spu2.c 39.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/*
 * Copyright 2016 Broadcom
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation (the "GPL").
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License version 2 (GPLv2) for more details.
 *
 * You should have received a copy of the GNU General Public License
 * version 2 (GPLv2) along with this source code.
 */

/*
 * This file works with the SPU2 version of the SPU. SPU2 has different message
 * formats than the previous version of the SPU. All SPU message format
 * differences should be hidden in the spux.c,h files.
 */

#include <linux/kernel.h>
#include <linux/string.h>

#include "util.h"
#include "spu.h"
#include "spu2.h"

#define SPU2_TX_STATUS_LEN  0	/* SPU2 has no STATUS in input packet */

/*
 * Controlled by pkt_stat_cnt field in CRYPTO_SS_SPU0_CORE_SPU2_CONTROL0
 * register. Defaults to 2.
 */
#define SPU2_RX_STATUS_LEN  2

enum spu2_proto_sel {
	SPU2_PROTO_RESV = 0,
	SPU2_MACSEC_SECTAG8_ECB = 1,
	SPU2_MACSEC_SECTAG8_SCB = 2,
	SPU2_MACSEC_SECTAG16 = 3,
	SPU2_MACSEC_SECTAG16_8_XPN = 4,
	SPU2_IPSEC = 5,
	SPU2_IPSEC_ESN = 6,
	SPU2_TLS_CIPHER = 7,
	SPU2_TLS_AEAD = 8,
	SPU2_DTLS_CIPHER = 9,
	SPU2_DTLS_AEAD = 10
};

char *spu2_cipher_type_names[] = { "None", "AES128", "AES192", "AES256",
	"DES", "3DES"
};

char *spu2_cipher_mode_names[] = { "ECB", "CBC", "CTR", "CFB", "OFB", "XTS",
	"CCM", "GCM"
};

char *spu2_hash_type_names[] = { "None", "AES128", "AES192", "AES256",
	"Reserved", "Reserved", "MD5", "SHA1", "SHA224", "SHA256", "SHA384",
	"SHA512", "SHA512/224", "SHA512/256", "SHA3-224", "SHA3-256",
	"SHA3-384", "SHA3-512"
};

char *spu2_hash_mode_names[] = { "CMAC", "CBC-MAC", "XCBC-MAC", "HMAC",
	"Rabin", "CCM", "GCM", "Reserved"
};

static char *spu2_ciph_type_name(enum spu2_cipher_type cipher_type)
{
	if (cipher_type >= SPU2_CIPHER_TYPE_LAST)
		return "Reserved";
	return spu2_cipher_type_names[cipher_type];
}

static char *spu2_ciph_mode_name(enum spu2_cipher_mode cipher_mode)
{
	if (cipher_mode >= SPU2_CIPHER_MODE_LAST)
		return "Reserved";
	return spu2_cipher_mode_names[cipher_mode];
}

static char *spu2_hash_type_name(enum spu2_hash_type hash_type)
{
	if (hash_type >= SPU2_HASH_TYPE_LAST)
		return "Reserved";
	return spu2_hash_type_names[hash_type];
}

static char *spu2_hash_mode_name(enum spu2_hash_mode hash_mode)
{
	if (hash_mode >= SPU2_HASH_MODE_LAST)
		return "Reserved";
	return spu2_hash_mode_names[hash_mode];
}

/*
 * Convert from a software cipher mode value to the corresponding value
 * for SPU2.
 */
static int spu2_cipher_mode_xlate(enum spu_cipher_mode cipher_mode,
				  enum spu2_cipher_mode *spu2_mode)
{
	switch (cipher_mode) {
	case CIPHER_MODE_ECB:
		*spu2_mode = SPU2_CIPHER_MODE_ECB;
		break;
	case CIPHER_MODE_CBC:
		*spu2_mode = SPU2_CIPHER_MODE_CBC;
		break;
	case CIPHER_MODE_OFB:
		*spu2_mode = SPU2_CIPHER_MODE_OFB;
		break;
	case CIPHER_MODE_CFB:
		*spu2_mode = SPU2_CIPHER_MODE_CFB;
		break;
	case CIPHER_MODE_CTR:
		*spu2_mode = SPU2_CIPHER_MODE_CTR;
		break;
	case CIPHER_MODE_CCM:
		*spu2_mode = SPU2_CIPHER_MODE_CCM;
		break;
	case CIPHER_MODE_GCM:
		*spu2_mode = SPU2_CIPHER_MODE_GCM;
		break;
	case CIPHER_MODE_XTS:
		*spu2_mode = SPU2_CIPHER_MODE_XTS;
		break;
	default:
		return -EINVAL;
	}
	return 0;
}

/**
 * spu2_cipher_xlate() - Convert a cipher {alg/mode/type} triple to a SPU2
 * cipher type and mode.
 * @cipher_alg:  [in]  cipher algorithm value from software enumeration
 * @cipher_mode: [in]  cipher mode value from software enumeration
 * @cipher_type: [in]  cipher type value from software enumeration
 * @spu2_type:   [out] cipher type value used by spu2 hardware
 * @spu2_mode:   [out] cipher mode value used by spu2 hardware
 *
 * Return:  0 if successful
 */
static int spu2_cipher_xlate(enum spu_cipher_alg cipher_alg,
			     enum spu_cipher_mode cipher_mode,
			     enum spu_cipher_type cipher_type,
			     enum spu2_cipher_type *spu2_type,
			     enum spu2_cipher_mode *spu2_mode)
{
	int err;

	err = spu2_cipher_mode_xlate(cipher_mode, spu2_mode);
	if (err) {
		flow_log("Invalid cipher mode %d\n", cipher_mode);
		return err;
	}

	switch (cipher_alg) {
	case CIPHER_ALG_NONE:
		*spu2_type = SPU2_CIPHER_TYPE_NONE;
		break;
	case CIPHER_ALG_RC4:
		/* SPU2 does not support RC4 */
		err = -EINVAL;
		*spu2_type = SPU2_CIPHER_TYPE_NONE;
		break;
	case CIPHER_ALG_DES:
		*spu2_type = SPU2_CIPHER_TYPE_DES;
		break;
	case CIPHER_ALG_3DES:
		*spu2_type = SPU2_CIPHER_TYPE_3DES;
		break;
	case CIPHER_ALG_AES:
		switch (cipher_type) {
		case CIPHER_TYPE_AES128:
			*spu2_type = SPU2_CIPHER_TYPE_AES128;
			break;
		case CIPHER_TYPE_AES192:
			*spu2_type = SPU2_CIPHER_TYPE_AES192;
			break;
		case CIPHER_TYPE_AES256:
			*spu2_type = SPU2_CIPHER_TYPE_AES256;
			break;
		default:
			err = -EINVAL;
		}
		break;
	case CIPHER_ALG_LAST:
	default:
		err = -EINVAL;
		break;
	}

	if (err)
		flow_log("Invalid cipher alg %d or type %d\n",
			 cipher_alg, cipher_type);
	return err;
}

/*
 * Convert from a software hash mode value to the corresponding value
 * for SPU2. Note that HASH_MODE_NONE and HASH_MODE_XCBC have the same value.
 */
static int spu2_hash_mode_xlate(enum hash_mode hash_mode,
				enum spu2_hash_mode *spu2_mode)
{
	switch (hash_mode) {
	case HASH_MODE_XCBC:
		*spu2_mode = SPU2_HASH_MODE_XCBC_MAC;
		break;
	case HASH_MODE_CMAC:
		*spu2_mode = SPU2_HASH_MODE_CMAC;
		break;
	case HASH_MODE_HMAC:
		*spu2_mode = SPU2_HASH_MODE_HMAC;
		break;
	case HASH_MODE_CCM:
		*spu2_mode = SPU2_HASH_MODE_CCM;
		break;
	case HASH_MODE_GCM:
		*spu2_mode = SPU2_HASH_MODE_GCM;
		break;
	default:
		return -EINVAL;
	}
	return 0;
}

/**
 * spu2_hash_xlate() - Convert a hash {alg/mode/type} triple to a SPU2 hash type
 * and mode.
 * @hash_alg:  [in] hash algorithm value from software enumeration
 * @hash_mode: [in] hash mode value from software enumeration
 * @hash_type: [in] hash type value from software enumeration
 * @ciph_type: [in] cipher type value from software enumeration
 * @spu2_type: [out] hash type value used by SPU2 hardware
 * @spu2_mode: [out] hash mode value used by SPU2 hardware
 *
 * Return:  0 if successful
 */
static int
spu2_hash_xlate(enum hash_alg hash_alg, enum hash_mode hash_mode,
		enum hash_type hash_type, enum spu_cipher_type ciph_type,
		enum spu2_hash_type *spu2_type, enum spu2_hash_mode *spu2_mode)
{
	int err;

	err = spu2_hash_mode_xlate(hash_mode, spu2_mode);
	if (err) {
		flow_log("Invalid hash mode %d\n", hash_mode);
		return err;
	}

	switch (hash_alg) {
	case HASH_ALG_NONE:
		*spu2_type = SPU2_HASH_TYPE_NONE;
		break;
	case HASH_ALG_MD5:
		*spu2_type = SPU2_HASH_TYPE_MD5;
		break;
	case HASH_ALG_SHA1:
		*spu2_type = SPU2_HASH_TYPE_SHA1;
		break;
	case HASH_ALG_SHA224:
		*spu2_type = SPU2_HASH_TYPE_SHA224;
		break;
	case HASH_ALG_SHA256:
		*spu2_type = SPU2_HASH_TYPE_SHA256;
		break;
	case HASH_ALG_SHA384:
		*spu2_type = SPU2_HASH_TYPE_SHA384;
		break;
	case HASH_ALG_SHA512:
		*spu2_type = SPU2_HASH_TYPE_SHA512;
		break;
	case HASH_ALG_AES:
		switch (ciph_type) {
		case CIPHER_TYPE_AES128:
			*spu2_type = SPU2_HASH_TYPE_AES128;
			break;
		case CIPHER_TYPE_AES192:
			*spu2_type = SPU2_HASH_TYPE_AES192;
			break;
		case CIPHER_TYPE_AES256:
			*spu2_type = SPU2_HASH_TYPE_AES256;
			break;
		default:
			err = -EINVAL;
		}
		break;
	case HASH_ALG_SHA3_224:
		*spu2_type = SPU2_HASH_TYPE_SHA3_224;
		break;
	case HASH_ALG_SHA3_256:
		*spu2_type = SPU2_HASH_TYPE_SHA3_256;
		break;
	case HASH_ALG_SHA3_384:
		*spu2_type = SPU2_HASH_TYPE_SHA3_384;
		break;
	case HASH_ALG_SHA3_512:
		*spu2_type = SPU2_HASH_TYPE_SHA3_512;
305
		break;
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	case HASH_ALG_LAST:
	default:
		err = -EINVAL;
		break;
	}

	if (err)
		flow_log("Invalid hash alg %d or type %d\n",
			 hash_alg, hash_type);
	return err;
}

/* Dump FMD ctrl0. The ctrl0 input is in host byte order */
static void spu2_dump_fmd_ctrl0(u64 ctrl0)
{
	enum spu2_cipher_type ciph_type;
	enum spu2_cipher_mode ciph_mode;
	enum spu2_hash_type hash_type;
	enum spu2_hash_mode hash_mode;
	char *ciph_name;
	char *ciph_mode_name;
	char *hash_name;
	char *hash_mode_name;
	u8 cfb;
	u8 proto;

	packet_log(" FMD CTRL0 %#16llx\n", ctrl0);
	if (ctrl0 & SPU2_CIPH_ENCRYPT_EN)
		packet_log("  encrypt\n");
	else
		packet_log("  decrypt\n");

	ciph_type = (ctrl0 & SPU2_CIPH_TYPE) >> SPU2_CIPH_TYPE_SHIFT;
	ciph_name = spu2_ciph_type_name(ciph_type);
	packet_log("  Cipher type: %s\n", ciph_name);

	if (ciph_type != SPU2_CIPHER_TYPE_NONE) {
		ciph_mode = (ctrl0 & SPU2_CIPH_MODE) >> SPU2_CIPH_MODE_SHIFT;
		ciph_mode_name = spu2_ciph_mode_name(ciph_mode);
		packet_log("  Cipher mode: %s\n", ciph_mode_name);
	}

	cfb = (ctrl0 & SPU2_CFB_MASK) >> SPU2_CFB_MASK_SHIFT;
	packet_log("  CFB %#x\n", cfb);

	proto = (ctrl0 & SPU2_PROTO_SEL) >> SPU2_PROTO_SEL_SHIFT;
	packet_log("  protocol %#x\n", proto);

	if (ctrl0 & SPU2_HASH_FIRST)
		packet_log("  hash first\n");
	else
		packet_log("  cipher first\n");

	if (ctrl0 & SPU2_CHK_TAG)
		packet_log("  check tag\n");

	hash_type = (ctrl0 & SPU2_HASH_TYPE) >> SPU2_HASH_TYPE_SHIFT;
	hash_name = spu2_hash_type_name(hash_type);
	packet_log("  Hash type: %s\n", hash_name);

	if (hash_type != SPU2_HASH_TYPE_NONE) {
		hash_mode = (ctrl0 & SPU2_HASH_MODE) >> SPU2_HASH_MODE_SHIFT;
		hash_mode_name = spu2_hash_mode_name(hash_mode);
		packet_log("  Hash mode: %s\n", hash_mode_name);
	}

	if (ctrl0 & SPU2_CIPH_PAD_EN) {
		packet_log("  Cipher pad: %#2llx\n",
			   (ctrl0 & SPU2_CIPH_PAD) >> SPU2_CIPH_PAD_SHIFT);
	}
}

/* Dump FMD ctrl1. The ctrl1 input is in host byte order */
static void spu2_dump_fmd_ctrl1(u64 ctrl1)
{
	u8 hash_key_len;
	u8 ciph_key_len;
	u8 ret_iv_len;
	u8 iv_offset;
	u8 iv_len;
	u8 hash_tag_len;
	u8 ret_md;

	packet_log(" FMD CTRL1 %#16llx\n", ctrl1);
	if (ctrl1 & SPU2_TAG_LOC)
		packet_log("  Tag after payload\n");

	packet_log("  Msg includes ");
	if (ctrl1 & SPU2_HAS_FR_DATA)
		packet_log("FD ");
	if (ctrl1 & SPU2_HAS_AAD1)
		packet_log("AAD1 ");
	if (ctrl1 & SPU2_HAS_NAAD)
		packet_log("NAAD ");
	if (ctrl1 & SPU2_HAS_AAD2)
		packet_log("AAD2 ");
	if (ctrl1 & SPU2_HAS_ESN)
		packet_log("ESN ");
	packet_log("\n");

	hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT;
	packet_log("  Hash key len %u\n", hash_key_len);

	ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT;
	packet_log("  Cipher key len %u\n", ciph_key_len);

	if (ctrl1 & SPU2_GENIV)
		packet_log("  Generate IV\n");

	if (ctrl1 & SPU2_HASH_IV)
		packet_log("  IV included in hash\n");

	if (ctrl1 & SPU2_RET_IV)
		packet_log("  Return IV in output before payload\n");

	ret_iv_len = (ctrl1 & SPU2_RET_IV_LEN) >> SPU2_RET_IV_LEN_SHIFT;
	packet_log("  Length of returned IV %u bytes\n",
		   ret_iv_len ? ret_iv_len : 16);

	iv_offset = (ctrl1 & SPU2_IV_OFFSET) >> SPU2_IV_OFFSET_SHIFT;
	packet_log("  IV offset %u\n", iv_offset);

	iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT;
	packet_log("  Input IV len %u bytes\n", iv_len);

	hash_tag_len = (ctrl1 & SPU2_HASH_TAG_LEN) >> SPU2_HASH_TAG_LEN_SHIFT;
	packet_log("  Hash tag length %u bytes\n", hash_tag_len);

	packet_log("  Return ");
	ret_md = (ctrl1 & SPU2_RETURN_MD) >> SPU2_RETURN_MD_SHIFT;
	if (ret_md)
		packet_log("FMD ");
	if (ret_md == SPU2_RET_FMD_OMD)
		packet_log("OMD ");
	else if (ret_md == SPU2_RET_FMD_OMD_IV)
		packet_log("OMD IV ");
	if (ctrl1 & SPU2_RETURN_FD)
		packet_log("FD ");
	if (ctrl1 & SPU2_RETURN_AAD1)
		packet_log("AAD1 ");
	if (ctrl1 & SPU2_RETURN_NAAD)
		packet_log("NAAD ");
	if (ctrl1 & SPU2_RETURN_AAD2)
		packet_log("AAD2 ");
	if (ctrl1 & SPU2_RETURN_PAY)
		packet_log("Payload");
	packet_log("\n");
}

/* Dump FMD ctrl2. The ctrl2 input is in host byte order */
static void spu2_dump_fmd_ctrl2(u64 ctrl2)
{
	packet_log(" FMD CTRL2 %#16llx\n", ctrl2);

	packet_log("  AAD1 offset %llu length %llu bytes\n",
		   ctrl2 & SPU2_AAD1_OFFSET,
		   (ctrl2 & SPU2_AAD1_LEN) >> SPU2_AAD1_LEN_SHIFT);
	packet_log("  AAD2 offset %llu\n",
		   (ctrl2 & SPU2_AAD2_OFFSET) >> SPU2_AAD2_OFFSET_SHIFT);
	packet_log("  Payload offset %llu\n",
		   (ctrl2 & SPU2_PL_OFFSET) >> SPU2_PL_OFFSET_SHIFT);
}

/* Dump FMD ctrl3. The ctrl3 input is in host byte order */
static void spu2_dump_fmd_ctrl3(u64 ctrl3)
{
	packet_log(" FMD CTRL3 %#16llx\n", ctrl3);

	packet_log("  Payload length %llu bytes\n", ctrl3 & SPU2_PL_LEN);
	packet_log("  TLS length %llu bytes\n",
		   (ctrl3 & SPU2_TLS_LEN) >> SPU2_TLS_LEN_SHIFT);
}

static void spu2_dump_fmd(struct SPU2_FMD *fmd)
{
	spu2_dump_fmd_ctrl0(le64_to_cpu(fmd->ctrl0));
	spu2_dump_fmd_ctrl1(le64_to_cpu(fmd->ctrl1));
	spu2_dump_fmd_ctrl2(le64_to_cpu(fmd->ctrl2));
	spu2_dump_fmd_ctrl3(le64_to_cpu(fmd->ctrl3));
}

static void spu2_dump_omd(u8 *omd, u16 hash_key_len, u16 ciph_key_len,
			  u16 hash_iv_len, u16 ciph_iv_len)
{
	u8 *ptr = omd;

	packet_log(" OMD:\n");

	if (hash_key_len) {
		packet_log("  Hash Key Length %u bytes\n", hash_key_len);
		packet_dump("  KEY: ", ptr, hash_key_len);
		ptr += hash_key_len;
	}

	if (ciph_key_len) {
		packet_log("  Cipher Key Length %u bytes\n", ciph_key_len);
		packet_dump("  KEY: ", ptr, ciph_key_len);
		ptr += ciph_key_len;
	}

	if (hash_iv_len) {
		packet_log("  Hash IV Length %u bytes\n", hash_iv_len);
		packet_dump("  hash IV: ", ptr, hash_iv_len);
		ptr += ciph_key_len;
	}

	if (ciph_iv_len) {
		packet_log("  Cipher IV Length %u bytes\n", ciph_iv_len);
		packet_dump("  cipher IV: ", ptr, ciph_iv_len);
	}
}

/* Dump a SPU2 header for debug */
void spu2_dump_msg_hdr(u8 *buf, unsigned int buf_len)
{
	struct SPU2_FMD *fmd = (struct SPU2_FMD *)buf;
	u8 *omd;
	u64 ctrl1;
	u16 hash_key_len;
	u16 ciph_key_len;
	u16 hash_iv_len;
	u16 ciph_iv_len;
	u16 omd_len;

	packet_log("\n");
	packet_log("SPU2 message header %p len: %u\n", buf, buf_len);

	spu2_dump_fmd(fmd);
	omd = (u8 *)(fmd + 1);

	ctrl1 = le64_to_cpu(fmd->ctrl1);
	hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT;
	ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT;
	hash_iv_len = 0;
	ciph_iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT;
	spu2_dump_omd(omd, hash_key_len, ciph_key_len, hash_iv_len,
		      ciph_iv_len);

	/* Double check sanity */
	omd_len = hash_key_len + ciph_key_len + hash_iv_len + ciph_iv_len;
	if (FMD_SIZE + omd_len != buf_len) {
		packet_log
		    (" Packet parsed incorrectly. buf_len %u, sum of MD %zu\n",
		     buf_len, FMD_SIZE + omd_len);
	}
	packet_log("\n");
}

/**
 * spu2_fmd_init() - At setkey time, initialize the fixed meta data for
 * subsequent ablkcipher requests for this context.
 * @spu2_cipher_type:  Cipher algorithm
 * @spu2_mode:         Cipher mode
 * @cipher_key_len:    Length of cipher key, in bytes
 * @cipher_iv_len:     Length of cipher initialization vector, in bytes
 *
 * Return:  0 (success)
 */
static int spu2_fmd_init(struct SPU2_FMD *fmd,
			 enum spu2_cipher_type spu2_type,
			 enum spu2_cipher_mode spu2_mode,
			 u32 cipher_key_len, u32 cipher_iv_len)
{
	u64 ctrl0;
	u64 ctrl1;
	u64 ctrl2;
	u64 ctrl3;
	u32 aad1_offset;
	u32 aad2_offset;
	u16 aad1_len = 0;
	u64 payload_offset;

	ctrl0 = (spu2_type << SPU2_CIPH_TYPE_SHIFT) |
	    (spu2_mode << SPU2_CIPH_MODE_SHIFT);

	ctrl1 = (cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) |
	    ((u64)cipher_iv_len << SPU2_IV_LEN_SHIFT) |
	    ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT) | SPU2_RETURN_PAY;

	/*
	 * AAD1 offset is from start of FD. FD length is always 0 for this
	 * driver. So AAD1_offset is always 0.
	 */
	aad1_offset = 0;
	aad2_offset = aad1_offset;
	payload_offset = 0;
	ctrl2 = aad1_offset |
	    (aad1_len << SPU2_AAD1_LEN_SHIFT) |
	    (aad2_offset << SPU2_AAD2_OFFSET_SHIFT) |
	    (payload_offset << SPU2_PL_OFFSET_SHIFT);

	ctrl3 = 0;

	fmd->ctrl0 = cpu_to_le64(ctrl0);
	fmd->ctrl1 = cpu_to_le64(ctrl1);
	fmd->ctrl2 = cpu_to_le64(ctrl2);
	fmd->ctrl3 = cpu_to_le64(ctrl3);

	return 0;
}

/**
 * spu2_fmd_ctrl0_write() - Write ctrl0 field in fixed metadata (FMD) field of
 * SPU request packet.
 * @fmd:            Start of FMD field to be written
 * @is_inbound:     true if decrypting. false if encrypting.
 * @authFirst:      true if alg authenticates before encrypting
 * @protocol:       protocol selector
 * @cipher_type:    cipher algorithm
 * @cipher_mode:    cipher mode
 * @auth_type:      authentication type
 * @auth_mode:      authentication mode
 */
static void spu2_fmd_ctrl0_write(struct SPU2_FMD *fmd,
				 bool is_inbound, bool auth_first,
				 enum spu2_proto_sel protocol,
				 enum spu2_cipher_type cipher_type,
				 enum spu2_cipher_mode cipher_mode,
				 enum spu2_hash_type auth_type,
				 enum spu2_hash_mode auth_mode)
{
	u64 ctrl0 = 0;

	if ((cipher_type != SPU2_CIPHER_TYPE_NONE) && !is_inbound)
		ctrl0 |= SPU2_CIPH_ENCRYPT_EN;

	ctrl0 |= ((u64)cipher_type << SPU2_CIPH_TYPE_SHIFT) |
	    ((u64)cipher_mode << SPU2_CIPH_MODE_SHIFT);

	if (protocol)
		ctrl0 |= (u64)protocol << SPU2_PROTO_SEL_SHIFT;

	if (auth_first)
		ctrl0 |= SPU2_HASH_FIRST;

	if (is_inbound && (auth_type != SPU2_HASH_TYPE_NONE))
		ctrl0 |= SPU2_CHK_TAG;

	ctrl0 |= (((u64)auth_type << SPU2_HASH_TYPE_SHIFT) |
		  ((u64)auth_mode << SPU2_HASH_MODE_SHIFT));

	fmd->ctrl0 = cpu_to_le64(ctrl0);
}

/**
 * spu2_fmd_ctrl1_write() - Write ctrl1 field in fixed metadata (FMD) field of
 * SPU request packet.
 * @fmd:            Start of FMD field to be written
 * @assoc_size:     Length of additional associated data, in bytes
 * @auth_key_len:   Length of authentication key, in bytes
 * @cipher_key_len: Length of cipher key, in bytes
 * @gen_iv:         If true, hw generates IV and returns in response
 * @hash_iv:        IV participates in hash. Used for IPSEC and TLS.
 * @return_iv:      Return IV in output packet before payload
 * @ret_iv_len:     Length of IV returned from SPU, in bytes
 * @ret_iv_offset:  Offset into full IV of start of returned IV
 * @cipher_iv_len:  Length of input cipher IV, in bytes
 * @digest_size:    Length of digest (aka, hash tag or ICV), in bytes
 * @return_payload: Return payload in SPU response
 * @return_md : return metadata in SPU response
 *
 * Packet can have AAD2 w/o AAD1. For algorithms currently supported,
 * associated data goes in AAD2.
 */
static void spu2_fmd_ctrl1_write(struct SPU2_FMD *fmd, bool is_inbound,
				 u64 assoc_size,
				 u64 auth_key_len, u64 cipher_key_len,
				 bool gen_iv, bool hash_iv, bool return_iv,
				 u64 ret_iv_len, u64 ret_iv_offset,
				 u64 cipher_iv_len, u64 digest_size,
				 bool return_payload, bool return_md)
{
	u64 ctrl1 = 0;

	if (is_inbound && digest_size)
		ctrl1 |= SPU2_TAG_LOC;

	if (assoc_size) {
		ctrl1 |= SPU2_HAS_AAD2;
		ctrl1 |= SPU2_RETURN_AAD2;  /* need aad2 for gcm aes esp */
	}

	if (auth_key_len)
		ctrl1 |= ((auth_key_len << SPU2_HASH_KEY_LEN_SHIFT) &
			  SPU2_HASH_KEY_LEN);

	if (cipher_key_len)
		ctrl1 |= ((cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) &
			  SPU2_CIPH_KEY_LEN);

	if (gen_iv)
		ctrl1 |= SPU2_GENIV;

	if (hash_iv)
		ctrl1 |= SPU2_HASH_IV;

	if (return_iv) {
		ctrl1 |= SPU2_RET_IV;
		ctrl1 |= ret_iv_len << SPU2_RET_IV_LEN_SHIFT;
		ctrl1 |= ret_iv_offset << SPU2_IV_OFFSET_SHIFT;
	}

	ctrl1 |= ((cipher_iv_len << SPU2_IV_LEN_SHIFT) & SPU2_IV_LEN);

	if (digest_size)
		ctrl1 |= ((digest_size << SPU2_HASH_TAG_LEN_SHIFT) &
			  SPU2_HASH_TAG_LEN);

	/* Let's ask for the output pkt to include FMD, but don't need to
	 * get keys and IVs back in OMD.
	 */
	if (return_md)
		ctrl1 |= ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT);
	else
		ctrl1 |= ((u64)SPU2_RET_NO_MD << SPU2_RETURN_MD_SHIFT);

	/* Crypto API does not get assoc data back. So no need for AAD2. */

	if (return_payload)
		ctrl1 |= SPU2_RETURN_PAY;

	fmd->ctrl1 = cpu_to_le64(ctrl1);
}

/**
 * spu2_fmd_ctrl2_write() - Set the ctrl2 field in the fixed metadata field of
 * SPU2 header.
 * @fmd:            Start of FMD field to be written
 * @cipher_offset:  Number of bytes from Start of Packet (end of FD field) where
 *                  data to be encrypted or decrypted begins
 * @auth_key_len:   Length of authentication key, in bytes
 * @auth_iv_len:    Length of authentication initialization vector, in bytes
 * @cipher_key_len: Length of cipher key, in bytes
 * @cipher_iv_len:  Length of cipher IV, in bytes
 */
static void spu2_fmd_ctrl2_write(struct SPU2_FMD *fmd, u64 cipher_offset,
				 u64 auth_key_len, u64 auth_iv_len,
				 u64 cipher_key_len, u64 cipher_iv_len)
{
	u64 ctrl2;
	u64 aad1_offset;
	u64 aad2_offset;
	u16 aad1_len = 0;
	u64 payload_offset;

	/* AAD1 offset is from start of FD. FD length always 0. */
	aad1_offset = 0;

	aad2_offset = aad1_offset;
	payload_offset = cipher_offset;
	ctrl2 = aad1_offset |
	    (aad1_len << SPU2_AAD1_LEN_SHIFT) |
	    (aad2_offset << SPU2_AAD2_OFFSET_SHIFT) |
	    (payload_offset << SPU2_PL_OFFSET_SHIFT);

	fmd->ctrl2 = cpu_to_le64(ctrl2);
}

/**
 * spu2_fmd_ctrl3_write() - Set the ctrl3 field in FMD
 * @fmd:          Fixed meta data. First field in SPU2 msg header.
 * @payload_len:  Length of payload, in bytes
 */
static void spu2_fmd_ctrl3_write(struct SPU2_FMD *fmd, u64 payload_len)
{
	u64 ctrl3;

	ctrl3 = payload_len & SPU2_PL_LEN;

	fmd->ctrl3 = cpu_to_le64(ctrl3);
}

/**
 * spu2_ctx_max_payload() - Determine the maximum length of the payload for a
 * SPU message for a given cipher and hash alg context.
 * @cipher_alg:		The cipher algorithm
 * @cipher_mode:	The cipher mode
 * @blocksize:		The size of a block of data for this algo
 *
 * For SPU2, the hardware generally ignores the PayloadLen field in ctrl3 of
 * FMD and just keeps computing until it receives a DMA descriptor with the EOF
 * flag set. So we consider the max payload to be infinite. AES CCM is an
 * exception.
 *
 * Return: Max payload length in bytes
 */
u32 spu2_ctx_max_payload(enum spu_cipher_alg cipher_alg,
			 enum spu_cipher_mode cipher_mode,
			 unsigned int blocksize)
{
	if ((cipher_alg == CIPHER_ALG_AES) &&
	    (cipher_mode == CIPHER_MODE_CCM)) {
		u32 excess = SPU2_MAX_PAYLOAD % blocksize;

		return SPU2_MAX_PAYLOAD - excess;
	} else {
		return SPU_MAX_PAYLOAD_INF;
	}
}

/**
 * spu_payload_length() -  Given a SPU2 message header, extract the payload
 * length.
 * @spu_hdr:  Start of SPU message header (FMD)
 *
 * Return: payload length, in bytes
 */
u32 spu2_payload_length(u8 *spu_hdr)
{
	struct SPU2_FMD *fmd = (struct SPU2_FMD *)spu_hdr;
	u32 pl_len;
	u64 ctrl3;

	ctrl3 = le64_to_cpu(fmd->ctrl3);
	pl_len = ctrl3 & SPU2_PL_LEN;

	return pl_len;
}

/**
 * spu_response_hdr_len() - Determine the expected length of a SPU response
 * header.
 * @auth_key_len:  Length of authentication key, in bytes
 * @enc_key_len:   Length of encryption key, in bytes
 *
 * For SPU2, includes just FMD. OMD is never requested.
 *
 * Return: Length of FMD, in bytes
 */
u16 spu2_response_hdr_len(u16 auth_key_len, u16 enc_key_len, bool is_hash)
{
	return FMD_SIZE;
}

/**
 * spu_hash_pad_len() - Calculate the length of hash padding required to extend
 * data to a full block size.
 * @hash_alg:        hash algorithm
 * @hash_mode:       hash mode
 * @chunksize:       length of data, in bytes
 * @hash_block_size: size of a hash block, in bytes
 *
 * SPU2 hardware does all hash padding
 *
 * Return:  length of hash pad in bytes
 */
u16 spu2_hash_pad_len(enum hash_alg hash_alg, enum hash_mode hash_mode,
		      u32 chunksize, u16 hash_block_size)
{
	return 0;
}

/**
 * spu2_gcm_ccm_padlen() -  Determine the length of GCM/CCM padding for either
 * the AAD field or the data.
 *
 * Return:  0. Unlike SPU-M, SPU2 hardware does any GCM/CCM padding required.
 */
u32 spu2_gcm_ccm_pad_len(enum spu_cipher_mode cipher_mode,
			 unsigned int data_size)
{
	return 0;
}

/**
 * spu_assoc_resp_len() - Determine the size of the AAD2 buffer needed to catch
 * associated data in a SPU2 output packet.
 * @cipher_mode:   cipher mode
 * @assoc_len:     length of additional associated data, in bytes
 * @iv_len:        length of initialization vector, in bytes
 * @is_encrypt:    true if encrypting. false if decrypt.
 *
 * Return: Length of buffer to catch associated data in response
 */
u32 spu2_assoc_resp_len(enum spu_cipher_mode cipher_mode,
			unsigned int assoc_len, unsigned int iv_len,
			bool is_encrypt)
{
	u32 resp_len = assoc_len;

	if (is_encrypt)
		/* gcm aes esp has to write 8-byte IV in response */
		resp_len += iv_len;
	return resp_len;
}

/*
 * spu_aead_ivlen() - Calculate the length of the AEAD IV to be included
 * in a SPU request after the AAD and before the payload.
 * @cipher_mode:  cipher mode
 * @iv_ctr_len:   initialization vector length in bytes
 *
 * For SPU2, AEAD IV is included in OMD and does not need to be repeated
 * prior to the payload.
 *
 * Return: Length of AEAD IV in bytes
 */
u8 spu2_aead_ivlen(enum spu_cipher_mode cipher_mode, u16 iv_len)
{
	return 0;
}

/**
 * spu2_hash_type() - Determine the type of hash operation.
 * @src_sent:  The number of bytes in the current request that have already
 *             been sent to the SPU to be hashed.
 *
 * SPU2 always does a FULL hash operation
 */
enum hash_type spu2_hash_type(u32 src_sent)
{
	return HASH_TYPE_FULL;
}

/**
 * spu2_digest_size() - Determine the size of a hash digest to expect the SPU to
 * return.
 * alg_digest_size: Number of bytes in the final digest for the given algo
 * alg:             The hash algorithm
 * htype:           Type of hash operation (init, update, full, etc)
 *
 */
u32 spu2_digest_size(u32 alg_digest_size, enum hash_alg alg,
		     enum hash_type htype)
{
	return alg_digest_size;
}

/**
 * spu_create_request() - Build a SPU2 request message header, includint FMD and
 * OMD.
 * @spu_hdr: Start of buffer where SPU request header is to be written
 * @req_opts: SPU request message options
 * @cipher_parms: Parameters related to cipher algorithm
 * @hash_parms:   Parameters related to hash algorithm
 * @aead_parms:   Parameters related to AEAD operation
 * @data_size:    Length of data to be encrypted or authenticated. If AEAD, does
 *		  not include length of AAD.
 *
 * Construct the message starting at spu_hdr. Caller should allocate this buffer
 * in DMA-able memory at least SPU_HEADER_ALLOC_LEN bytes long.
 *
 * Return: the length of the SPU header in bytes. 0 if an error occurs.
 */
u32 spu2_create_request(u8 *spu_hdr,
			struct spu_request_opts *req_opts,
			struct spu_cipher_parms *cipher_parms,
			struct spu_hash_parms *hash_parms,
			struct spu_aead_parms *aead_parms,
			unsigned int data_size)
{
	struct SPU2_FMD *fmd;
	u8 *ptr;
	unsigned int buf_len;
	int err;
	enum spu2_cipher_type spu2_ciph_type = SPU2_CIPHER_TYPE_NONE;
	enum spu2_cipher_mode spu2_ciph_mode;
	enum spu2_hash_type spu2_auth_type = SPU2_HASH_TYPE_NONE;
	enum spu2_hash_mode spu2_auth_mode;
	bool return_md = true;
	enum spu2_proto_sel proto = SPU2_PROTO_RESV;

	/* size of the payload */
	unsigned int payload_len =
	    hash_parms->prebuf_len + data_size + hash_parms->pad_len -
	    ((req_opts->is_aead && req_opts->is_inbound) ?
	     hash_parms->digestsize : 0);

	/* offset of prebuf or data from start of AAD2 */
	unsigned int cipher_offset = aead_parms->assoc_size +
			aead_parms->aad_pad_len + aead_parms->iv_len;

#ifdef DEBUG
	/* total size of the data following OMD (without STAT word padding) */
	unsigned int real_db_size = spu_real_db_size(aead_parms->assoc_size,
						 aead_parms->iv_len,
						 hash_parms->prebuf_len,
						 data_size,
						 aead_parms->aad_pad_len,
						 aead_parms->data_pad_len,
						 hash_parms->pad_len);
#endif
	unsigned int assoc_size = aead_parms->assoc_size;

	if (req_opts->is_aead &&
	    (cipher_parms->alg == CIPHER_ALG_AES) &&
	    (cipher_parms->mode == CIPHER_MODE_GCM))
		/*
		 * On SPU 2, aes gcm cipher first on encrypt, auth first on
		 * decrypt
		 */
		req_opts->auth_first = req_opts->is_inbound;

	/* and do opposite for ccm (auth 1st on encrypt) */
	if (req_opts->is_aead &&
	    (cipher_parms->alg == CIPHER_ALG_AES) &&
	    (cipher_parms->mode == CIPHER_MODE_CCM))
		req_opts->auth_first = !req_opts->is_inbound;

	flow_log("%s()\n", __func__);
	flow_log("  in:%u authFirst:%u\n",
		 req_opts->is_inbound, req_opts->auth_first);
	flow_log("  cipher alg:%u mode:%u type %u\n", cipher_parms->alg,
		 cipher_parms->mode, cipher_parms->type);
	flow_log("  is_esp: %s\n", req_opts->is_esp ? "yes" : "no");
	flow_log("    key: %d\n", cipher_parms->key_len);
	flow_dump("    key: ", cipher_parms->key_buf, cipher_parms->key_len);
	flow_log("    iv: %d\n", cipher_parms->iv_len);
	flow_dump("    iv: ", cipher_parms->iv_buf, cipher_parms->iv_len);
	flow_log("  auth alg:%u mode:%u type %u\n",
		 hash_parms->alg, hash_parms->mode, hash_parms->type);
	flow_log("  digestsize: %u\n", hash_parms->digestsize);
	flow_log("  authkey: %d\n", hash_parms->key_len);
	flow_dump("  authkey: ", hash_parms->key_buf, hash_parms->key_len);
	flow_log("  assoc_size:%u\n", assoc_size);
	flow_log("  prebuf_len:%u\n", hash_parms->prebuf_len);
	flow_log("  data_size:%u\n", data_size);
	flow_log("  hash_pad_len:%u\n", hash_parms->pad_len);
	flow_log("  real_db_size:%u\n", real_db_size);
	flow_log("  cipher_offset:%u payload_len:%u\n",
		 cipher_offset, payload_len);
	flow_log("  aead_iv: %u\n", aead_parms->iv_len);

	/* Convert to spu2 values for cipher alg, hash alg */
	err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode,
				cipher_parms->type,
				&spu2_ciph_type, &spu2_ciph_mode);

	/* If we are doing GCM hashing only - either via rfc4543 transform
	 * or because we happen to do GCM with AAD only and no payload - we
	 * need to configure hardware to use hash key rather than cipher key
	 * and put data into payload.  This is because unlike SPU-M, running
	 * GCM cipher with 0 size payload is not permitted.
	 */
	if ((req_opts->is_rfc4543) ||
	    ((spu2_ciph_mode == SPU2_CIPHER_MODE_GCM) &&
	    (payload_len == 0))) {
		/* Use hashing (only) and set up hash key */
		spu2_ciph_type = SPU2_CIPHER_TYPE_NONE;
		hash_parms->key_len = cipher_parms->key_len;
		memcpy(hash_parms->key_buf, cipher_parms->key_buf,
		       cipher_parms->key_len);
		cipher_parms->key_len = 0;

		if (req_opts->is_rfc4543)
			payload_len += assoc_size;
		else
			payload_len = assoc_size;
		cipher_offset = 0;
		assoc_size = 0;
	}

	if (err)
		return 0;

	flow_log("spu2 cipher type %s, cipher mode %s\n",
		 spu2_ciph_type_name(spu2_ciph_type),
		 spu2_ciph_mode_name(spu2_ciph_mode));

	err = spu2_hash_xlate(hash_parms->alg, hash_parms->mode,
			      hash_parms->type,
			      cipher_parms->type,
			      &spu2_auth_type, &spu2_auth_mode);
	if (err)
		return 0;

	flow_log("spu2 hash type %s, hash mode %s\n",
		 spu2_hash_type_name(spu2_auth_type),
		 spu2_hash_mode_name(spu2_auth_mode));

	fmd = (struct SPU2_FMD *)spu_hdr;

	spu2_fmd_ctrl0_write(fmd, req_opts->is_inbound, req_opts->auth_first,
			     proto, spu2_ciph_type, spu2_ciph_mode,
			     spu2_auth_type, spu2_auth_mode);

	spu2_fmd_ctrl1_write(fmd, req_opts->is_inbound, assoc_size,
			     hash_parms->key_len, cipher_parms->key_len,
			     false, false,
			     aead_parms->return_iv, aead_parms->ret_iv_len,
			     aead_parms->ret_iv_off,
			     cipher_parms->iv_len, hash_parms->digestsize,
			     !req_opts->bd_suppress, return_md);

	spu2_fmd_ctrl2_write(fmd, cipher_offset, hash_parms->key_len, 0,
			     cipher_parms->key_len, cipher_parms->iv_len);

	spu2_fmd_ctrl3_write(fmd, payload_len);

	ptr = (u8 *)(fmd + 1);
	buf_len = sizeof(struct SPU2_FMD);

	/* Write OMD */
	if (hash_parms->key_len) {
		memcpy(ptr, hash_parms->key_buf, hash_parms->key_len);
		ptr += hash_parms->key_len;
		buf_len += hash_parms->key_len;
	}
	if (cipher_parms->key_len) {
		memcpy(ptr, cipher_parms->key_buf, cipher_parms->key_len);
		ptr += cipher_parms->key_len;
		buf_len += cipher_parms->key_len;
	}
	if (cipher_parms->iv_len) {
		memcpy(ptr, cipher_parms->iv_buf, cipher_parms->iv_len);
		ptr += cipher_parms->iv_len;
		buf_len += cipher_parms->iv_len;
	}

	packet_dump("  SPU request header: ", spu_hdr, buf_len);

	return buf_len;
}

/**
 * spu_cipher_req_init() - Build an ablkcipher SPU2 request message header,
 * including FMD and OMD.
 * @spu_hdr:       Location of start of SPU request (FMD field)
 * @cipher_parms:  Parameters describing cipher request
 *
 * Called at setkey time to initialize a msg header that can be reused for all
 * subsequent ablkcipher requests. Construct the message starting at spu_hdr.
 * Caller should allocate this buffer in DMA-able memory at least
 * SPU_HEADER_ALLOC_LEN bytes long.
 *
 * Return: the total length of the SPU header (FMD and OMD) in bytes. 0 if an
 * error occurs.
 */
u16 spu2_cipher_req_init(u8 *spu_hdr, struct spu_cipher_parms *cipher_parms)
{
	struct SPU2_FMD *fmd;
	u8 *omd;
	enum spu2_cipher_type spu2_type = SPU2_CIPHER_TYPE_NONE;
	enum spu2_cipher_mode spu2_mode;
	int err;

	flow_log("%s()\n", __func__);
	flow_log("  cipher alg:%u mode:%u type %u\n", cipher_parms->alg,
		 cipher_parms->mode, cipher_parms->type);
	flow_log("  cipher_iv_len: %u\n", cipher_parms->iv_len);
	flow_log("    key: %d\n", cipher_parms->key_len);
	flow_dump("    key: ", cipher_parms->key_buf, cipher_parms->key_len);

	/* Convert to spu2 values */
	err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode,
				cipher_parms->type, &spu2_type, &spu2_mode);
	if (err)
		return 0;

	flow_log("spu2 cipher type %s, cipher mode %s\n",
		 spu2_ciph_type_name(spu2_type),
		 spu2_ciph_mode_name(spu2_mode));

	/* Construct the FMD header */
	fmd = (struct SPU2_FMD *)spu_hdr;
	err = spu2_fmd_init(fmd, spu2_type, spu2_mode, cipher_parms->key_len,
			    cipher_parms->iv_len);
	if (err)
		return 0;

	/* Write cipher key to OMD */
	omd = (u8 *)(fmd + 1);
	if (cipher_parms->key_buf && cipher_parms->key_len)
		memcpy(omd, cipher_parms->key_buf, cipher_parms->key_len);

	packet_dump("  SPU request header: ", spu_hdr,
		    FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len);

	return FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len;
}

/**
 * spu_cipher_req_finish() - Finish building a SPU request message header for a
 * block cipher request.
 * @spu_hdr:         Start of the request message header (MH field)
 * @spu_req_hdr_len: Length in bytes of the SPU request header
 * @isInbound:       0 encrypt, 1 decrypt
 * @cipher_parms:    Parameters describing cipher operation to be performed
 * @update_key:      If true, rewrite the cipher key in SCTX
 * @data_size:       Length of the data in the BD field
 *
 * Assumes much of the header was already filled in at setkey() time in
 * spu_cipher_req_init().
 * spu_cipher_req_init() fills in the encryption key. For RC4, when submitting a
 * request for a non-first chunk, we use the 260-byte SUPDT field from the
 * previous response as the key. update_key is true for this case. Unused in all
 * other cases.
 */
void spu2_cipher_req_finish(u8 *spu_hdr,
			    u16 spu_req_hdr_len,
			    unsigned int is_inbound,
			    struct spu_cipher_parms *cipher_parms,
			    bool update_key,
			    unsigned int data_size)
{
	struct SPU2_FMD *fmd;
	u8 *omd;		/* start of optional metadata */
	u64 ctrl0;
	u64 ctrl3;

	flow_log("%s()\n", __func__);
	flow_log(" in: %u\n", is_inbound);
	flow_log(" cipher alg: %u, cipher_type: %u\n", cipher_parms->alg,
		 cipher_parms->type);
	if (update_key) {
		flow_log(" cipher key len: %u\n", cipher_parms->key_len);
		flow_dump("  key: ", cipher_parms->key_buf,
			  cipher_parms->key_len);
	}
	flow_log(" iv len: %d\n", cipher_parms->iv_len);
	flow_dump("    iv: ", cipher_parms->iv_buf, cipher_parms->iv_len);
	flow_log(" data_size: %u\n", data_size);

	fmd = (struct SPU2_FMD *)spu_hdr;
	omd = (u8 *)(fmd + 1);

	/*
	 * FMD ctrl0 was initialized at setkey time. update it to indicate
	 * whether we are encrypting or decrypting.
	 */
	ctrl0 = le64_to_cpu(fmd->ctrl0);
	if (is_inbound)
		ctrl0 &= ~SPU2_CIPH_ENCRYPT_EN;	/* decrypt */
	else
		ctrl0 |= SPU2_CIPH_ENCRYPT_EN;	/* encrypt */
	fmd->ctrl0 = cpu_to_le64(ctrl0);

	if (cipher_parms->alg && cipher_parms->iv_buf && cipher_parms->iv_len) {
		/* cipher iv provided so put it in here */
		memcpy(omd + cipher_parms->key_len, cipher_parms->iv_buf,
		       cipher_parms->iv_len);
	}

	ctrl3 = le64_to_cpu(fmd->ctrl3);
	data_size &= SPU2_PL_LEN;
	ctrl3 |= data_size;
	fmd->ctrl3 = cpu_to_le64(ctrl3);

	packet_dump("  SPU request header: ", spu_hdr, spu_req_hdr_len);
}

/**
 * spu_request_pad() - Create pad bytes at the end of the data.
 * @pad_start:      Start of buffer where pad bytes are to be written
 * @gcm_padding:    Length of GCM padding, in bytes
 * @hash_pad_len:   Number of bytes of padding extend data to full block
 * @auth_alg:       Authentication algorithm
 * @auth_mode:      Authentication mode
 * @total_sent:     Length inserted at end of hash pad
 * @status_padding: Number of bytes of padding to align STATUS word
 *
 * There may be three forms of pad:
 *  1. GCM pad - for GCM mode ciphers, pad to 16-byte alignment
 *  2. hash pad - pad to a block length, with 0x80 data terminator and
 *                size at the end
 *  3. STAT pad - to ensure the STAT field is 4-byte aligned
 */
void spu2_request_pad(u8 *pad_start, u32 gcm_padding, u32 hash_pad_len,
		      enum hash_alg auth_alg, enum hash_mode auth_mode,
		      unsigned int total_sent, u32 status_padding)
{
	u8 *ptr = pad_start;

	/* fix data alignent for GCM */
	if (gcm_padding > 0) {
		flow_log("  GCM: padding to 16 byte alignment: %u bytes\n",
			 gcm_padding);
		memset(ptr, 0, gcm_padding);
		ptr += gcm_padding;
	}

	if (hash_pad_len > 0) {
		/* clear the padding section */
		memset(ptr, 0, hash_pad_len);

		/* terminate the data */
		*ptr = 0x80;
		ptr += (hash_pad_len - sizeof(u64));

		/* add the size at the end as required per alg */
		if (auth_alg == HASH_ALG_MD5)
			*(u64 *)ptr = cpu_to_le64((u64)total_sent * 8);
		else		/* SHA1, SHA2-224, SHA2-256 */
			*(u64 *)ptr = cpu_to_be64((u64)total_sent * 8);
		ptr += sizeof(u64);
	}

	/* pad to a 4byte alignment for STAT */
	if (status_padding > 0) {
		flow_log("  STAT: padding to 4 byte alignment: %u bytes\n",
			 status_padding);

		memset(ptr, 0, status_padding);
		ptr += status_padding;
	}
}

/**
 * spu2_xts_tweak_in_payload() - Indicate that SPU2 does NOT place the XTS
 * tweak field in the packet payload (it uses IV instead)
 *
 * Return: 0
 */
u8 spu2_xts_tweak_in_payload(void)
{
	return 0;
}

/**
 * spu2_tx_status_len() - Return the length of the STATUS field in a SPU
 * response message.
 *
 * Return: Length of STATUS field in bytes.
 */
u8 spu2_tx_status_len(void)
{
	return SPU2_TX_STATUS_LEN;
}

/**
 * spu2_rx_status_len() - Return the length of the STATUS field in a SPU
 * response message.
 *
 * Return: Length of STATUS field in bytes.
 */
u8 spu2_rx_status_len(void)
{
	return SPU2_RX_STATUS_LEN;
}

/**
 * spu_status_process() - Process the status from a SPU response message.
 * @statp:  start of STATUS word
 *
 * Return:  0 - if status is good and response should be processed
 *         !0 - status indicates an error and response is invalid
 */
int spu2_status_process(u8 *statp)
{
	/* SPU2 status is 2 bytes by default - SPU_RX_STATUS_LEN */
	u16 status = le16_to_cpu(*(__le16 *)statp);

	if (status == 0)
		return 0;

	flow_log("rx status is %#x\n", status);
	if (status == SPU2_INVALID_ICV)
		return SPU_INVALID_ICV;

	return -EBADMSG;
}

/**
 * spu2_ccm_update_iv() - Update the IV as per the requirements for CCM mode.
 *
 * @digestsize:		Digest size of this request
 * @cipher_parms:	(pointer to) cipher parmaeters, includes IV buf & IV len
 * @assoclen:		Length of AAD data
 * @chunksize:		length of input data to be sent in this req
 * @is_encrypt:		true if this is an output/encrypt operation
 * @is_esp:		true if this is an ESP / RFC4309 operation
 *
 */
void spu2_ccm_update_iv(unsigned int digestsize,
			struct spu_cipher_parms *cipher_parms,
			unsigned int assoclen, unsigned int chunksize,
			bool is_encrypt, bool is_esp)
{
	int L;  /* size of length field, in bytes */

	/*
	 * In RFC4309 mode, L is fixed at 4 bytes; otherwise, IV from
	 * testmgr contains (L-1) in bottom 3 bits of first byte,
	 * per RFC 3610.
	 */
	if (is_esp)
		L = CCM_ESP_L_VALUE;
	else
		L = ((cipher_parms->iv_buf[0] & CCM_B0_L_PRIME) >>
		      CCM_B0_L_PRIME_SHIFT) + 1;

	/* SPU2 doesn't want these length bytes nor the first byte... */
	cipher_parms->iv_len -= (1 + L);
	memmove(cipher_parms->iv_buf, &cipher_parms->iv_buf[1],
		cipher_parms->iv_len);
}

/**
 * spu2_wordalign_padlen() - SPU2 does not require padding.
 * @data_size: length of data field in bytes
 *
 * Return: length of status field padding, in bytes (always 0 on SPU2)
 */
u32 spu2_wordalign_padlen(u32 data_size)
{
	return 0;
}