delayed_flags = 0;

	spin_unlock(&intf->lock);

	if (delayed_flags & DELAYED_UPDATE_BEACON) {
		skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
		if (skb) {
			rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
							  &control);
			dev_kfree_skb(skb);
		}
	}

450 451
	if (delayed_flags & DELAYED_CONFIG_ERP)
		rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
452
}
453

454 455 456 457
static void rt2x00lib_intf_scheduled(struct work_struct *work)
{
	struct rt2x00_dev *rt2x00dev =
	    container_of(work, struct rt2x00_dev, intf_work);
458 459

	/*
460 461
	 * Iterate over each interface and perform the
	 * requested configurations.
462
	 */
463 464 465
	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
					    rt2x00lib_intf_scheduled_iter,
					    rt2x00dev);
466 467
}

468 469 470
/*
 * Interrupt context handlers.
 */
471 472
static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
				      struct ieee80211_vif *vif)
473
{
474
	struct rt2x00_intf *intf = vif_to_intf(vif);
475

476 477
	if (vif->type != IEEE80211_IF_TYPE_AP &&
	    vif->type != IEEE80211_IF_TYPE_IBSS)
478 479
		return;

480 481 482
	spin_lock(&intf->lock);
	intf->delayed_flags |= DELAYED_UPDATE_BEACON;
	spin_unlock(&intf->lock);
483 484 485 486 487 488 489
}

void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
{
	if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
		return;

490 491 492 493 494
	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
					    rt2x00lib_beacondone_iter,
					    rt2x00dev);

	queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
495 496 497
}
EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);

498 499
void rt2x00lib_txdone(struct queue_entry *entry,
		      struct txdone_entry_desc *txdesc)
500
{
501
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
502
	struct skb_frame_desc *skbdesc;
503 504 505 506 507 508
	struct ieee80211_tx_status tx_status;
	int success = !!(txdesc->status == TX_SUCCESS ||
			 txdesc->status == TX_SUCCESS_RETRY);
	int fail = !!(txdesc->status == TX_FAIL_RETRY ||
		      txdesc->status == TX_FAIL_INVALID ||
		      txdesc->status == TX_FAIL_OTHER);
509 510 511 512

	/*
	 * Update TX statistics.
	 */
513
	rt2x00dev->link.qual.tx_success += success;
514
	rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
515

516 517 518 519 520 521 522
	/*
	 * Initialize TX status
	 */
	tx_status.flags = 0;
	tx_status.ack_signal = 0;
	tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
	tx_status.retry_count = txdesc->retry;
523
	memcpy(&tx_status.control, txdesc->control, sizeof(*txdesc->control));
524 525

	if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
526
		if (success)
527
			tx_status.flags |= IEEE80211_TX_STATUS_ACK;
528
		else
529
			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
530 531
	}

532 533
	tx_status.queue_length = entry->queue->limit;
	tx_status.queue_number = tx_status.control.queue;
534

535
	if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
536
		if (success)
537
			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
538
		else
539
			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
540 541 542
	}

	/*
543 544 545 546 547 548
	 * Send the tx_status to debugfs. Only send the status report
	 * to mac80211 when the frame originated from there. If this was
	 * a extra frame coming through a mac80211 library call (RTS/CTS)
	 * then we should not send the status report back.
	 * If send to mac80211, mac80211 will clean up the skb structure,
	 * otherwise we have to do it ourself.
549
	 */
550 551 552
	skbdesc = get_skb_frame_desc(entry->skb);
	skbdesc->frame_type = DUMP_FRAME_TXDONE;

553
	rt2x00debug_dump_frame(rt2x00dev, entry->skb);
554 555 556 557 558 559

	if (!(skbdesc->flags & FRAME_DESC_DRIVER_GENERATED))
		ieee80211_tx_status_irqsafe(rt2x00dev->hw,
					    entry->skb, &tx_status);
	else
		dev_kfree_skb(entry->skb);
560 561 562 563
	entry->skb = NULL;
}
EXPORT_SYMBOL_GPL(rt2x00lib_txdone);

564 565
void rt2x00lib_rxdone(struct queue_entry *entry,
		      struct rxdone_entry_desc *rxdesc)
566
{
567
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
568
	struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
569
	struct ieee80211_supported_band *sband;
570
	struct ieee80211_hdr *hdr;
571
	const struct rt2x00_rate *rate;
572
	unsigned int i;
573
	int idx = -1;
574
	u16 fc;
575 576 577 578

	/*
	 * Update RX statistics.
	 */
579 580
	sband = &rt2x00dev->bands[rt2x00dev->curr_band];
	for (i = 0; i < sband->n_bitrates; i++) {
581
		rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
582 583 584 585

		/*
		 * When frame was received with an OFDM bitrate,
		 * the signal is the PLCP value. If it was received with
586
		 * a CCK bitrate the signal is the rate in 100kbit/s.
587
		 */
588 589
		if ((rxdesc->ofdm && rate->plcp == rxdesc->signal) ||
		    (!rxdesc->ofdm && rate->bitrate == rxdesc->signal)) {
590
			idx = i;
591 592 593 594
			break;
		}
	}

595
	/*
596
	 * Only update link status if this is a beacon frame carrying our bssid.
597
	 */
598
	hdr = (struct ieee80211_hdr *)entry->skb->data;
599
	fc = le16_to_cpu(hdr->frame_control);
600 601
	if (is_beacon(fc) && rxdesc->my_bss)
		rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
602

603
	rt2x00dev->link.qual.rx_success++;
604

605
	rx_status->rate_idx = idx;
606
	rx_status->signal =
607 608 609
	    rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
	rx_status->ssi = rxdesc->rssi;
	rx_status->flag = rxdesc->flags;
610
	rx_status->antenna = rt2x00dev->link.ant.active.rx;
611 612

	/*
613 614
	 * Send frame to mac80211 & debugfs.
	 * mac80211 will clean up the skb structure.
615
	 */
616 617 618 619
	get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
	rt2x00debug_dump_frame(rt2x00dev, entry->skb);
	ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
	entry->skb = NULL;
620 621 622 623 624 625 626
}
EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);

/*
 * TX descriptor initializer
 */
void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
627
			     struct sk_buff *skb,
628 629
			     struct ieee80211_tx_control *control)
{
630 631
	struct txentry_desc txdesc;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
632
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skbdesc->data;
633
	const struct rt2x00_rate *rate;
634
	int tx_rate;
635
	int length;
636 637 638 639 640
	int duration;
	int residual;
	u16 frame_control;
	u16 seq_ctrl;

641
	memset(&txdesc, 0, sizeof(txdesc));
642

643
	txdesc.queue = skbdesc->entry->queue->qid;
644 645 646
	txdesc.cw_min = skbdesc->entry->queue->cw_min;
	txdesc.cw_max = skbdesc->entry->queue->cw_max;
	txdesc.aifs = skbdesc->entry->queue->aifs;
647 648 649 650

	/*
	 * Read required fields from ieee80211 header.
	 */
651 652
	frame_control = le16_to_cpu(hdr->frame_control);
	seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
653

654
	tx_rate = control->tx_rate->hw_value;
655

656 657 658 659
	/*
	 * Check whether this frame is to be acked
	 */
	if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
660
		__set_bit(ENTRY_TXD_ACK, &txdesc.flags);
661

662 663 664 665
	/*
	 * Check if this is a RTS/CTS frame
	 */
	if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
666
		__set_bit(ENTRY_TXD_BURST, &txdesc.flags);
667
		if (is_rts_frame(frame_control)) {
668 669
			__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
			__set_bit(ENTRY_TXD_ACK, &txdesc.flags);
670
		} else
671
			__clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
672
		if (control->rts_cts_rate)
673
			tx_rate = control->rts_cts_rate->hw_value;
674 675
	}

676
	rate = rt2x00_get_rate(tx_rate);
677 678 679 680

	/*
	 * Check if more fragments are pending
	 */
681
	if (ieee80211_get_morefrag(hdr)) {
682 683
		__set_bit(ENTRY_TXD_BURST, &txdesc.flags);
		__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
684 685 686 687 688 689
	}

	/*
	 * Beacons and probe responses require the tsf timestamp
	 * to be inserted into the frame.
	 */
690
	if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
691
	    is_probe_resp(frame_control))
692
		__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
693 694 695 696 697 698 699

	/*
	 * Determine with what IFS priority this frame should be send.
	 * Set ifs to IFS_SIFS when the this is not the first fragment,
	 * or this fragment came after RTS/CTS.
	 */
	if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
700 701
	    test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
		txdesc.ifs = IFS_SIFS;
702
	else
703
		txdesc.ifs = IFS_BACKOFF;
704 705 706 707 708

	/*
	 * PLCP setup
	 * Length calculation depends on OFDM/CCK rate.
	 */
709
	txdesc.signal = rate->plcp;
710
	txdesc.service = 0x04;
711

712
	length = skbdesc->data_len + FCS_LEN;
713 714 715
	if (rate->flags & DEV_RATE_OFDM) {
		__set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);

716 717
		txdesc.length_high = (length >> 6) & 0x3f;
		txdesc.length_low = length & 0x3f;
718 719 720 721
	} else {
		/*
		 * Convert length to microseconds.
		 */
722 723
		residual = get_duration_res(length, rate->bitrate);
		duration = get_duration(length, rate->bitrate);
724 725 726 727 728 729 730

		if (residual != 0) {
			duration++;

			/*
			 * Check if we need to set the Length Extension
			 */
731
			if (rate->bitrate == 110 && residual <= 30)
732
				txdesc.service |= 0x80;
733 734
		}

735 736
		txdesc.length_high = (duration >> 8) & 0xff;
		txdesc.length_low = duration & 0xff;
737 738 739 740 741

		/*
		 * When preamble is enabled we should set the
		 * preamble bit for the signal.
		 */
742
		if (rt2x00_get_rate_preamble(tx_rate))
743
			txdesc.signal |= 0x08;
744 745
	}

746
	rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
747 748

	/*
749
	 * Update queue entry.
750 751
	 */
	skbdesc->entry->skb = skb;
752 753 754 755 756 757 758 759 760

	/*
	 * The frame has been completely initialized and ready
	 * for sending to the device. The caller will push the
	 * frame to the device, but we are going to push the
	 * frame to debugfs here.
	 */
	skbdesc->frame_type = DUMP_FRAME_TX;
	rt2x00debug_dump_frame(rt2x00dev, skb);
761 762 763 764 765 766
}
EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);

/*
 * Driver initialization handlers.
 */
767 768
const struct rt2x00_rate rt2x00_supported_rates[12] = {
	{
769
		.flags = DEV_RATE_CCK | DEV_RATE_BASIC,
770
		.bitrate = 10,
771
		.ratemask = BIT(0),
772 773 774
		.plcp = 0x00,
	},
	{
775
		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
776
		.bitrate = 20,
777
		.ratemask = BIT(1),
778 779 780
		.plcp = 0x01,
	},
	{
781
		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
782
		.bitrate = 55,
783
		.ratemask = BIT(2),
784 785 786
		.plcp = 0x02,
	},
	{
787
		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
788
		.bitrate = 110,
789
		.ratemask = BIT(3),
790 791 792
		.plcp = 0x03,
	},
	{
793
		.flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
794
		.bitrate = 60,
795
		.ratemask = BIT(4),
796 797 798 799 800
		.plcp = 0x0b,
	},
	{
		.flags = DEV_RATE_OFDM,
		.bitrate = 90,
801
		.ratemask = BIT(5),
802 803 804
		.plcp = 0x0f,
	},
	{
805
		.flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
806
		.bitrate = 120,
807
		.ratemask = BIT(6),
808 809 810 811 812
		.plcp = 0x0a,
	},
	{
		.flags = DEV_RATE_OFDM,
		.bitrate = 180,
813
		.ratemask = BIT(7),
814 815 816
		.plcp = 0x0e,
	},
	{
817
		.flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
818
		.bitrate = 240,
819
		.ratemask = BIT(8),
820 821 822 823 824
		.plcp = 0x09,
	},
	{
		.flags = DEV_RATE_OFDM,
		.bitrate = 360,
825
		.ratemask = BIT(9),
826 827 828 829 830
		.plcp = 0x0d,
	},
	{
		.flags = DEV_RATE_OFDM,
		.bitrate = 480,
831
		.ratemask = BIT(10),
832 833 834 835 836
		.plcp = 0x08,
	},
	{
		.flags = DEV_RATE_OFDM,
		.bitrate = 540,
837
		.ratemask = BIT(11),
838 839 840 841
		.plcp = 0x0c,
	},
};

842 843 844 845
static void rt2x00lib_channel(struct ieee80211_channel *entry,
			      const int channel, const int tx_power,
			      const int value)
{
846
	entry->center_freq = ieee80211_channel_to_frequency(channel);
847 848 849
	entry->hw_value = value;
	entry->max_power = tx_power;
	entry->max_antenna_gain = 0xff;
850 851 852
}

static void rt2x00lib_rate(struct ieee80211_rate *entry,
853
			   const u16 index, const struct rt2x00_rate *rate)
854
{
855 856 857
	entry->flags = 0;
	entry->bitrate = rate->bitrate;
	entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
858
	entry->hw_value_short = entry->hw_value;
859 860 861 862 863

	if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
		entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
	}
864 865 866 867 868 869 870 871
}

static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
				    struct hw_mode_spec *spec)
{
	struct ieee80211_hw *hw = rt2x00dev->hw;
	struct ieee80211_channel *channels;
	struct ieee80211_rate *rates;
872
	unsigned int num_rates;
873 874 875
	unsigned int i;
	unsigned char tx_power;

876 877 878 879 880
	num_rates = 0;
	if (spec->supported_rates & SUPPORT_RATE_CCK)
		num_rates += 4;
	if (spec->supported_rates & SUPPORT_RATE_OFDM)
		num_rates += 8;
881 882 883

	channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
	if (!channels)
884
		return -ENOMEM;
885

886
	rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
887 888 889 890 891 892
	if (!rates)
		goto exit_free_channels;

	/*
	 * Initialize Rate list.
	 */
893
	for (i = 0; i < num_rates; i++)
894
		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
895 896 897 898 899

	/*
	 * Initialize Channel list.
	 */
	for (i = 0; i < spec->num_channels; i++) {
900 901 902 903 904 905 906 907 908 909 910
		if (spec->channels[i].channel <= 14) {
			if (spec->tx_power_bg)
				tx_power = spec->tx_power_bg[i];
			else
				tx_power = spec->tx_power_default;
		} else {
			if (spec->tx_power_a)
				tx_power = spec->tx_power_a[i];
			else
				tx_power = spec->tx_power_default;
		}
911 912 913 914 915 916

		rt2x00lib_channel(&channels[i],
				  spec->channels[i].channel, tx_power, i);
	}

	/*
917
	 * Intitialize 802.11b, 802.11g
918
	 * Rates: CCK, OFDM.
919
	 * Channels: 2.4 GHz
920
	 */
921
	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
922 923 924 925 926 927
		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
		rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
		rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
		hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
		    &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
928 929 930 931 932 933 934
	}

	/*
	 * Intitialize 802.11a
	 * Rates: OFDM.
	 * Channels: OFDM, UNII, HiperLAN2.
	 */
935
	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
936 937 938 939 940 941 942 943
		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
		    spec->num_channels - 14;
		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
		    num_rates - 4;
		rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
		rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
		hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
		    &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
944 945 946 947
	}

	return 0;

948
 exit_free_channels:
949 950 951 952 953 954 955
	kfree(channels);
	ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
	return -ENOMEM;
}

static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
{
956
	if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
957 958
		ieee80211_unregister_hw(rt2x00dev->hw);

959 960 961 962 963
	if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	}
}

static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
	int status;

	/*
	 * Initialize HW modes.
	 */
	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
	if (status)
		return status;

	/*
	 * Register HW.
	 */
	status = ieee80211_register_hw(rt2x00dev->hw);
	if (status) {
		rt2x00lib_remove_hw(rt2x00dev);
		return status;
	}

988
	__set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
989 990 991 992 993 994 995

	return 0;
}

/*
 * Initialization/uninitialization handlers.
 */
996
static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
{
	if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
		return;

	/*
	 * Unregister rfkill.
	 */
	rt2x00rfkill_unregister(rt2x00dev);

	/*
	 * Allow the HW to uninitialize.
	 */
	rt2x00dev->ops->lib->uninitialize(rt2x00dev);

	/*
1012
	 * Free allocated queue entries.
1013
	 */
1014
	rt2x00queue_uninitialize(rt2x00dev);
1015 1016
}

1017
static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1018 1019 1020 1021 1022 1023 1024
{
	int status;

	if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
		return 0;

	/*
1025
	 * Allocate all queue entries.
1026
	 */
1027 1028
	status = rt2x00queue_initialize(rt2x00dev);
	if (status)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
		return status;

	/*
	 * Initialize the device.
	 */
	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
	if (status)
		goto exit;

	__set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);

	/*
	 * Register the rfkill handler.
	 */
	status = rt2x00rfkill_register(rt2x00dev);
	if (status)
1045
		goto exit;
1046 1047 1048 1049

	return 0;

exit:
1050
	rt2x00lib_uninitialize(rt2x00dev);
1051 1052 1053 1054

	return status;
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
		return 0;

	/*
	 * If this is the first interface which is added,
	 * we should load the firmware now.
	 */
1066 1067 1068
	retval = rt2x00lib_load_firmware(rt2x00dev);
	if (retval)
		return retval;
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085

	/*
	 * Initialize the device.
	 */
	retval = rt2x00lib_initialize(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * Enable radio.
	 */
	retval = rt2x00lib_enable_radio(rt2x00dev);
	if (retval) {
		rt2x00lib_uninitialize(rt2x00dev);
		return retval;
	}

1086 1087 1088 1089
	rt2x00dev->intf_ap_count = 0;
	rt2x00dev->intf_sta_count = 0;
	rt2x00dev->intf_associated = 0;

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	__set_bit(DEVICE_STARTED, &rt2x00dev->flags);

	return 0;
}

void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
{
	if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
		return;

	/*
	 * Perhaps we can add something smarter here,
	 * but for now just disabling the radio should do.
	 */
	rt2x00lib_disable_radio(rt2x00dev);

1106 1107 1108 1109
	rt2x00dev->intf_ap_count = 0;
	rt2x00dev->intf_sta_count = 0;
	rt2x00dev->intf_associated = 0;

1110 1111 1112
	__clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
}

1113 1114 1115 1116 1117 1118 1119
/*
 * driver allocation handlers.
 */
int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
{
	int retval = -ENOMEM;

1120 1121 1122 1123 1124 1125
	/*
	 * Make room for rt2x00_intf inside the per-interface
	 * structure ieee80211_vif.
	 */
	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	/*
	 * Let the driver probe the device to detect the capabilities.
	 */
	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
	if (retval) {
		ERROR(rt2x00dev, "Failed to allocate device.\n");
		goto exit;
	}

	/*
	 * Initialize configuration work.
	 */
1138
	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1139
	INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1140 1141 1142
	INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);

	/*
1143
	 * Allocate queue array.
1144
	 */
1145
	retval = rt2x00queue_allocate(rt2x00dev);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	if (retval)
		goto exit;

	/*
	 * Initialize ieee80211 structure.
	 */
	retval = rt2x00lib_probe_hw(rt2x00dev);
	if (retval) {
		ERROR(rt2x00dev, "Failed to initialize hw.\n");
		goto exit;
	}

1158 1159 1160 1161 1162
	/*
	 * Register LED.
	 */
	rt2x00leds_register(rt2x00dev);

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	/*
	 * Allocatie rfkill.
	 */
	retval = rt2x00rfkill_allocate(rt2x00dev);
	if (retval)
		goto exit;

	/*
	 * Open the debugfs entry.
	 */
	rt2x00debug_register(rt2x00dev);

1175 1176
	__set_bit(DEVICE_PRESENT, &rt2x00dev->flags);

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	return 0;

exit:
	rt2x00lib_remove_dev(rt2x00dev);

	return retval;
}
EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);

void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
{
1188 1189
	__clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	/*
	 * Disable radio.
	 */
	rt2x00lib_disable_radio(rt2x00dev);

	/*
	 * Uninitialize device.
	 */
	rt2x00lib_uninitialize(rt2x00dev);

	/*
	 * Close debugfs entry.
	 */
	rt2x00debug_deregister(rt2x00dev);

	/*
	 * Free rfkill
	 */
	rt2x00rfkill_free(rt2x00dev);

1210 1211 1212 1213 1214
	/*
	 * Free LED.
	 */
	rt2x00leds_unregister(rt2x00dev);

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	/*
	 * Free ieee80211_hw memory.
	 */
	rt2x00lib_remove_hw(rt2x00dev);

	/*
	 * Free firmware image.
	 */
	rt2x00lib_free_firmware(rt2x00dev);

	/*
1226
	 * Free queue structures.
1227
	 */
1228
	rt2x00queue_free(rt2x00dev);
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
}
EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);

/*
 * Device state handlers
 */
#ifdef CONFIG_PM
int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
{
	int retval;

	NOTICE(rt2x00dev, "Going to sleep.\n");
1241 1242 1243 1244 1245 1246 1247
	__clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);

	/*
	 * Only continue if mac80211 has open interfaces.
	 */
	if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
		goto exit;
1248
	__set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1249 1250 1251 1252 1253

	/*
	 * Disable radio and unitialize all items
	 * that must be recreated on resume.
	 */
1254
	rt2x00lib_stop(rt2x00dev);
1255
	rt2x00lib_uninitialize(rt2x00dev);
1256
	rt2x00leds_suspend(rt2x00dev);
1257 1258
	rt2x00debug_deregister(rt2x00dev);

1259
exit:
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	/*
	 * Set device mode to sleep for power management.
	 */
	retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
	if (retval)
		return retval;

	return 0;
}
EXPORT_SYMBOL_GPL(rt2x00lib_suspend);

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
static void rt2x00lib_resume_intf(void *data, u8 *mac,
				  struct ieee80211_vif *vif)
{
	struct rt2x00_dev *rt2x00dev = data;
	struct rt2x00_intf *intf = vif_to_intf(vif);

	spin_lock(&intf->lock);

	rt2x00lib_config_intf(rt2x00dev, intf,
			      vif->type, intf->mac, intf->bssid);


	/*
	 * Master or Ad-hoc mode require a new beacon update.
	 */
	if (vif->type == IEEE80211_IF_TYPE_AP ||
	    vif->type == IEEE80211_IF_TYPE_IBSS)
		intf->delayed_flags |= DELAYED_UPDATE_BEACON;

	spin_unlock(&intf->lock);
}

1293 1294 1295 1296 1297 1298 1299
int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	NOTICE(rt2x00dev, "Waking up.\n");

	/*
1300
	 * Open the debugfs entry and restore led handling.
1301 1302
	 */
	rt2x00debug_register(rt2x00dev);
1303
	rt2x00leds_resume(rt2x00dev);
1304

1305
	/*
1306
	 * Only continue if mac80211 had open interfaces.
1307
	 */
1308
	if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1309 1310
		return 0;

1311 1312 1313
	/*
	 * Reinitialize device and all active interfaces.
	 */
1314
	retval = rt2x00lib_start(rt2x00dev);
1315 1316 1317 1318 1319 1320
	if (retval)
		goto exit;

	/*
	 * Reconfigure device.
	 */
1321 1322 1323
	rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
	if (!rt2x00dev->hw->conf.radio_enabled)
		rt2x00lib_disable_radio(rt2x00dev);
1324

1325 1326 1327 1328 1329 1330
	/*
	 * Iterator over each active interface to
	 * reconfigure the hardware.
	 */
	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
					    rt2x00lib_resume_intf, rt2x00dev);
1331

1332 1333 1334 1335 1336
	/*
	 * We are ready again to receive requests from mac80211.
	 */
	__set_bit(DEVICE_PRESENT, &rt2x00dev->flags);

1337 1338 1339 1340 1341 1342 1343 1344
	/*
	 * It is possible that during that mac80211 has attempted
	 * to send frames while we were suspending or resuming.
	 * In that case we have disabled the TX queue and should
	 * now enable it again
	 */
	ieee80211_start_queues(rt2x00dev->hw);

1345
	/*
1346 1347 1348
	 * During interface iteration we might have changed the
	 * delayed_flags, time to handles the event by calling
	 * the work handler directly.
1349
	 */
1350
	rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

	return 0;

exit:
	rt2x00lib_disable_radio(rt2x00dev);
	rt2x00lib_uninitialize(rt2x00dev);
	rt2x00debug_deregister(rt2x00dev);

	return retval;
}
EXPORT_SYMBOL_GPL(rt2x00lib_resume);
#endif /* CONFIG_PM */

/*
 * rt2x00lib module information.
 */
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("rt2x00 library");
MODULE_LICENSE("GPL");
反馈
建议
客服 返回
顶部