rtc-s5m.c 17.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright (c) 2013 Samsung Electronics Co., Ltd
 *	http://www.samsung.com
 *
 *  Copyright (C) 2013 Google, Inc
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 */

#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/bcd.h>
#include <linux/bitops.h>
#include <linux/regmap.h>
#include <linux/rtc.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/mfd/samsung/core.h>
#include <linux/mfd/samsung/irq.h>
#include <linux/mfd/samsung/rtc.h>

31 32 33 34 35 36 37 38 39 40
/*
 * Maximum number of retries for checking changes in UDR field
 * of SEC_RTC_UDR_CON register (to limit possible endless loop).
 *
 * After writing to RTC registers (setting time or alarm) read the UDR field
 * in SEC_RTC_UDR_CON register. UDR is auto-cleared when data have
 * been transferred.
 */
#define UDR_READ_RETRY_CNT	5

41 42
struct s5m_rtc_info {
	struct device *dev;
43
	struct i2c_client *i2c;
44
	struct sec_pmic_dev *s5m87xx;
45
	struct regmap *regmap;
46 47 48 49 50 51 52
	struct rtc_device *rtc_dev;
	int irq;
	int device_type;
	int rtc_24hr_mode;
	bool wtsr_smpl;
};

53 54 55 56 57 58 59 60 61 62 63 64 65 66
static const struct regmap_config s5m_rtc_regmap_config = {
	.reg_bits = 8,
	.val_bits = 8,

	.max_register = SEC_RTC_REG_MAX,
};

static const struct regmap_config s2mps14_rtc_regmap_config = {
	.reg_bits = 8,
	.val_bits = 8,

	.max_register = S2MPS_RTC_REG_MAX,
};

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
			       int rtc_24hr_mode)
{
	tm->tm_sec = data[RTC_SEC] & 0x7f;
	tm->tm_min = data[RTC_MIN] & 0x7f;
	if (rtc_24hr_mode) {
		tm->tm_hour = data[RTC_HOUR] & 0x1f;
	} else {
		tm->tm_hour = data[RTC_HOUR] & 0x0f;
		if (data[RTC_HOUR] & HOUR_PM_MASK)
			tm->tm_hour += 12;
	}

	tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
	tm->tm_mday = data[RTC_DATE] & 0x1f;
	tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
	tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
	tm->tm_yday = 0;
	tm->tm_isdst = 0;
}

static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
{
	data[RTC_SEC] = tm->tm_sec;
	data[RTC_MIN] = tm->tm_min;

	if (tm->tm_hour >= 12)
		data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
	else
		data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;

	data[RTC_WEEKDAY] = 1 << tm->tm_wday;
	data[RTC_DATE] = tm->tm_mday;
	data[RTC_MONTH] = tm->tm_mon + 1;
	data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0;

	if (tm->tm_year < 100) {
		pr_err("s5m8767 RTC cannot handle the year %d.\n",
		       1900 + tm->tm_year);
		return -EINVAL;
	} else {
		return 0;
	}
}

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
/*
 * Read RTC_UDR_CON register and wait till UDR field is cleared.
 * This indicates that time/alarm update ended.
 */
static inline int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
{
	int ret, retry = UDR_READ_RETRY_CNT;
	unsigned int data;

	do {
		ret = regmap_read(info->regmap, SEC_RTC_UDR_CON, &data);
	} while (--retry && (data & RTC_UDR_MASK) && !ret);

	if (!retry)
		dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");

	return ret;
}

131 132 133 134 135
static inline int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
{
	int ret;
	unsigned int data;

136
	ret = regmap_read(info->regmap, SEC_RTC_UDR_CON, &data);
137 138 139 140 141 142 143 144
	if (ret < 0) {
		dev_err(info->dev, "failed to read update reg(%d)\n", ret);
		return ret;
	}

	data |= RTC_TIME_EN_MASK;
	data |= RTC_UDR_MASK;

145
	ret = regmap_write(info->regmap, SEC_RTC_UDR_CON, data);
146 147 148 149 150
	if (ret < 0) {
		dev_err(info->dev, "failed to write update reg(%d)\n", ret);
		return ret;
	}

151
	ret = s5m8767_wait_for_udr_update(info);
152 153 154 155 156 157 158 159 160

	return ret;
}

static inline int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
{
	int ret;
	unsigned int data;

161
	ret = regmap_read(info->regmap, SEC_RTC_UDR_CON, &data);
162 163 164 165 166 167 168 169 170
	if (ret < 0) {
		dev_err(info->dev, "%s: fail to read update reg(%d)\n",
			__func__, ret);
		return ret;
	}

	data &= ~RTC_TIME_EN_MASK;
	data |= RTC_UDR_MASK;

171
	ret = regmap_write(info->regmap, SEC_RTC_UDR_CON, data);
172 173 174 175 176 177
	if (ret < 0) {
		dev_err(info->dev, "%s: fail to write update reg(%d)\n",
			__func__, ret);
		return ret;
	}

178
	ret = s5m8767_wait_for_udr_update(info);
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

	return ret;
}

static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm)
{
	tm->tm_sec = bcd2bin(data[RTC_SEC]);
	tm->tm_min = bcd2bin(data[RTC_MIN]);

	if (data[RTC_HOUR] & HOUR_12) {
		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
		if (data[RTC_HOUR] & HOUR_PM)
			tm->tm_hour += 12;
	} else {
		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
	}

	tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
	tm->tm_mday = bcd2bin(data[RTC_DATE]);
	tm->tm_mon = bcd2bin(data[RTC_MONTH]);
	tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
	tm->tm_year -= 1900;
}

static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
{
	data[RTC_SEC] = bin2bcd(tm->tm_sec);
	data[RTC_MIN] = bin2bcd(tm->tm_min);
	data[RTC_HOUR] = bin2bcd(tm->tm_hour);
	data[RTC_WEEKDAY] = tm->tm_wday;
	data[RTC_DATE] = bin2bcd(tm->tm_mday);
	data[RTC_MONTH] = bin2bcd(tm->tm_mon);
	data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
	data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
}

static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	struct s5m_rtc_info *info = dev_get_drvdata(dev);
	u8 data[8];
	int ret;

221
	ret = regmap_bulk_read(info->regmap, SEC_RTC_SEC, data, 8);
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	if (ret < 0)
		return ret;

	switch (info->device_type) {
	case S5M8763X:
		s5m8763_data_to_tm(data, tm);
		break;

	case S5M8767X:
		s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
		break;

	default:
		return -EINVAL;
	}

	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
		1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
		tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);

	return rtc_valid_tm(tm);
}

static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	struct s5m_rtc_info *info = dev_get_drvdata(dev);
	u8 data[8];
	int ret = 0;

	switch (info->device_type) {
	case S5M8763X:
		s5m8763_tm_to_data(tm, data);
		break;
	case S5M8767X:
		ret = s5m8767_tm_to_data(tm, data);
		break;
	default:
		return -EINVAL;
	}

	if (ret < 0)
		return ret;

	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
		1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
		tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);

269
	ret = regmap_raw_write(info->regmap, SEC_RTC_SEC, data, 8);
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	if (ret < 0)
		return ret;

	ret = s5m8767_rtc_set_time_reg(info);

	return ret;
}

static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct s5m_rtc_info *info = dev_get_drvdata(dev);
	u8 data[8];
	unsigned int val;
	int ret, i;

285
	ret = regmap_bulk_read(info->regmap, SEC_ALARM0_SEC, data, 8);
286 287 288 289 290 291
	if (ret < 0)
		return ret;

	switch (info->device_type) {
	case S5M8763X:
		s5m8763_data_to_tm(data, &alrm->time);
292
		ret = regmap_read(info->regmap, SEC_ALARM0_CONF, &val);
293 294 295 296 297
		if (ret < 0)
			return ret;

		alrm->enabled = !!val;

298
		ret = regmap_read(info->regmap, SEC_RTC_STATUS, &val);
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
		if (ret < 0)
			return ret;

		break;

	case S5M8767X:
		s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
		dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
			1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
			alrm->time.tm_mday, alrm->time.tm_hour,
			alrm->time.tm_min, alrm->time.tm_sec,
			alrm->time.tm_wday);

		alrm->enabled = 0;
		for (i = 0; i < 7; i++) {
			if (data[i] & ALARM_ENABLE_MASK) {
				alrm->enabled = 1;
				break;
			}
		}

		alrm->pending = 0;
321
		ret = regmap_read(info->regmap, SEC_RTC_STATUS, &val);
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
		if (ret < 0)
			return ret;
		break;

	default:
		return -EINVAL;
	}

	if (val & ALARM0_STATUS)
		alrm->pending = 1;
	else
		alrm->pending = 0;

	return 0;
}

static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
{
	u8 data[8];
	int ret, i;
	struct rtc_time tm;

344
	ret = regmap_bulk_read(info->regmap, SEC_ALARM0_SEC, data, 8);
345 346 347 348 349 350 351 352 353 354
	if (ret < 0)
		return ret;

	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
	dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
		1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
		tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);

	switch (info->device_type) {
	case S5M8763X:
355
		ret = regmap_write(info->regmap, SEC_ALARM0_CONF, 0);
356 357 358 359 360 361
		break;

	case S5M8767X:
		for (i = 0; i < 7; i++)
			data[i] &= ~ALARM_ENABLE_MASK;

362
		ret = regmap_raw_write(info->regmap, SEC_ALARM0_SEC, data, 8);
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
		if (ret < 0)
			return ret;

		ret = s5m8767_rtc_set_alarm_reg(info);

		break;

	default:
		return -EINVAL;
	}

	return ret;
}

static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
{
	int ret;
	u8 data[8];
	u8 alarm0_conf;
	struct rtc_time tm;

384
	ret = regmap_bulk_read(info->regmap, SEC_ALARM0_SEC, data, 8);
385 386 387 388 389 390 391 392 393 394 395
	if (ret < 0)
		return ret;

	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
	dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
		1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
		tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);

	switch (info->device_type) {
	case S5M8763X:
		alarm0_conf = 0x77;
396
		ret = regmap_write(info->regmap, SEC_ALARM0_CONF, alarm0_conf);
397 398 399 400 401 402 403 404 405 406 407 408 409 410
		break;

	case S5M8767X:
		data[RTC_SEC] |= ALARM_ENABLE_MASK;
		data[RTC_MIN] |= ALARM_ENABLE_MASK;
		data[RTC_HOUR] |= ALARM_ENABLE_MASK;
		data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
		if (data[RTC_DATE] & 0x1f)
			data[RTC_DATE] |= ALARM_ENABLE_MASK;
		if (data[RTC_MONTH] & 0xf)
			data[RTC_MONTH] |= ALARM_ENABLE_MASK;
		if (data[RTC_YEAR1] & 0x7f)
			data[RTC_YEAR1] |= ALARM_ENABLE_MASK;

411
		ret = regmap_raw_write(info->regmap, SEC_ALARM0_SEC, data, 8);
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
		if (ret < 0)
			return ret;
		ret = s5m8767_rtc_set_alarm_reg(info);

		break;

	default:
		return -EINVAL;
	}

	return ret;
}

static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct s5m_rtc_info *info = dev_get_drvdata(dev);
	u8 data[8];
	int ret;

	switch (info->device_type) {
	case S5M8763X:
		s5m8763_tm_to_data(&alrm->time, data);
		break;

	case S5M8767X:
		s5m8767_tm_to_data(&alrm->time, data);
		break;

	default:
		return -EINVAL;
	}

	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
		1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
		alrm->time.tm_mday, alrm->time.tm_hour, alrm->time.tm_min,
		alrm->time.tm_sec, alrm->time.tm_wday);

	ret = s5m_rtc_stop_alarm(info);
	if (ret < 0)
		return ret;

453
	ret = regmap_raw_write(info->regmap, SEC_ALARM0_SEC, data, 8);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	if (ret < 0)
		return ret;

	ret = s5m8767_rtc_set_alarm_reg(info);
	if (ret < 0)
		return ret;

	if (alrm->enabled)
		ret = s5m_rtc_start_alarm(info);

	return ret;
}

static int s5m_rtc_alarm_irq_enable(struct device *dev,
				    unsigned int enabled)
{
	struct s5m_rtc_info *info = dev_get_drvdata(dev);

	if (enabled)
		return s5m_rtc_start_alarm(info);
	else
		return s5m_rtc_stop_alarm(info);
}

static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
{
	struct s5m_rtc_info *info = data;

	rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);

	return IRQ_HANDLED;
}

static const struct rtc_class_ops s5m_rtc_ops = {
	.read_time = s5m_rtc_read_time,
	.set_time = s5m_rtc_set_time,
	.read_alarm = s5m_rtc_read_alarm,
	.set_alarm = s5m_rtc_set_alarm,
	.alarm_irq_enable = s5m_rtc_alarm_irq_enable,
};

static void s5m_rtc_enable_wtsr(struct s5m_rtc_info *info, bool enable)
{
	int ret;
498
	ret = regmap_update_bits(info->regmap, SEC_WTSR_SMPL_CNTL,
499 500 501 502 503 504 505 506 507 508
				 WTSR_ENABLE_MASK,
				 enable ? WTSR_ENABLE_MASK : 0);
	if (ret < 0)
		dev_err(info->dev, "%s: fail to update WTSR reg(%d)\n",
			__func__, ret);
}

static void s5m_rtc_enable_smpl(struct s5m_rtc_info *info, bool enable)
{
	int ret;
509
	ret = regmap_update_bits(info->regmap, SEC_WTSR_SMPL_CNTL,
510 511 512 513 514 515 516 517 518 519 520 521 522 523
				 SMPL_ENABLE_MASK,
				 enable ? SMPL_ENABLE_MASK : 0);
	if (ret < 0)
		dev_err(info->dev, "%s: fail to update SMPL reg(%d)\n",
			__func__, ret);
}

static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
{
	u8 data[2];
	unsigned int tp_read;
	int ret;
	struct rtc_time tm;

524
	ret = regmap_read(info->regmap, SEC_RTC_UDR_CON, &tp_read);
525 526 527 528 529 530 531 532 533 534 535
	if (ret < 0) {
		dev_err(info->dev, "%s: fail to read control reg(%d)\n",
			__func__, ret);
		return ret;
	}

	/* Set RTC control register : Binary mode, 24hour mode */
	data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
	data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);

	info->rtc_24hr_mode = 1;
536
	ret = regmap_raw_write(info->regmap, SEC_ALARM0_CONF, data, 2);
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	if (ret < 0) {
		dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
			__func__, ret);
		return ret;
	}

	/* In first boot time, Set rtc time to 1/1/2012 00:00:00(SUN) */
	if ((tp_read & RTC_TCON_MASK) == 0) {
		dev_dbg(info->dev, "rtc init\n");
		tm.tm_sec = 0;
		tm.tm_min = 0;
		tm.tm_hour = 0;
		tm.tm_wday = 0;
		tm.tm_mday = 1;
		tm.tm_mon = 0;
		tm.tm_year = 112;
		tm.tm_yday = 0;
		tm.tm_isdst = 0;
		ret = s5m_rtc_set_time(info->dev, &tm);
	}

558
	ret = regmap_update_bits(info->regmap, SEC_RTC_UDR_CON,
559 560 561 562 563 564 565 566 567 568 569 570 571
				 RTC_TCON_MASK, tp_read | RTC_TCON_MASK);
	if (ret < 0)
		dev_err(info->dev, "%s: fail to update TCON reg(%d)\n",
			__func__, ret);

	return ret;
}

static int s5m_rtc_probe(struct platform_device *pdev)
{
	struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
	struct sec_platform_data *pdata = s5m87xx->pdata;
	struct s5m_rtc_info *info;
572
	const struct regmap_config *regmap_cfg;
573 574 575 576 577 578 579 580 581 582 583
	int ret;

	if (!pdata) {
		dev_err(pdev->dev.parent, "Platform data not supplied\n");
		return -ENODEV;
	}

	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	switch (pdata->device_type) {
	case S2MPS14X:
		regmap_cfg = &s2mps14_rtc_regmap_config;
		break;
	case S5M8763X:
		regmap_cfg = &s5m_rtc_regmap_config;
		break;
	case S5M8767X:
		regmap_cfg = &s5m_rtc_regmap_config;
		break;
	default:
		dev_err(&pdev->dev, "Device type is not supported by RTC driver\n");
		return -ENODEV;
	}

	info->i2c = i2c_new_dummy(s5m87xx->i2c->adapter, RTC_I2C_ADDR);
	if (!info->i2c) {
		dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n");
		return -ENODEV;
	}

	info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg);
	if (IS_ERR(info->regmap)) {
		ret = PTR_ERR(info->regmap);
		dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n",
				ret);
		goto err;
	}

613 614 615 616 617 618 619
	info->dev = &pdev->dev;
	info->s5m87xx = s5m87xx;
	info->device_type = s5m87xx->device_type;
	info->wtsr_smpl = s5m87xx->wtsr_smpl;

	switch (pdata->device_type) {
	case S5M8763X:
620 621
		info->irq = regmap_irq_get_virq(s5m87xx->irq_data,
				S5M8763_IRQ_ALARM0);
622 623 624
		break;

	case S5M8767X:
625 626
		info->irq = regmap_irq_get_virq(s5m87xx->irq_data,
				S5M8767_IRQ_RTCA1);
627 628 629 630 631
		break;

	default:
		ret = -EINVAL;
		dev_err(&pdev->dev, "Unsupported device type: %d\n", ret);
632
		goto err;
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
	}

	platform_set_drvdata(pdev, info);

	ret = s5m8767_rtc_init_reg(info);

	if (info->wtsr_smpl) {
		s5m_rtc_enable_wtsr(info, true);
		s5m_rtc_enable_smpl(info, true);
	}

	device_init_wakeup(&pdev->dev, 1);

	info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc",
						 &s5m_rtc_ops, THIS_MODULE);

649 650 651 652
	if (IS_ERR(info->rtc_dev)) {
		ret = PTR_ERR(info->rtc_dev);
		goto err;
	}
653 654 655 656

	ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
					s5m_rtc_alarm_irq, 0, "rtc-alarm0",
					info);
657
	if (ret < 0) {
658 659
		dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
			info->irq, ret);
660 661 662 663 664 665 666
		goto err;
	}

	return 0;

err:
	i2c_unregister_device(info->i2c);
667 668 669 670 671 672 673 674 675 676 677 678

	return ret;
}

static void s5m_rtc_shutdown(struct platform_device *pdev)
{
	struct s5m_rtc_info *info = platform_get_drvdata(pdev);
	int i;
	unsigned int val = 0;
	if (info->wtsr_smpl) {
		for (i = 0; i < 3; i++) {
			s5m_rtc_enable_wtsr(info, false);
679
			regmap_read(info->regmap, SEC_WTSR_SMPL_CNTL, &val);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
			pr_debug("%s: WTSR_SMPL reg(0x%02x)\n", __func__, val);
			if (val & WTSR_ENABLE_MASK)
				pr_emerg("%s: fail to disable WTSR\n",
					 __func__);
			else {
				pr_info("%s: success to disable WTSR\n",
					__func__);
				break;
			}
		}
	}
	/* Disable SMPL when power off */
	s5m_rtc_enable_smpl(info, false);
}

695 696 697 698 699 700 701 702 703 704 705
static int s5m_rtc_remove(struct platform_device *pdev)
{
	struct s5m_rtc_info *info = platform_get_drvdata(pdev);

	/* Perform also all shutdown steps when removing */
	s5m_rtc_shutdown(pdev);
	i2c_unregister_device(info->i2c);

	return 0;
}

706
#ifdef CONFIG_PM_SLEEP
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
static int s5m_rtc_resume(struct device *dev)
{
	struct s5m_rtc_info *info = dev_get_drvdata(dev);
	int ret = 0;

	if (device_may_wakeup(dev))
		ret = disable_irq_wake(info->irq);

	return ret;
}

static int s5m_rtc_suspend(struct device *dev)
{
	struct s5m_rtc_info *info = dev_get_drvdata(dev);
	int ret = 0;

	if (device_may_wakeup(dev))
		ret = enable_irq_wake(info->irq);

	return ret;
}
728
#endif /* CONFIG_PM_SLEEP */
729 730 731

static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);

732 733 734 735 736 737 738 739
static const struct platform_device_id s5m_rtc_id[] = {
	{ "s5m-rtc", 0 },
};

static struct platform_driver s5m_rtc_driver = {
	.driver		= {
		.name	= "s5m-rtc",
		.owner	= THIS_MODULE,
740
		.pm	= &s5m_rtc_pm_ops,
741 742
	},
	.probe		= s5m_rtc_probe,
743
	.remove		= s5m_rtc_remove,
744 745 746 747 748 749 750 751 752 753 754
	.shutdown	= s5m_rtc_shutdown,
	.id_table	= s5m_rtc_id,
};

module_platform_driver(s5m_rtc_driver);

/* Module information */
MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
MODULE_DESCRIPTION("Samsung S5M RTC driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s5m-rtc");