remoteproc_core.c 33.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Remote Processor Framework
 *
 * Copyright (C) 2011 Texas Instruments, Inc.
 * Copyright (C) 2011 Google, Inc.
 *
 * Ohad Ben-Cohen <ohad@wizery.com>
 * Brian Swetland <swetland@google.com>
 * Mark Grosen <mgrosen@ti.com>
 * Fernando Guzman Lugo <fernando.lugo@ti.com>
 * Suman Anna <s-anna@ti.com>
 * Robert Tivy <rtivy@ti.com>
 * Armando Uribe De Leon <x0095078@ti.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#define pr_fmt(fmt)    "%s: " fmt, __func__

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/string.h>
#include <linux/debugfs.h>
#include <linux/remoteproc.h>
#include <linux/iommu.h>
38
#include <linux/idr.h>
39 40 41
#include <linux/elf.h>
#include <linux/virtio_ids.h>
#include <linux/virtio_ring.h>
42
#include <asm/byteorder.h>
43 44 45 46

#include "remoteproc_internal.h"

typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
47 48
				struct resource_table *table, int len);
typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
49

50 51 52
/* Unique indices for remoteproc devices */
static DEFINE_IDA(rproc_dev_index);

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * This is the IOMMU fault handler we register with the IOMMU API
 * (when relevant; not all remote processors access memory through
 * an IOMMU).
 *
 * IOMMU core will invoke this handler whenever the remote processor
 * will try to access an unmapped device address.
 *
 * Currently this is mostly a stub, but it will be later used to trigger
 * the recovery of the remote processor.
 */
static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
65
		unsigned long iova, int flags, void *token)
66 67 68 69 70 71 72 73 74 75 76 77 78
{
	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);

	/*
	 * Let the iommu core know we're not really handling this fault;
	 * we just plan to use this as a recovery trigger.
	 */
	return -ENOSYS;
}

static int rproc_enable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain;
79
	struct device *dev = rproc->dev.parent;
80 81 82 83 84 85 86 87 88 89 90 91 92 93
	int ret;

	/*
	 * We currently use iommu_present() to decide if an IOMMU
	 * setup is needed.
	 *
	 * This works for simple cases, but will easily fail with
	 * platforms that do have an IOMMU, but not for this specific
	 * rproc.
	 *
	 * This will be easily solved by introducing hw capabilities
	 * that will be set by the remoteproc driver.
	 */
	if (!iommu_present(dev->bus)) {
94 95
		dev_dbg(dev, "iommu not found\n");
		return 0;
96 97 98 99 100 101 102 103
	}

	domain = iommu_domain_alloc(dev->bus);
	if (!domain) {
		dev_err(dev, "can't alloc iommu domain\n");
		return -ENOMEM;
	}

104
	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

	ret = iommu_attach_device(domain, dev);
	if (ret) {
		dev_err(dev, "can't attach iommu device: %d\n", ret);
		goto free_domain;
	}

	rproc->domain = domain;

	return 0;

free_domain:
	iommu_domain_free(domain);
	return ret;
}

static void rproc_disable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain = rproc->domain;
124
	struct device *dev = rproc->dev.parent;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

	if (!domain)
		return;

	iommu_detach_device(domain, dev);
	iommu_domain_free(domain);

	return;
}

/*
 * Some remote processors will ask us to allocate them physically contiguous
 * memory regions (which we call "carveouts"), and map them to specific
 * device addresses (which are hardcoded in the firmware).
 *
 * They may then ask us to copy objects into specific device addresses (e.g.
 * code/data sections) or expose us certain symbols in other device address
 * (e.g. their trace buffer).
 *
 * This function is an internal helper with which we can go over the allocated
 * carveouts and translate specific device address to kernel virtual addresses
 * so we can access the referenced memory.
 *
 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 * but only on kernel direct mapped RAM memory. Instead, we're just using
 * here the output of the DMA API, which should be more correct.
 */
152
void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
{
	struct rproc_mem_entry *carveout;
	void *ptr = NULL;

	list_for_each_entry(carveout, &rproc->carveouts, node) {
		int offset = da - carveout->da;

		/* try next carveout if da is too small */
		if (offset < 0)
			continue;

		/* try next carveout if da is too large */
		if (offset + len > carveout->len)
			continue;

		ptr = carveout->va + offset;

		break;
	}

	return ptr;
}
175
EXPORT_SYMBOL(rproc_da_to_va);
176

177
int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
178
{
179
	struct rproc *rproc = rvdev->rproc;
180
	struct device *dev = &rproc->dev;
181
	struct rproc_vring *rvring = &rvdev->vring[i];
182 183 184
	dma_addr_t dma;
	void *va;
	int ret, size, notifyid;
185

186
	/* actual size of vring (in bytes) */
187
	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
188 189 190 191 192 193 194 195 196

	if (!idr_pre_get(&rproc->notifyids, GFP_KERNEL)) {
		dev_err(dev, "idr_pre_get failed\n");
		return -ENOMEM;
	}

	/*
	 * Allocate non-cacheable memory for the vring. In the future
	 * this call will also configure the IOMMU for us
197
	 * TODO: let the rproc know the da of this vring
198
	 */
199
	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
200
	if (!va) {
201
		dev_err(dev->parent, "dma_alloc_coherent failed\n");
202 203 204
		return -EINVAL;
	}

205 206 207 208 209 210 211
	/*
	 * Assign an rproc-wide unique index for this vring
	 * TODO: assign a notifyid for rvdev updates as well
	 * TODO: let the rproc know the notifyid of this vring
	 * TODO: support predefined notifyids (via resource table)
	 */
	ret = idr_get_new(&rproc->notifyids, rvring, &notifyid);
212 213
	if (ret) {
		dev_err(dev, "idr_get_new failed: %d\n", ret);
214
		dma_free_coherent(dev->parent, size, va, dma);
215 216
		return ret;
	}
217

218 219 220
	dev_dbg(dev, "vring%d: va %p dma %x size %x idr %d\n", i, va,
					dma, size, notifyid);

221 222 223
	rvring->va = va;
	rvring->dma = dma;
	rvring->notifyid = notifyid;
224 225 226 227

	return 0;
}

228 229
static int
rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
230 231
{
	struct rproc *rproc = rvdev->rproc;
232
	struct device *dev = &rproc->dev;
233 234
	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
	struct rproc_vring *rvring = &rvdev->vring[i];
235

236 237
	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
				i, vring->da, vring->num, vring->align);
238

239 240 241 242 243
	/* make sure reserved bytes are zeroes */
	if (vring->reserved) {
		dev_err(dev, "vring rsc has non zero reserved bytes\n");
		return -EINVAL;
	}
244

245 246 247 248 249
	/* verify queue size and vring alignment are sane */
	if (!vring->num || !vring->align) {
		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
						vring->num, vring->align);
		return -EINVAL;
250
	}
251 252 253 254 255 256 257 258 259 260 261 262 263

	rvring->len = vring->num;
	rvring->align = vring->align;
	rvring->rvdev = rvdev;

	return 0;
}

void rproc_free_vring(struct rproc_vring *rvring)
{
	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
	struct rproc *rproc = rvring->rvdev->rproc;

264
	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
265
	idr_remove(&rproc->notifyids, rvring->notifyid);
266 267
}

268
/**
269
 * rproc_handle_vdev() - handle a vdev fw resource
270 271
 * @rproc: the remote processor
 * @rsc: the vring resource descriptor
272
 * @avail: size of available data (for sanity checking the image)
273
 *
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
 * This resource entry requests the host to statically register a virtio
 * device (vdev), and setup everything needed to support it. It contains
 * everything needed to make it possible: the virtio device id, virtio
 * device features, vrings information, virtio config space, etc...
 *
 * Before registering the vdev, the vrings are allocated from non-cacheable
 * physically contiguous memory. Currently we only support two vrings per
 * remote processor (temporary limitation). We might also want to consider
 * doing the vring allocation only later when ->find_vqs() is invoked, and
 * then release them upon ->del_vqs().
 *
 * Note: @da is currently not really handled correctly: we dynamically
 * allocate it using the DMA API, ignoring requested hard coded addresses,
 * and we don't take care of any required IOMMU programming. This is all
 * going to be taken care of when the generic iommu-based DMA API will be
 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 * use RSC_DEVMEM resource entries to map their required @da to the physical
 * address of their base CMA region (ouch, hacky!).
292 293 294
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
295 296
static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
								int avail)
297
{
298
	struct device *dev = &rproc->dev;
299 300
	struct rproc_vdev *rvdev;
	int i, ret;
301

302 303 304
	/* make sure resource isn't truncated */
	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
			+ rsc->config_len > avail) {
305
		dev_err(dev, "vdev rsc is truncated\n");
306 307 308
		return -EINVAL;
	}

309 310 311
	/* make sure reserved bytes are zeroes */
	if (rsc->reserved[0] || rsc->reserved[1]) {
		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
312 313 314
		return -EINVAL;
	}

315 316 317
	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);

318 319
	/* we currently support only two vrings per rvdev */
	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
320
		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
321 322 323
		return -EINVAL;
	}

324 325 326
	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
	if (!rvdev)
		return -ENOMEM;
327

328
	rvdev->rproc = rproc;
329

330
	/* parse the vrings */
331
	for (i = 0; i < rsc->num_of_vrings; i++) {
332
		ret = rproc_parse_vring(rvdev, rsc, i);
333
		if (ret)
334
			goto free_rvdev;
335
	}
336

337 338
	/* remember the device features */
	rvdev->dfeatures = rsc->dfeatures;
339

340
	list_add_tail(&rvdev->node, &rproc->rvdevs);
341

342 343 344
	/* it is now safe to add the virtio device */
	ret = rproc_add_virtio_dev(rvdev, rsc->id);
	if (ret)
345
		goto free_rvdev;
346 347

	return 0;
348

349
free_rvdev:
350 351
	kfree(rvdev);
	return ret;
352 353 354 355 356 357
}

/**
 * rproc_handle_trace() - handle a shared trace buffer resource
 * @rproc: the remote processor
 * @rsc: the trace resource descriptor
358
 * @avail: size of available data (for sanity checking the image)
359 360 361 362 363 364 365 366 367 368 369
 *
 * In case the remote processor dumps trace logs into memory,
 * export it via debugfs.
 *
 * Currently, the 'da' member of @rsc should contain the device address
 * where the remote processor is dumping the traces. Later we could also
 * support dynamically allocating this address using the generic
 * DMA API (but currently there isn't a use case for that).
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
370 371
static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
								int avail)
372 373
{
	struct rproc_mem_entry *trace;
374
	struct device *dev = &rproc->dev;
375 376 377
	void *ptr;
	char name[15];

378
	if (sizeof(*rsc) > avail) {
379
		dev_err(dev, "trace rsc is truncated\n");
380 381 382 383 384 385 386 387 388
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "trace rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
	/* what's the kernel address of this resource ? */
	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
	if (!ptr) {
		dev_err(dev, "erroneous trace resource entry\n");
		return -EINVAL;
	}

	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
	if (!trace) {
		dev_err(dev, "kzalloc trace failed\n");
		return -ENOMEM;
	}

	/* set the trace buffer dma properties */
	trace->len = rsc->len;
	trace->va = ptr;

	/* make sure snprintf always null terminates, even if truncating */
	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);

	/* create the debugfs entry */
	trace->priv = rproc_create_trace_file(name, rproc, trace);
	if (!trace->priv) {
		trace->va = NULL;
		kfree(trace);
		return -EINVAL;
	}

	list_add_tail(&trace->node, &rproc->traces);

	rproc->num_traces++;

421
	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
422 423 424 425 426 427 428 429 430
						rsc->da, rsc->len);

	return 0;
}

/**
 * rproc_handle_devmem() - handle devmem resource entry
 * @rproc: remote processor handle
 * @rsc: the devmem resource entry
431
 * @avail: size of available data (for sanity checking the image)
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
 *
 * Remote processors commonly need to access certain on-chip peripherals.
 *
 * Some of these remote processors access memory via an iommu device,
 * and might require us to configure their iommu before they can access
 * the on-chip peripherals they need.
 *
 * This resource entry is a request to map such a peripheral device.
 *
 * These devmem entries will contain the physical address of the device in
 * the 'pa' member. If a specific device address is expected, then 'da' will
 * contain it (currently this is the only use case supported). 'len' will
 * contain the size of the physical region we need to map.
 *
 * Currently we just "trust" those devmem entries to contain valid physical
 * addresses, but this is going to change: we want the implementations to
 * tell us ranges of physical addresses the firmware is allowed to request,
 * and not allow firmwares to request access to physical addresses that
 * are outside those ranges.
 */
452 453
static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
								int avail)
454 455
{
	struct rproc_mem_entry *mapping;
456
	struct device *dev = &rproc->dev;
457 458 459 460 461 462
	int ret;

	/* no point in handling this resource without a valid iommu domain */
	if (!rproc->domain)
		return -EINVAL;

463
	if (sizeof(*rsc) > avail) {
464
		dev_err(dev, "devmem rsc is truncated\n");
465 466 467 468 469
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
470
		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
471 472 473
		return -EINVAL;
	}

474 475
	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
	if (!mapping) {
476
		dev_err(dev, "kzalloc mapping failed\n");
477 478 479 480 481
		return -ENOMEM;
	}

	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
	if (ret) {
482
		dev_err(dev, "failed to map devmem: %d\n", ret);
483 484 485 486 487 488 489 490 491 492 493 494 495 496
		goto out;
	}

	/*
	 * We'll need this info later when we'll want to unmap everything
	 * (e.g. on shutdown).
	 *
	 * We can't trust the remote processor not to change the resource
	 * table, so we must maintain this info independently.
	 */
	mapping->da = rsc->da;
	mapping->len = rsc->len;
	list_add_tail(&mapping->node, &rproc->mappings);

497
	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
498 499 500 501 502 503 504 505 506 507 508 509 510
					rsc->pa, rsc->da, rsc->len);

	return 0;

out:
	kfree(mapping);
	return ret;
}

/**
 * rproc_handle_carveout() - handle phys contig memory allocation requests
 * @rproc: rproc handle
 * @rsc: the resource entry
511
 * @avail: size of available data (for image validation)
512 513 514 515 516 517 518 519 520 521 522 523 524
 *
 * This function will handle firmware requests for allocation of physically
 * contiguous memory regions.
 *
 * These request entries should come first in the firmware's resource table,
 * as other firmware entries might request placing other data objects inside
 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 *
 * Allocating memory this way helps utilizing the reserved physical memory
 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 * pressure is important; it may have a substantial impact on performance.
 */
525 526
static int rproc_handle_carveout(struct rproc *rproc,
				struct fw_rsc_carveout *rsc, int avail)
527 528
{
	struct rproc_mem_entry *carveout, *mapping;
529
	struct device *dev = &rproc->dev;
530 531 532 533
	dma_addr_t dma;
	void *va;
	int ret;

534
	if (sizeof(*rsc) > avail) {
535
		dev_err(dev, "carveout rsc is truncated\n");
536 537 538 539 540 541 542 543 544 545 546 547
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
			rsc->da, rsc->pa, rsc->len, rsc->flags);

548 549 550 551 552 553 554 555 556 557 558 559 560
	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
	if (!mapping) {
		dev_err(dev, "kzalloc mapping failed\n");
		return -ENOMEM;
	}

	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
	if (!carveout) {
		dev_err(dev, "kzalloc carveout failed\n");
		ret = -ENOMEM;
		goto free_mapping;
	}

561
	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
562
	if (!va) {
563
		dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
		ret = -ENOMEM;
		goto free_carv;
	}

	dev_dbg(dev, "carveout va %p, dma %x, len 0x%x\n", va, dma, rsc->len);

	/*
	 * Ok, this is non-standard.
	 *
	 * Sometimes we can't rely on the generic iommu-based DMA API
	 * to dynamically allocate the device address and then set the IOMMU
	 * tables accordingly, because some remote processors might
	 * _require_ us to use hard coded device addresses that their
	 * firmware was compiled with.
	 *
	 * In this case, we must use the IOMMU API directly and map
	 * the memory to the device address as expected by the remote
	 * processor.
	 *
	 * Obviously such remote processor devices should not be configured
	 * to use the iommu-based DMA API: we expect 'dma' to contain the
	 * physical address in this case.
	 */
	if (rproc->domain) {
		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
								rsc->flags);
		if (ret) {
			dev_err(dev, "iommu_map failed: %d\n", ret);
			goto dma_free;
		}

		/*
		 * We'll need this info later when we'll want to unmap
		 * everything (e.g. on shutdown).
		 *
		 * We can't trust the remote processor not to change the
		 * resource table, so we must maintain this info independently.
		 */
		mapping->da = rsc->da;
		mapping->len = rsc->len;
		list_add_tail(&mapping->node, &rproc->mappings);

606
		dev_dbg(dev, "carveout mapped 0x%x to 0x%x\n", rsc->da, dma);
607 608
	}

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
	/*
	 * Some remote processors might need to know the pa
	 * even though they are behind an IOMMU. E.g., OMAP4's
	 * remote M3 processor needs this so it can control
	 * on-chip hardware accelerators that are not behind
	 * the IOMMU, and therefor must know the pa.
	 *
	 * Generally we don't want to expose physical addresses
	 * if we don't have to (remote processors are generally
	 * _not_ trusted), so we might want to do this only for
	 * remote processor that _must_ have this (e.g. OMAP4's
	 * dual M3 subsystem).
	 *
	 * Non-IOMMU processors might also want to have this info.
	 * In this case, the device address and the physical address
	 * are the same.
	 */
	rsc->pa = dma;

628 629 630 631 632 633 634 635 636 637
	carveout->va = va;
	carveout->len = rsc->len;
	carveout->dma = dma;
	carveout->da = rsc->da;

	list_add_tail(&carveout->node, &rproc->carveouts);

	return 0;

dma_free:
638
	dma_free_coherent(dev->parent, rsc->len, va, dma);
639 640 641 642 643 644 645
free_carv:
	kfree(carveout);
free_mapping:
	kfree(mapping);
	return ret;
}

646 647 648 649 650
/*
 * A lookup table for resource handlers. The indices are defined in
 * enum fw_resource_type.
 */
static rproc_handle_resource_t rproc_handle_rsc[] = {
651 652 653
	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
654
	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
655 656
};

657 658
/* handle firmware resource entries before booting the remote processor */
static int
659
rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
660
{
661
	struct device *dev = &rproc->dev;
662
	rproc_handle_resource_t handler;
663 664 665 666 667 668 669 670 671 672 673 674 675
	int ret = 0, i;

	for (i = 0; i < table->num; i++) {
		int offset = table->offset[i];
		struct fw_rsc_hdr *hdr = (void *)table + offset;
		int avail = len - offset - sizeof(*hdr);
		void *rsc = (void *)hdr + sizeof(*hdr);

		/* make sure table isn't truncated */
		if (avail < 0) {
			dev_err(dev, "rsc table is truncated\n");
			return -EINVAL;
		}
676

677
		dev_dbg(dev, "rsc: type %d\n", hdr->type);
678

679 680
		if (hdr->type >= RSC_LAST) {
			dev_warn(dev, "unsupported resource %d\n", hdr->type);
681
			continue;
682 683
		}

684
		handler = rproc_handle_rsc[hdr->type];
685 686 687
		if (!handler)
			continue;

688
		ret = handler(rproc, rsc, avail);
689 690 691 692 693 694 695 696 697
		if (ret)
			break;
	}

	return ret;
}

/* handle firmware resource entries while registering the remote processor */
static int
698
rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
699
{
700
	struct device *dev = &rproc->dev;
701 702 703 704 705 706
	int ret = 0, i;

	for (i = 0; i < table->num; i++) {
		int offset = table->offset[i];
		struct fw_rsc_hdr *hdr = (void *)table + offset;
		int avail = len - offset - sizeof(*hdr);
707
		struct fw_rsc_vdev *vrsc;
708

709 710 711 712 713 714 715 716
		/* make sure table isn't truncated */
		if (avail < 0) {
			dev_err(dev, "rsc table is truncated\n");
			return -EINVAL;
		}

		dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);

717 718 719 720 721 722 723
		if (hdr->type != RSC_VDEV)
			continue;

		vrsc = (struct fw_rsc_vdev *)hdr->data;

		ret = rproc_handle_vdev(rproc, vrsc, avail);
		if (ret)
724
			break;
725
	}
726 727 728 729 730 731 732 733 734

	return ret;
}

/**
 * rproc_resource_cleanup() - clean up and free all acquired resources
 * @rproc: rproc handle
 *
 * This function will free all resources acquired for @rproc, and it
735
 * is called whenever @rproc either shuts down or fails to boot.
736 737 738 739
 */
static void rproc_resource_cleanup(struct rproc *rproc)
{
	struct rproc_mem_entry *entry, *tmp;
740
	struct device *dev = &rproc->dev;
741 742 743 744 745 746 747 748 749 750 751

	/* clean up debugfs trace entries */
	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
		rproc_remove_trace_file(entry->priv);
		rproc->num_traces--;
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up carveout allocations */
	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
752
		dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
753 754 755 756 757 758 759 760 761 762 763
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up iommu mapping entries */
	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
		size_t unmapped;

		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
		if (unmapped != entry->len) {
			/* nothing much to do besides complaining */
764
			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
765 766 767 768 769 770 771 772 773 774 775 776 777
								unmapped);
		}

		list_del(&entry->node);
		kfree(entry);
	}
}

/*
 * take a firmware and boot a remote processor with it.
 */
static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
{
778
	struct device *dev = &rproc->dev;
779
	const char *name = rproc->firmware;
780 781
	struct resource_table *table;
	int ret, tablesz;
782 783 784 785 786

	ret = rproc_fw_sanity_check(rproc, fw);
	if (ret)
		return ret;

787
	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
788 789 790 791 792 793 794 795 796 797 798

	/*
	 * if enabling an IOMMU isn't relevant for this rproc, this is
	 * just a nop
	 */
	ret = rproc_enable_iommu(rproc);
	if (ret) {
		dev_err(dev, "can't enable iommu: %d\n", ret);
		return ret;
	}

799
	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
800

801
	/* look for the resource table */
802
	table = rproc_find_rsc_table(rproc, fw, &tablesz);
803 804
	if (!table) {
		ret = -EINVAL;
805
		goto clean_up;
806
	}
807

808
	/* handle fw resources which are required to boot rproc */
809
	ret = rproc_handle_boot_rsc(rproc, table, tablesz);
810 811 812 813 814 815
	if (ret) {
		dev_err(dev, "Failed to process resources: %d\n", ret);
		goto clean_up;
	}

	/* load the ELF segments to memory */
816
	ret = rproc_load_segments(rproc, fw);
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
	if (ret) {
		dev_err(dev, "Failed to load program segments: %d\n", ret);
		goto clean_up;
	}

	/* power up the remote processor */
	ret = rproc->ops->start(rproc);
	if (ret) {
		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
		goto clean_up;
	}

	rproc->state = RPROC_RUNNING;

	dev_info(dev, "remote processor %s is now up\n", rproc->name);

	return 0;

clean_up:
	rproc_resource_cleanup(rproc);
	rproc_disable_iommu(rproc);
	return ret;
}

/*
 * take a firmware and look for virtio devices to register.
 *
 * Note: this function is called asynchronously upon registration of the
 * remote processor (so we must wait until it completes before we try
 * to unregister the device. one other option is just to use kref here,
 * that might be cleaner).
 */
static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
{
	struct rproc *rproc = context;
852 853
	struct resource_table *table;
	int ret, tablesz;
854 855 856 857

	if (rproc_fw_sanity_check(rproc, fw) < 0)
		goto out;

858
	/* look for the resource table */
859
	table = rproc_find_rsc_table(rproc, fw,  &tablesz);
860 861 862 863 864 865
	if (!table)
		goto out;

	/* look for virtio devices and register them */
	ret = rproc_handle_virtio_rsc(rproc, table, tablesz);
	if (ret)
866 867 868
		goto out;

out:
869
	release_firmware(fw);
870
	/* allow rproc_del() contexts, if any, to proceed */
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
	complete_all(&rproc->firmware_loading_complete);
}

/**
 * rproc_boot() - boot a remote processor
 * @rproc: handle of a remote processor
 *
 * Boot a remote processor (i.e. load its firmware, power it on, ...).
 *
 * If the remote processor is already powered on, this function immediately
 * returns (successfully).
 *
 * Returns 0 on success, and an appropriate error value otherwise.
 */
int rproc_boot(struct rproc *rproc)
{
	const struct firmware *firmware_p;
	struct device *dev;
	int ret;

	if (!rproc) {
		pr_err("invalid rproc handle\n");
		return -EINVAL;
	}

896
	dev = &rproc->dev;
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return ret;
	}

	/* loading a firmware is required */
	if (!rproc->firmware) {
		dev_err(dev, "%s: no firmware to load\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* prevent underlying implementation from being removed */
912
	if (!try_module_get(dev->parent->driver->owner)) {
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
		dev_err(dev, "%s: can't get owner\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* skip the boot process if rproc is already powered up */
	if (atomic_inc_return(&rproc->power) > 1) {
		ret = 0;
		goto unlock_mutex;
	}

	dev_info(dev, "powering up %s\n", rproc->name);

	/* load firmware */
	ret = request_firmware(&firmware_p, rproc->firmware, dev);
	if (ret < 0) {
		dev_err(dev, "request_firmware failed: %d\n", ret);
		goto downref_rproc;
	}

	ret = rproc_fw_boot(rproc, firmware_p);

	release_firmware(firmware_p);

downref_rproc:
	if (ret) {
939
		module_put(dev->parent->driver->owner);
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
		atomic_dec(&rproc->power);
	}
unlock_mutex:
	mutex_unlock(&rproc->lock);
	return ret;
}
EXPORT_SYMBOL(rproc_boot);

/**
 * rproc_shutdown() - power off the remote processor
 * @rproc: the remote processor
 *
 * Power off a remote processor (previously booted with rproc_boot()).
 *
 * In case @rproc is still being used by an additional user(s), then
 * this function will just decrement the power refcount and exit,
 * without really powering off the device.
 *
 * Every call to rproc_boot() must (eventually) be accompanied by a call
 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
 *
 * Notes:
 * - we're not decrementing the rproc's refcount, only the power refcount.
 *   which means that the @rproc handle stays valid even after rproc_shutdown()
 *   returns, and users can still use it with a subsequent rproc_boot(), if
 *   needed.
 */
void rproc_shutdown(struct rproc *rproc)
{
969
	struct device *dev = &rproc->dev;
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	int ret;

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return;
	}

	/* if the remote proc is still needed, bail out */
	if (!atomic_dec_and_test(&rproc->power))
		goto out;

	/* power off the remote processor */
	ret = rproc->ops->stop(rproc);
	if (ret) {
		atomic_inc(&rproc->power);
		dev_err(dev, "can't stop rproc: %d\n", ret);
		goto out;
	}

	/* clean up all acquired resources */
	rproc_resource_cleanup(rproc);

	rproc_disable_iommu(rproc);

	rproc->state = RPROC_OFFLINE;

	dev_info(dev, "stopped remote processor %s\n", rproc->name);

out:
	mutex_unlock(&rproc->lock);
	if (!ret)
1002
		module_put(dev->parent->driver->owner);
1003 1004 1005 1006
}
EXPORT_SYMBOL(rproc_shutdown);

/**
1007
 * rproc_add() - register a remote processor
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
 * @rproc: the remote processor handle to register
 *
 * Registers @rproc with the remoteproc framework, after it has been
 * allocated with rproc_alloc().
 *
 * This is called by the platform-specific rproc implementation, whenever
 * a new remote processor device is probed.
 *
 * Returns 0 on success and an appropriate error code otherwise.
 *
 * Note: this function initiates an asynchronous firmware loading
 * context, which will look for virtio devices supported by the rproc's
 * firmware.
 *
 * If found, those virtio devices will be created and added, so as a result
1023
 * of registering this remote processor, additional virtio drivers might be
1024 1025
 * probed.
 */
1026
int rproc_add(struct rproc *rproc)
1027
{
1028
	struct device *dev = &rproc->dev;
1029 1030
	int ret = 0;

1031 1032 1033
	ret = device_add(dev);
	if (ret < 0)
		return ret;
1034

1035
	dev_info(dev, "%s is available\n", rproc->name);
1036

1037 1038 1039
	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");

1040 1041 1042
	/* create debugfs entries */
	rproc_create_debug_dir(rproc);

1043
	/* rproc_del() calls must wait until async loader completes */
1044 1045 1046 1047
	init_completion(&rproc->firmware_loading_complete);

	/*
	 * We must retrieve early virtio configuration info from
1048
	 * the firmware (e.g. whether to register a virtio device,
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	 * what virtio features does it support, ...).
	 *
	 * We're initiating an asynchronous firmware loading, so we can
	 * be built-in kernel code, without hanging the boot process.
	 */
	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
					rproc->firmware, dev, GFP_KERNEL,
					rproc, rproc_fw_config_virtio);
	if (ret < 0) {
		dev_err(dev, "request_firmware_nowait failed: %d\n", ret);
		complete_all(&rproc->firmware_loading_complete);
	}

	return ret;
}
1064
EXPORT_SYMBOL(rproc_add);
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/**
 * rproc_type_release() - release a remote processor instance
 * @dev: the rproc's device
 *
 * This function should _never_ be called directly.
 *
 * It will be called by the driver core when no one holds a valid pointer
 * to @dev anymore.
 */
static void rproc_type_release(struct device *dev)
{
	struct rproc *rproc = container_of(dev, struct rproc, dev);

1079 1080 1081 1082
	dev_info(&rproc->dev, "releasing %s\n", rproc->name);

	rproc_delete_debug_dir(rproc);

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	idr_remove_all(&rproc->notifyids);
	idr_destroy(&rproc->notifyids);

	if (rproc->index >= 0)
		ida_simple_remove(&rproc_dev_index, rproc->index);

	kfree(rproc);
}

static struct device_type rproc_type = {
	.name		= "remoteproc",
	.release	= rproc_type_release,
};
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

/**
 * rproc_alloc() - allocate a remote processor handle
 * @dev: the underlying device
 * @name: name of this remote processor
 * @ops: platform-specific handlers (mainly start/stop)
 * @firmware: name of firmware file to load
 * @len: length of private data needed by the rproc driver (in bytes)
 *
 * Allocates a new remote processor handle, but does not register
 * it yet.
 *
 * This function should be used by rproc implementations during initialization
 * of the remote processor.
 *
 * After creating an rproc handle using this function, and when ready,
1112
 * implementations should then call rproc_add() to complete
1113 1114 1115 1116 1117
 * the registration of the remote processor.
 *
 * On success the new rproc is returned, and on failure, NULL.
 *
 * Note: _never_ directly deallocate @rproc, even if it was not registered
1118
 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
 */
struct rproc *rproc_alloc(struct device *dev, const char *name,
				const struct rproc_ops *ops,
				const char *firmware, int len)
{
	struct rproc *rproc;

	if (!dev || !name || !ops)
		return NULL;

	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
	if (!rproc) {
		dev_err(dev, "%s: kzalloc failed\n", __func__);
		return NULL;
	}

	rproc->name = name;
	rproc->ops = ops;
	rproc->firmware = firmware;
	rproc->priv = &rproc[1];

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	device_initialize(&rproc->dev);
	rproc->dev.parent = dev;
	rproc->dev.type = &rproc_type;

	/* Assign a unique device index and name */
	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
	if (rproc->index < 0) {
		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
		put_device(&rproc->dev);
		return NULL;
	}

	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);

1154 1155
	atomic_set(&rproc->power, 0);

1156 1157
	/* Set ELF as the default fw_ops handler */
	rproc->fw_ops = &rproc_elf_fw_ops;
1158 1159 1160

	mutex_init(&rproc->lock);

1161 1162
	idr_init(&rproc->notifyids);

1163 1164 1165
	INIT_LIST_HEAD(&rproc->carveouts);
	INIT_LIST_HEAD(&rproc->mappings);
	INIT_LIST_HEAD(&rproc->traces);
1166
	INIT_LIST_HEAD(&rproc->rvdevs);
1167 1168 1169 1170 1171 1172 1173 1174

	rproc->state = RPROC_OFFLINE;

	return rproc;
}
EXPORT_SYMBOL(rproc_alloc);

/**
1175
 * rproc_put() - unroll rproc_alloc()
1176 1177
 * @rproc: the remote processor handle
 *
1178
 * This function decrements the rproc dev refcount.
1179
 *
1180 1181
 * If no one holds any reference to rproc anymore, then its refcount would
 * now drop to zero, and it would be freed.
1182
 */
1183
void rproc_put(struct rproc *rproc)
1184
{
1185
	put_device(&rproc->dev);
1186
}
1187
EXPORT_SYMBOL(rproc_put);
1188 1189

/**
1190
 * rproc_del() - unregister a remote processor
1191 1192 1193 1194
 * @rproc: rproc handle to unregister
 *
 * This function should be called when the platform specific rproc
 * implementation decides to remove the rproc device. it should
1195
 * _only_ be called if a previous invocation of rproc_add()
1196 1197
 * has completed successfully.
 *
1198
 * After rproc_del() returns, @rproc isn't freed yet, because
1199
 * of the outstanding reference created by rproc_alloc. To decrement that
1200
 * one last refcount, one still needs to call rproc_put().
1201 1202 1203
 *
 * Returns 0 on success and -EINVAL if @rproc isn't valid.
 */
1204
int rproc_del(struct rproc *rproc)
1205
{
1206
	struct rproc_vdev *rvdev, *tmp;
1207

1208 1209 1210 1211 1212 1213
	if (!rproc)
		return -EINVAL;

	/* if rproc is just being registered, wait */
	wait_for_completion(&rproc->firmware_loading_complete);

1214
	/* clean up remote vdev entries */
1215
	list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1216
		rproc_remove_virtio_dev(rvdev);
1217

1218
	device_del(&rproc->dev);
1219 1220 1221

	return 0;
}
1222
EXPORT_SYMBOL(rproc_del);
1223 1224 1225 1226

static int __init remoteproc_init(void)
{
	rproc_init_debugfs();
1227

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	return 0;
}
module_init(remoteproc_init);

static void __exit remoteproc_exit(void)
{
	rproc_exit_debugfs();
}
module_exit(remoteproc_exit);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Generic Remote Processor Framework");