davinci_nand.c 23.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
 *
 * Copyright © 2006 Texas Instruments.
 *
 * Port to 2.6.23 Copyright © 2008 by:
 *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
 *   Troy Kisky <troy.kisky@boundarydevices.com>
 *   Dirk Behme <Dirk.Behme@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
35
#include <linux/slab.h>
36 37

#include <mach/nand.h>
38
#include <mach/aemif.h>
39 40 41 42 43 44 45 46 47 48

#include <asm/mach-types.h>


/*
 * This is a device driver for the NAND flash controller found on the
 * various DaVinci family chips.  It handles up to four SoC chipselects,
 * and some flavors of secondary chipselect (e.g. based on A12) as used
 * with multichip packages.
 *
49
 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
50 51 52 53 54 55 56 57 58
 * available on chips like the DM355 and OMAP-L137 and needed with the
 * more error-prone MLC NAND chips.
 *
 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
 * outputs in a "wire-AND" configuration, with no per-chip signals.
 */
struct davinci_nand_info {
	struct mtd_info		mtd;
	struct nand_chip	chip;
59
	struct nand_ecclayout	ecclayout;
60 61 62 63 64

	struct device		*dev;
	struct clk		*clk;
	bool			partitioned;

65 66
	bool			is_readmode;

67 68 69 70 71 72 73 74 75 76 77
	void __iomem		*base;
	void __iomem		*vaddr;

	uint32_t		ioaddr;
	uint32_t		current_cs;

	uint32_t		mask_chipsel;
	uint32_t		mask_ale;
	uint32_t		mask_cle;

	uint32_t		core_chipsel;
78 79

	struct davinci_aemif_timing	*timing;
80 81 82
};

static DEFINE_SPINLOCK(davinci_nand_lock);
83
static bool ecc4_busy;
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

#define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)


static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
		int offset)
{
	return __raw_readl(info->base + offset);
}

static inline void davinci_nand_writel(struct davinci_nand_info *info,
		int offset, unsigned long value)
{
	__raw_writel(value, info->base + offset);
}

/*----------------------------------------------------------------------*/

/*
 * Access to hardware control lines:  ALE, CLE, secondary chipselect.
 */

static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
				   unsigned int ctrl)
{
	struct davinci_nand_info	*info = to_davinci_nand(mtd);
	uint32_t			addr = info->current_cs;
	struct nand_chip		*nand = mtd->priv;

	/* Did the control lines change? */
	if (ctrl & NAND_CTRL_CHANGE) {
		if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
			addr |= info->mask_cle;
		else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
			addr |= info->mask_ale;

		nand->IO_ADDR_W = (void __iomem __force *)addr;
	}

	if (cmd != NAND_CMD_NONE)
		iowrite8(cmd, nand->IO_ADDR_W);
}

static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
{
	struct davinci_nand_info	*info = to_davinci_nand(mtd);
	uint32_t			addr = info->ioaddr;

	/* maybe kick in a second chipselect */
	if (chip > 0)
		addr |= info->mask_chipsel;
	info->current_cs = addr;

	info->chip.IO_ADDR_W = (void __iomem __force *)addr;
	info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
}

/*----------------------------------------------------------------------*/

/*
 * 1-bit hardware ECC ... context maintained for each core chipselect
 */

static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
{
	struct davinci_nand_info *info = to_davinci_nand(mtd);

	return davinci_nand_readl(info, NANDF1ECC_OFFSET
			+ 4 * info->core_chipsel);
}

static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
{
	struct davinci_nand_info *info;
	uint32_t nandcfr;
	unsigned long flags;

	info = to_davinci_nand(mtd);

	/* Reset ECC hardware */
	nand_davinci_readecc_1bit(mtd);

	spin_lock_irqsave(&davinci_nand_lock, flags);

	/* Restart ECC hardware */
	nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
	nandcfr |= BIT(8 + info->core_chipsel);
	davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);

	spin_unlock_irqrestore(&davinci_nand_lock, flags);
}

/*
 * Read hardware ECC value and pack into three bytes
 */
static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
				      const u_char *dat, u_char *ecc_code)
{
	unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
	unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);

	/* invert so that erased block ecc is correct */
	ecc24 = ~ecc24;
	ecc_code[0] = (u_char)(ecc24);
	ecc_code[1] = (u_char)(ecc24 >> 8);
	ecc_code[2] = (u_char)(ecc24 >> 16);

	return 0;
}

static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
				     u_char *read_ecc, u_char *calc_ecc)
{
	struct nand_chip *chip = mtd->priv;
	uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
					  (read_ecc[2] << 16);
	uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
					  (calc_ecc[2] << 16);
	uint32_t diff = eccCalc ^ eccNand;

	if (diff) {
		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
			/* Correctable error */
			if ((diff >> (12 + 3)) < chip->ecc.size) {
				dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
				return 1;
			} else {
				return -1;
			}
		} else if (!(diff & (diff - 1))) {
			/* Single bit ECC error in the ECC itself,
			 * nothing to fix */
			return 1;
		} else {
			/* Uncorrectable error */
			return -1;
		}

	}
	return 0;
}

/*----------------------------------------------------------------------*/

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
/*
 * 4-bit hardware ECC ... context maintained over entire AEMIF
 *
 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
 * since that forces use of a problematic "infix OOB" layout.
 * Among other things, it trashes manufacturer bad block markers.
 * Also, and specific to this hardware, it ECC-protects the "prepad"
 * in the OOB ... while having ECC protection for parts of OOB would
 * seem useful, the current MTD stack sometimes wants to update the
 * OOB without recomputing ECC.
 */

static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
{
	struct davinci_nand_info *info = to_davinci_nand(mtd);
	unsigned long flags;
	u32 val;

	spin_lock_irqsave(&davinci_nand_lock, flags);

	/* Start 4-bit ECC calculation for read/write */
	val = davinci_nand_readl(info, NANDFCR_OFFSET);
	val &= ~(0x03 << 4);
	val |= (info->core_chipsel << 4) | BIT(12);
	davinci_nand_writel(info, NANDFCR_OFFSET, val);

	info->is_readmode = (mode == NAND_ECC_READ);

	spin_unlock_irqrestore(&davinci_nand_lock, flags);
}

/* Read raw ECC code after writing to NAND. */
static void
nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
{
	const u32 mask = 0x03ff03ff;

	code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
	code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
	code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
	code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
}

/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
		const u_char *dat, u_char *ecc_code)
{
	struct davinci_nand_info *info = to_davinci_nand(mtd);
	u32 raw_ecc[4], *p;
	unsigned i;

	/* After a read, terminate ECC calculation by a dummy read
	 * of some 4-bit ECC register.  ECC covers everything that
	 * was read; correct() just uses the hardware state, so
	 * ecc_code is not needed.
	 */
	if (info->is_readmode) {
		davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
		return 0;
	}

	/* Pack eight raw 10-bit ecc values into ten bytes, making
	 * two passes which each convert four values (in upper and
	 * lower halves of two 32-bit words) into five bytes.  The
	 * ROM boot loader uses this same packing scheme.
	 */
	nand_davinci_readecc_4bit(info, raw_ecc);
	for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
		*ecc_code++ =   p[0]        & 0xff;
		*ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
		*ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
		*ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
		*ecc_code++ =  (p[1] >> 18) & 0xff;
	}

	return 0;
}

/* Correct up to 4 bits in data we just read, using state left in the
 * hardware plus the ecc_code computed when it was first written.
 */
static int nand_davinci_correct_4bit(struct mtd_info *mtd,
		u_char *data, u_char *ecc_code, u_char *null)
{
	int i;
	struct davinci_nand_info *info = to_davinci_nand(mtd);
	unsigned short ecc10[8];
	unsigned short *ecc16;
	u32 syndrome[4];
317
	u32 ecc_state;
318
	unsigned num_errors, corrected;
319
	unsigned long timeo = jiffies + msecs_to_jiffies(100);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356

	/* All bytes 0xff?  It's an erased page; ignore its ECC. */
	for (i = 0; i < 10; i++) {
		if (ecc_code[i] != 0xff)
			goto compare;
	}
	return 0;

compare:
	/* Unpack ten bytes into eight 10 bit values.  We know we're
	 * little-endian, and use type punning for less shifting/masking.
	 */
	if (WARN_ON(0x01 & (unsigned) ecc_code))
		return -EINVAL;
	ecc16 = (unsigned short *)ecc_code;

	ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
	ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
	ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
	ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
	ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
	ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
	ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
	ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;

	/* Tell ECC controller about the expected ECC codes. */
	for (i = 7; i >= 0; i--)
		davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);

	/* Allow time for syndrome calculation ... then read it.
	 * A syndrome of all zeroes 0 means no detected errors.
	 */
	davinci_nand_readl(info, NANDFSR_OFFSET);
	nand_davinci_readecc_4bit(info, syndrome);
	if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
		return 0;

357 358 359 360 361 362
	/*
	 * Clear any previous address calculation by doing a dummy read of an
	 * error address register.
	 */
	davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);

363 364 365 366 367 368
	/* Start address calculation, and wait for it to complete.
	 * We _could_ start reading more data while this is working,
	 * to speed up the overall page read.
	 */
	davinci_nand_writel(info, NANDFCR_OFFSET,
			davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

	/*
	 * ECC_STATE field reads 0x3 (Error correction complete) immediately
	 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
	 * begin trying to poll for the state, you may fall right out of your
	 * loop without any of the correction calculations having taken place.
	 * The recommendation from the hardware team is to wait till ECC_STATE
	 * reads less than 4, which means ECC HW has entered correction state.
	 */
	do {
		ecc_state = (davinci_nand_readl(info,
				NANDFSR_OFFSET) >> 8) & 0x0f;
		cpu_relax();
	} while ((ecc_state < 4) && time_before(jiffies, timeo));

384 385 386 387 388
	for (;;) {
		u32	fsr = davinci_nand_readl(info, NANDFSR_OFFSET);

		switch ((fsr >> 8) & 0x0f) {
		case 0:		/* no error, should not happen */
389
			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
390 391
			return 0;
		case 1:		/* five or more errors detected */
392
			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
			return -EIO;
		case 2:		/* error addresses computed */
		case 3:
			num_errors = 1 + ((fsr >> 16) & 0x03);
			goto correct;
		default:	/* still working on it */
			cpu_relax();
			continue;
		}
	}

correct:
	/* correct each error */
	for (i = 0, corrected = 0; i < num_errors; i++) {
		int error_address, error_value;

		if (i > 1) {
			error_address = davinci_nand_readl(info,
						NAND_ERR_ADD2_OFFSET);
			error_value = davinci_nand_readl(info,
						NAND_ERR_ERRVAL2_OFFSET);
		} else {
			error_address = davinci_nand_readl(info,
						NAND_ERR_ADD1_OFFSET);
			error_value = davinci_nand_readl(info,
						NAND_ERR_ERRVAL1_OFFSET);
		}

		if (i & 1) {
			error_address >>= 16;
			error_value >>= 16;
		}
		error_address &= 0x3ff;
		error_address = (512 + 7) - error_address;

		if (error_address < 512) {
			data[error_address] ^= error_value;
			corrected++;
		}
	}

	return corrected;
}

/*----------------------------------------------------------------------*/

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
/*
 * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
 * how these chips are normally wired.  This translates to both 8 and 16
 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
 *
 * For now we assume that configuration, or any other one which ignores
 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
 * and have that transparently morphed into multiple NAND operations.
 */
static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct nand_chip *chip = mtd->priv;

	if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
		ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
	else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
		ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
	else
		ioread8_rep(chip->IO_ADDR_R, buf, len);
}

static void nand_davinci_write_buf(struct mtd_info *mtd,
		const uint8_t *buf, int len)
{
	struct nand_chip *chip = mtd->priv;

	if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
		iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
	else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
		iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
	else
		iowrite8_rep(chip->IO_ADDR_R, buf, len);
}

/*
 * Check hardware register for wait status. Returns 1 if device is ready,
 * 0 if it is still busy.
 */
static int nand_davinci_dev_ready(struct mtd_info *mtd)
{
	struct davinci_nand_info *info = to_davinci_nand(mtd);

	return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
}

/*----------------------------------------------------------------------*/

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
/* An ECC layout for using 4-bit ECC with small-page flash, storing
 * ten ECC bytes plus the manufacturer's bad block marker byte, and
 * and not overlapping the default BBT markers.
 */
static struct nand_ecclayout hwecc4_small __initconst = {
	.eccbytes = 10,
	.eccpos = { 0, 1, 2, 3, 4,
		/* offset 5 holds the badblock marker */
		6, 7,
		13, 14, 15, },
	.oobfree = {
		{.offset = 8, .length = 5, },
		{.offset = 16, },
	},
};

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
/* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
 * and not overlapping the default BBT markers.
 */
static struct nand_ecclayout hwecc4_2048 __initconst = {
	.eccbytes = 40,
	.eccpos = {
		/* at the end of spare sector */
		24, 25, 26, 27, 28, 29,	30, 31, 32, 33,
		34, 35, 36, 37, 38, 39,	40, 41, 42, 43,
		44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
		},
	.oobfree = {
		/* 2 bytes at offset 0 hold manufacturer badblock markers */
		{.offset = 2, .length = 22, },
		/* 5 bytes at offset 8 hold BBT markers */
		/* 8 bytes at offset 16 hold JFFS2 clean markers */
	},
};
522

523 524 525 526 527 528 529 530 531 532 533 534
static int __init nand_davinci_probe(struct platform_device *pdev)
{
	struct davinci_nand_pdata	*pdata = pdev->dev.platform_data;
	struct davinci_nand_info	*info;
	struct resource			*res1;
	struct resource			*res2;
	void __iomem			*vaddr;
	void __iomem			*base;
	int				ret;
	uint32_t			val;
	nand_ecc_modes_t		ecc_mode;

535 536 537 538
	/* insist on board-specific configuration */
	if (!pdata)
		return -ENODEV;

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	/* which external chipselect will we be managing? */
	if (pdev->id < 0 || pdev->id > 3)
		return -ENODEV;

	info = kzalloc(sizeof(*info), GFP_KERNEL);
	if (!info) {
		dev_err(&pdev->dev, "unable to allocate memory\n");
		ret = -ENOMEM;
		goto err_nomem;
	}

	platform_set_drvdata(pdev, info);

	res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	if (!res1 || !res2) {
		dev_err(&pdev->dev, "resource missing\n");
		ret = -EINVAL;
		goto err_nomem;
	}

560 561
	vaddr = ioremap(res1->start, resource_size(res1));
	base = ioremap(res2->start, resource_size(res2));
562 563 564 565 566 567 568 569 570 571 572 573 574 575
	if (!vaddr || !base) {
		dev_err(&pdev->dev, "ioremap failed\n");
		ret = -EINVAL;
		goto err_ioremap;
	}

	info->dev		= &pdev->dev;
	info->base		= base;
	info->vaddr		= vaddr;

	info->mtd.priv		= &info->chip;
	info->mtd.name		= dev_name(&pdev->dev);
	info->mtd.owner		= THIS_MODULE;

576 577
	info->mtd.dev.parent	= &pdev->dev;

578 579 580 581 582 583
	info->chip.IO_ADDR_R	= vaddr;
	info->chip.IO_ADDR_W	= vaddr;
	info->chip.chip_delay	= 0;
	info->chip.select_chip	= nand_davinci_select_chip;

	/* options such as NAND_USE_FLASH_BBT or 16-bit widths */
584
	info->chip.options	= pdata->options;
585 586
	info->chip.bbt_td	= pdata->bbt_td;
	info->chip.bbt_md	= pdata->bbt_md;
587
	info->timing		= pdata->timing;
588 589 590 591 592 593 594 595

	info->ioaddr		= (uint32_t __force) vaddr;

	info->current_cs	= info->ioaddr;
	info->core_chipsel	= pdev->id;
	info->mask_chipsel	= pdata->mask_chipsel;

	/* use nandboot-capable ALE/CLE masks by default */
596
	info->mask_ale		= pdata->mask_ale ? : MASK_ALE;
597
	info->mask_cle		= pdata->mask_cle ? : MASK_CLE;
598 599 600 601 602 603 604 605 606

	/* Set address of hardware control function */
	info->chip.cmd_ctrl	= nand_davinci_hwcontrol;
	info->chip.dev_ready	= nand_davinci_dev_ready;

	/* Speed up buffer I/O */
	info->chip.read_buf     = nand_davinci_read_buf;
	info->chip.write_buf    = nand_davinci_write_buf;

607 608
	/* Use board-specific ECC config */
	ecc_mode		= pdata->ecc_mode;
609

610
	ret = -EINVAL;
611 612 613
	switch (ecc_mode) {
	case NAND_ECC_NONE:
	case NAND_ECC_SOFT:
614
		pdata->ecc_bits = 0;
615 616
		break;
	case NAND_ECC_HW:
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
		if (pdata->ecc_bits == 4) {
			/* No sanity checks:  CPUs must support this,
			 * and the chips may not use NAND_BUSWIDTH_16.
			 */

			/* No sharing 4-bit hardware between chipselects yet */
			spin_lock_irq(&davinci_nand_lock);
			if (ecc4_busy)
				ret = -EBUSY;
			else
				ecc4_busy = true;
			spin_unlock_irq(&davinci_nand_lock);

			if (ret == -EBUSY)
				goto err_ecc;

			info->chip.ecc.calculate = nand_davinci_calculate_4bit;
			info->chip.ecc.correct = nand_davinci_correct_4bit;
			info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
			info->chip.ecc.bytes = 10;
		} else {
			info->chip.ecc.calculate = nand_davinci_calculate_1bit;
			info->chip.ecc.correct = nand_davinci_correct_1bit;
			info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
			info->chip.ecc.bytes = 3;
		}
643 644 645 646 647 648 649 650
		info->chip.ecc.size = 512;
		break;
	default:
		ret = -EINVAL;
		goto err_ecc;
	}
	info->chip.ecc.mode = ecc_mode;

651
	info->clk = clk_get(&pdev->dev, "aemif");
652 653
	if (IS_ERR(info->clk)) {
		ret = PTR_ERR(info->clk);
654
		dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
655 656 657 658 659
		goto err_clk;
	}

	ret = clk_enable(info->clk);
	if (ret < 0) {
660 661
		dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
			ret);
662 663 664
		goto err_clk_enable;
	}

665 666 667
	/*
	 * Setup Async configuration register in case we did not boot from
	 * NAND and so bootloader did not bother to set it up.
668
	 */
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	val = davinci_nand_readl(info, A1CR_OFFSET + info->core_chipsel * 4);

	/* Extended Wait is not valid and Select Strobe mode is not used */
	val &= ~(ACR_ASIZE_MASK | ACR_EW_MASK | ACR_SS_MASK);
	if (info->chip.options & NAND_BUSWIDTH_16)
		val |= 0x1;

	davinci_nand_writel(info, A1CR_OFFSET + info->core_chipsel * 4, val);

	ret = davinci_aemif_setup_timing(info->timing, info->base,
							info->core_chipsel);
	if (ret < 0) {
		dev_dbg(&pdev->dev, "NAND timing values setup fail\n");
		goto err_timing;
	}
684 685 686 687 688 689 690 691 692 693 694

	spin_lock_irq(&davinci_nand_lock);

	/* put CSxNAND into NAND mode */
	val = davinci_nand_readl(info, NANDFCR_OFFSET);
	val |= BIT(info->core_chipsel);
	davinci_nand_writel(info, NANDFCR_OFFSET, val);

	spin_unlock_irq(&davinci_nand_lock);

	/* Scan to find existence of the device(s) */
695
	ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
696 697 698 699 700
	if (ret < 0) {
		dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
		goto err_scan;
	}

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	/* Update ECC layout if needed ... for 1-bit HW ECC, the default
	 * is OK, but it allocates 6 bytes when only 3 are needed (for
	 * each 512 bytes).  For the 4-bit HW ECC, that default is not
	 * usable:  10 bytes are needed, not 6.
	 */
	if (pdata->ecc_bits == 4) {
		int	chunks = info->mtd.writesize / 512;

		if (!chunks || info->mtd.oobsize < 16) {
			dev_dbg(&pdev->dev, "too small\n");
			ret = -EINVAL;
			goto err_scan;
		}

		/* For small page chips, preserve the manufacturer's
		 * badblock marking data ... and make sure a flash BBT
		 * table marker fits in the free bytes.
		 */
		if (chunks == 1) {
			info->ecclayout = hwecc4_small;
			info->ecclayout.oobfree[1].length =
				info->mtd.oobsize - 16;
			goto syndrome_done;
		}
725 726 727 728 729
		if (chunks == 4) {
			info->ecclayout = hwecc4_2048;
			info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
			goto syndrome_done;
		}
730

731 732 733 734 735
		/* 4KiB page chips are not yet supported. The eccpos from
		 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
		 * breaks userspace ioctl interface with mtd-utils. Once we
		 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
		 * for the 4KiB page chips.
736 737
		 */
		dev_warn(&pdev->dev, "no 4-bit ECC support yet "
738
				"for 4KiB-page NAND\n");
739 740 741 742 743 744 745 746 747 748 749
		ret = -EIO;
		goto err_scan;

syndrome_done:
		info->chip.ecc.layout = &info->ecclayout;
	}

	ret = nand_scan_tail(&info->mtd);
	if (ret < 0)
		goto err_scan;

750 751 752 753 754 755 756 757 758 759 760 761
	if (mtd_has_partitions()) {
		struct mtd_partition	*mtd_parts = NULL;
		int			mtd_parts_nb = 0;

		if (mtd_has_cmdlinepart()) {
			static const char *probes[] __initconst =
				{ "cmdlinepart", NULL };

			mtd_parts_nb = parse_mtd_partitions(&info->mtd, probes,
							    &mtd_parts, 0);
		}

762
		if (mtd_parts_nb <= 0) {
763 764 765 766 767 768 769 770 771 772 773 774
			mtd_parts = pdata->parts;
			mtd_parts_nb = pdata->nr_parts;
		}

		/* Register any partitions */
		if (mtd_parts_nb > 0) {
			ret = add_mtd_partitions(&info->mtd,
					mtd_parts, mtd_parts_nb);
			if (ret == 0)
				info->partitioned = true;
		}

775
	} else if (pdata->nr_parts) {
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
		dev_warn(&pdev->dev, "ignoring %d default partitions on %s\n",
				pdata->nr_parts, info->mtd.name);
	}

	/* If there's no partition info, just package the whole chip
	 * as a single MTD device.
	 */
	if (!info->partitioned)
		ret = add_mtd_device(&info->mtd) ? -ENODEV : 0;

	if (ret < 0)
		goto err_scan;

	val = davinci_nand_readl(info, NRCSR_OFFSET);
	dev_info(&pdev->dev, "controller rev. %d.%d\n",
	       (val >> 8) & 0xff, val & 0xff);

	return 0;

err_scan:
796
err_timing:
797 798 799 800 801
	clk_disable(info->clk);

err_clk_enable:
	clk_put(info->clk);

802 803 804 805 806
	spin_lock_irq(&davinci_nand_lock);
	if (ecc_mode == NAND_ECC_HW_SYNDROME)
		ecc4_busy = false;
	spin_unlock_irq(&davinci_nand_lock);

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
err_ecc:
err_clk:
err_ioremap:
	if (base)
		iounmap(base);
	if (vaddr)
		iounmap(vaddr);

err_nomem:
	kfree(info);
	return ret;
}

static int __exit nand_davinci_remove(struct platform_device *pdev)
{
	struct davinci_nand_info *info = platform_get_drvdata(pdev);
	int status;

	if (mtd_has_partitions() && info->partitioned)
		status = del_mtd_partitions(&info->mtd);
	else
		status = del_mtd_device(&info->mtd);

830 831 832 833 834
	spin_lock_irq(&davinci_nand_lock);
	if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
		ecc4_busy = false;
	spin_unlock_irq(&davinci_nand_lock);

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	iounmap(info->base);
	iounmap(info->vaddr);

	nand_release(&info->mtd);

	clk_disable(info->clk);
	clk_put(info->clk);

	kfree(info);

	return 0;
}

static struct platform_driver nand_davinci_driver = {
	.remove		= __exit_p(nand_davinci_remove),
	.driver		= {
		.name	= "davinci_nand",
	},
};
MODULE_ALIAS("platform:davinci_nand");

static int __init nand_davinci_init(void)
{
	return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe);
}
module_init(nand_davinci_init);

static void __exit nand_davinci_exit(void)
{
	platform_driver_unregister(&nand_davinci_driver);
}
module_exit(nand_davinci_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Texas Instruments");
MODULE_DESCRIPTION("Davinci NAND flash driver");