netdev.c 145.9 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
4
  Copyright(c) 1999 - 2008 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/tcp.h>
#include <linux/ipv6.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
46
#include <linux/pm_qos_params.h>
J
Jesse Brandeburg 已提交
47
#include <linux/aer.h>
48 49 50

#include "e1000.h"

B
Bruce Allan 已提交
51
#define DRV_VERSION "1.0.2-k2"
52 53 54 55 56 57 58
char e1000e_driver_name[] = "e1000e";
const char e1000e_driver_version[] = DRV_VERSION;

static const struct e1000_info *e1000_info_tbl[] = {
	[board_82571]		= &e1000_82571_info,
	[board_82572]		= &e1000_82572_info,
	[board_82573]		= &e1000_82573_info,
59
	[board_82574]		= &e1000_82574_info,
60
	[board_82583]		= &e1000_82583_info,
61 62 63
	[board_80003es2lan]	= &e1000_es2_info,
	[board_ich8lan]		= &e1000_ich8_info,
	[board_ich9lan]		= &e1000_ich9_info,
64
	[board_ich10lan]	= &e1000_ich10_info,
65
	[board_pchlan]		= &e1000_pch_info,
66 67 68 69 70 71 72 73 74
};

#ifdef DEBUG
/**
 * e1000_get_hw_dev_name - return device name string
 * used by hardware layer to print debugging information
 **/
char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
{
A
Auke Kok 已提交
75
	return hw->adapter->netdev->name;
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
}
#endif

/**
 * e1000_desc_unused - calculate if we have unused descriptors
 **/
static int e1000_desc_unused(struct e1000_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

/**
91
 * e1000_receive_skb - helper function to handle Rx indications
92 93 94 95 96 97 98 99
 * @adapter: board private structure
 * @status: descriptor status field as written by hardware
 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 * @skb: pointer to sk_buff to be indicated to stack
 **/
static void e1000_receive_skb(struct e1000_adapter *adapter,
			      struct net_device *netdev,
			      struct sk_buff *skb,
A
Al Viro 已提交
100
			      u8 status, __le16 vlan)
101 102 103 104
{
	skb->protocol = eth_type_trans(skb, netdev);

	if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
H
Herbert Xu 已提交
105 106
		vlan_gro_receive(&adapter->napi, adapter->vlgrp,
				 le16_to_cpu(vlan), skb);
107
	else
H
Herbert Xu 已提交
108
		napi_gro_receive(&adapter->napi, skb);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
}

/**
 * e1000_rx_checksum - Receive Checksum Offload for 82543
 * @adapter:     board private structure
 * @status_err:  receive descriptor status and error fields
 * @csum:	receive descriptor csum field
 * @sk_buff:     socket buffer with received data
 **/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
			      u32 csum, struct sk_buff *skb)
{
	u16 status = (u16)status_err;
	u8 errors = (u8)(status_err >> 24);
	skb->ip_summed = CHECKSUM_NONE;

	/* Ignore Checksum bit is set */
	if (status & E1000_RXD_STAT_IXSM)
		return;
	/* TCP/UDP checksum error bit is set */
	if (errors & E1000_RXD_ERR_TCPE) {
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}

	/* TCP/UDP Checksum has not been calculated */
	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
		return;

	/* It must be a TCP or UDP packet with a valid checksum */
	if (status & E1000_RXD_STAT_TCPCS) {
		/* TCP checksum is good */
		skb->ip_summed = CHECKSUM_UNNECESSARY;
	} else {
144 145 146
		/*
		 * IP fragment with UDP payload
		 * Hardware complements the payload checksum, so we undo it
147 148
		 * and then put the value in host order for further stack use.
		 */
A
Al Viro 已提交
149 150
		__sum16 sum = (__force __sum16)htons(csum);
		skb->csum = csum_unfold(~sum);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
		skb->ip_summed = CHECKSUM_COMPLETE;
	}
	adapter->hw_csum_good++;
}

/**
 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
 * @adapter: address of board private structure
 **/
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
				   int cleaned_count)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_rx_desc *rx_desc;
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
170
	unsigned int bufsz = adapter->rx_buffer_len;
171 172 173 174 175 176 177 178 179 180 181

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto map_skb;
		}

182
		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 184 185 186 187 188 189 190 191 192 193
		if (!skb) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
map_skb:
		buffer_info->dma = pci_map_single(pdev, skb->data,
						  adapter->rx_buffer_len,
						  PCI_DMA_FROMDEVICE);
194
		if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
			dev_err(&pdev->dev, "RX DMA map failed\n");
			adapter->rx_dma_failed++;
			break;
		}

		rx_desc = E1000_RX_DESC(*rx_ring, i);
		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;
		if (i-- == 0)
			i = (rx_ring->count - 1);

214 215
		/*
		 * Force memory writes to complete before letting h/w
216 217
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
218 219
		 * such as IA-64).
		 */
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
		wmb();
		writel(i, adapter->hw.hw_addr + rx_ring->tail);
	}
}

/**
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
				      int cleaned_count)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_rx_desc_packet_split *rx_desc;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
248 249 250
			ps_page = &buffer_info->ps_pages[j];
			if (j >= adapter->rx_ps_pages) {
				/* all unused desc entries get hw null ptr */
A
Al Viro 已提交
251
				rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
A
Auke Kok 已提交
252 253 254 255
				continue;
			}
			if (!ps_page->page) {
				ps_page->page = alloc_page(GFP_ATOMIC);
256
				if (!ps_page->page) {
A
Auke Kok 已提交
257 258 259 260 261 262 263
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
				ps_page->dma = pci_map_page(pdev,
						   ps_page->page,
						   0, PAGE_SIZE,
						   PCI_DMA_FROMDEVICE);
264
				if (pci_dma_mapping_error(pdev, ps_page->dma)) {
A
Auke Kok 已提交
265 266 267 268
					dev_err(&adapter->pdev->dev,
					  "RX DMA page map failed\n");
					adapter->rx_dma_failed++;
					goto no_buffers;
269 270
				}
			}
A
Auke Kok 已提交
271 272 273 274 275 276 277
			/*
			 * Refresh the desc even if buffer_addrs
			 * didn't change because each write-back
			 * erases this info.
			 */
			rx_desc->read.buffer_addr[j+1] =
			     cpu_to_le64(ps_page->dma);
278 279
		}

280 281
		skb = netdev_alloc_skb_ip_align(netdev,
						adapter->rx_ps_bsize0);
282 283 284 285 286 287 288 289 290 291

		if (!skb) {
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
		buffer_info->dma = pci_map_single(pdev, skb->data,
						  adapter->rx_ps_bsize0,
						  PCI_DMA_FROMDEVICE);
292
		if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
			dev_err(&pdev->dev, "RX DMA map failed\n");
			adapter->rx_dma_failed++;
			/* cleanup skb */
			dev_kfree_skb_any(skb);
			buffer_info->skb = NULL;
			break;
		}

		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;

		if (!(i--))
			i = (rx_ring->count - 1);

316 317
		/*
		 * Force memory writes to complete before letting h/w
318 319
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
320 321
		 * such as IA-64).
		 */
322
		wmb();
323 324
		/*
		 * Hardware increments by 16 bytes, but packet split
325 326 327 328 329 330 331
		 * descriptors are 32 bytes...so we increment tail
		 * twice as much.
		 */
		writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
	}
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
/**
 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 * @adapter: address of board private structure
 * @cleaned_count: number of buffers to allocate this pass
 **/

static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
                                         int cleaned_count)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_rx_desc *rx_desc;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
348
	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
349 350 351 352 353 354 355 356 357 358 359

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto check_page;
		}

360
		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
		if (unlikely(!skb)) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
check_page:
		/* allocate a new page if necessary */
		if (!buffer_info->page) {
			buffer_info->page = alloc_page(GFP_ATOMIC);
			if (unlikely(!buffer_info->page)) {
				adapter->alloc_rx_buff_failed++;
				break;
			}
		}

		if (!buffer_info->dma)
			buffer_info->dma = pci_map_page(pdev,
			                                buffer_info->page, 0,
			                                PAGE_SIZE,
			                                PCI_DMA_FROMDEVICE);

		rx_desc = E1000_RX_DESC(*rx_ring, i);
		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);

		if (unlikely(++i == rx_ring->count))
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (likely(rx_ring->next_to_use != i)) {
		rx_ring->next_to_use = i;
		if (unlikely(i-- == 0))
			i = (rx_ring->count - 1);

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
		writel(i, adapter->hw.hw_addr + rx_ring->tail);
	}
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/**
 * e1000_clean_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
			       int *work_done, int work_to_do)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_rx_desc *rx_desc, *next_rxd;
	struct e1000_buffer *buffer_info, *next_buffer;
	u32 length;
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = 0;
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC(*rx_ring, i);
	buffer_info = &rx_ring->buffer_info[i];

	while (rx_desc->status & E1000_RXD_STAT_DD) {
		struct sk_buff *skb;
		u8 status;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;

		status = rx_desc->status;
		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = 1;
		cleaned_count++;
		pci_unmap_single(pdev,
				 buffer_info->dma,
				 adapter->rx_buffer_len,
				 PCI_DMA_FROMDEVICE);
		buffer_info->dma = 0;

		length = le16_to_cpu(rx_desc->length);

		/* !EOP means multiple descriptors were used to store a single
		 * packet, also make sure the frame isn't just CRC only */
		if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
			/* All receives must fit into a single buffer */
467 468
			e_dbg("%s: Receive packet consumed multiple buffers\n",
			      netdev->name);
469 470 471 472 473 474 475 476 477 478 479
			/* recycle */
			buffer_info->skb = skb;
			goto next_desc;
		}

		if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
			/* recycle */
			buffer_info->skb = skb;
			goto next_desc;
		}

J
Jeff Kirsher 已提交
480 481 482 483
		/* adjust length to remove Ethernet CRC */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			length -= 4;

484 485 486
		total_rx_bytes += length;
		total_rx_packets++;

487 488
		/*
		 * code added for copybreak, this should improve
489
		 * performance for small packets with large amounts
490 491
		 * of reassembly being done in the stack
		 */
492 493
		if (length < copybreak) {
			struct sk_buff *new_skb =
494
			    netdev_alloc_skb_ip_align(netdev, length);
495
			if (new_skb) {
496 497 498 499 500 501
				skb_copy_to_linear_data_offset(new_skb,
							       -NET_IP_ALIGN,
							       (skb->data -
								NET_IP_ALIGN),
							       (length +
								NET_IP_ALIGN));
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
				/* save the skb in buffer_info as good */
				buffer_info->skb = skb;
				skb = new_skb;
			}
			/* else just continue with the old one */
		}
		/* end copybreak code */
		skb_put(skb, length);

		/* Receive Checksum Offload */
		e1000_rx_checksum(adapter,
				  (u32)(status) |
				  ((u32)(rx_desc->errors) << 24),
				  le16_to_cpu(rx_desc->csum), skb);

		e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);

next_desc:
		rx_desc->status = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
			adapter->alloc_rx_buf(adapter, cleaned_count);
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
		adapter->alloc_rx_buf(adapter, cleaned_count);

	adapter->total_rx_bytes += total_rx_bytes;
539
	adapter->total_rx_packets += total_rx_packets;
540 541
	netdev->stats.rx_bytes += total_rx_bytes;
	netdev->stats.rx_packets += total_rx_packets;
542 543 544 545 546 547
	return cleaned;
}

static void e1000_put_txbuf(struct e1000_adapter *adapter,
			     struct e1000_buffer *buffer_info)
{
J
Jesse Brandeburg 已提交
548
	buffer_info->dma = 0;
549
	if (buffer_info->skb) {
J
Jesse Brandeburg 已提交
550 551
		skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
		              DMA_TO_DEVICE);
552 553 554
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
555
	buffer_info->time_stamp = 0;
556 557 558 559 560 561 562 563 564 565
}

static void e1000_print_tx_hang(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int i = tx_ring->next_to_clean;
	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);

	/* detected Tx unit hang */
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	e_err("Detected Tx Unit Hang:\n"
	      "  TDH                  <%x>\n"
	      "  TDT                  <%x>\n"
	      "  next_to_use          <%x>\n"
	      "  next_to_clean        <%x>\n"
	      "buffer_info[next_to_clean]:\n"
	      "  time_stamp           <%lx>\n"
	      "  next_to_watch        <%x>\n"
	      "  jiffies              <%lx>\n"
	      "  next_to_watch.status <%x>\n",
	      readl(adapter->hw.hw_addr + tx_ring->head),
	      readl(adapter->hw.hw_addr + tx_ring->tail),
	      tx_ring->next_to_use,
	      tx_ring->next_to_clean,
	      tx_ring->buffer_info[eop].time_stamp,
	      eop,
	      jiffies,
	      eop_desc->upper.fields.status);
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
}

/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc, *eop_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i, eop;
	unsigned int count = 0;
	unsigned int total_tx_bytes = 0, total_tx_packets = 0;

	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC(*tx_ring, eop);

608 609
	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
610 611
		bool cleaned = false;
		for (; !cleaned; count++) {
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
			tx_desc = E1000_TX_DESC(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			cleaned = (i == eop);

			if (cleaned) {
				struct sk_buff *skb = buffer_info->skb;
				unsigned int segs, bytecount;
				segs = skb_shinfo(skb)->gso_segs ?: 1;
				/* multiply data chunks by size of headers */
				bytecount = ((segs - 1) * skb_headlen(skb)) +
					    skb->len;
				total_tx_packets += segs;
				total_tx_bytes += bytecount;
			}

			e1000_put_txbuf(adapter, buffer_info);
			tx_desc->upper.data = 0;

			i++;
			if (i == tx_ring->count)
				i = 0;
		}

		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC(*tx_ring, eop);
	}

	tx_ring->next_to_clean = i;

#define TX_WAKE_THRESHOLD 32
642 643
	if (count && netif_carrier_ok(netdev) &&
	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
644 645 646 647 648 649 650 651 652 653 654 655 656
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();

		if (netif_queue_stopped(netdev) &&
		    !(test_bit(__E1000_DOWN, &adapter->state))) {
			netif_wake_queue(netdev);
			++adapter->restart_queue;
		}
	}

	if (adapter->detect_tx_hung) {
657 658
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
659
		adapter->detect_tx_hung = 0;
660 661
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
662
			       + (adapter->tx_timeout_factor * HZ))
663
		    && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
664 665 666 667 668 669
			e1000_print_tx_hang(adapter);
			netif_stop_queue(netdev);
		}
	}
	adapter->total_tx_bytes += total_tx_bytes;
	adapter->total_tx_packets += total_tx_packets;
670 671
	netdev->stats.tx_bytes += total_tx_bytes;
	netdev->stats.tx_packets += total_tx_packets;
672
	return (count < tx_ring->count);
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
}

/**
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
				  int *work_done, int work_to_do)
{
	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info, *next_buffer;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;
	u32 length, staterr;
	int cleaned_count = 0;
	bool cleaned = 0;
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	buffer_info = &rx_ring->buffer_info[i];

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
		skb = buffer_info->skb;

		/* in the packet split case this is header only */
		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = 1;
		cleaned_count++;
		pci_unmap_single(pdev, buffer_info->dma,
				 adapter->rx_ps_bsize0,
				 PCI_DMA_FROMDEVICE);
		buffer_info->dma = 0;

		if (!(staterr & E1000_RXD_STAT_EOP)) {
728 729
			e_dbg("%s: Packet Split buffers didn't pick up the "
			      "full packet\n", netdev->name);
730 731 732 733 734 735 736 737 738 739 740 741
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		length = le16_to_cpu(rx_desc->wb.middle.length0);

		if (!length) {
742 743
			e_dbg("%s: Last part of the packet spanning multiple "
			      "descriptors\n", netdev->name);
744 745 746 747 748 749 750 751
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		/* Good Receive */
		skb_put(skb, length);

		{
752 753 754 755
		/*
		 * this looks ugly, but it seems compiler issues make it
		 * more efficient than reusing j
		 */
756 757
		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);

758 759 760 761 762
		/*
		 * page alloc/put takes too long and effects small packet
		 * throughput, so unsplit small packets and save the alloc/put
		 * only valid in softirq (napi) context to call kmap_*
		 */
763 764 765 766
		if (l1 && (l1 <= copybreak) &&
		    ((length + l1) <= adapter->rx_ps_bsize0)) {
			u8 *vaddr;

A
Auke Kok 已提交
767
			ps_page = &buffer_info->ps_pages[0];
768

769 770
			/*
			 * there is no documentation about how to call
771
			 * kmap_atomic, so we can't hold the mapping
772 773
			 * very long
			 */
774 775 776 777 778 779 780
			pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
				PAGE_SIZE, PCI_DMA_FROMDEVICE);
			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
			memcpy(skb_tail_pointer(skb), vaddr, l1);
			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
			pci_dma_sync_single_for_device(pdev, ps_page->dma,
				PAGE_SIZE, PCI_DMA_FROMDEVICE);
A
Auke Kok 已提交
781

J
Jeff Kirsher 已提交
782 783 784 785
			/* remove the CRC */
			if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
				l1 -= 4;

786 787 788 789 790 791 792 793 794 795
			skb_put(skb, l1);
			goto copydone;
		} /* if */
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
			if (!length)
				break;

A
Auke Kok 已提交
796
			ps_page = &buffer_info->ps_pages[j];
797 798 799 800 801 802 803 804 805 806
			pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
				       PCI_DMA_FROMDEVICE);
			ps_page->dma = 0;
			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
			ps_page->page = NULL;
			skb->len += length;
			skb->data_len += length;
			skb->truesize += length;
		}

J
Jeff Kirsher 已提交
807 808 809 810 811 812
		/* strip the ethernet crc, problem is we're using pages now so
		 * this whole operation can get a little cpu intensive
		 */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			pskb_trim(skb, skb->len - 4);

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
copydone:
		total_rx_bytes += skb->len;
		total_rx_packets++;

		e1000_rx_checksum(adapter, staterr, le16_to_cpu(
			rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);

		if (rx_desc->wb.upper.header_status &
			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
			adapter->rx_hdr_split++;

		e1000_receive_skb(adapter, netdev, skb,
				  staterr, rx_desc->wb.middle.vlan);

next_desc:
		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
		buffer_info->skb = NULL;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
			adapter->alloc_rx_buf(adapter, cleaned_count);
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;

		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
		adapter->alloc_rx_buf(adapter, cleaned_count);

	adapter->total_rx_bytes += total_rx_bytes;
850
	adapter->total_rx_packets += total_rx_packets;
851 852
	netdev->stats.rx_bytes += total_rx_bytes;
	netdev->stats.rx_packets += total_rx_packets;
853 854 855
	return cleaned;
}

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
/**
 * e1000_consume_page - helper function
 **/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
                               u16 length)
{
	bi->page = NULL;
	skb->len += length;
	skb->data_len += length;
	skb->truesize += length;
}

/**
 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/

static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
                                     int *work_done, int work_to_do)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_rx_desc *rx_desc, *next_rxd;
	struct e1000_buffer *buffer_info, *next_buffer;
	u32 length;
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = false;
	unsigned int total_rx_bytes=0, total_rx_packets=0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC(*rx_ring, i);
	buffer_info = &rx_ring->buffer_info[i];

	while (rx_desc->status & E1000_RXD_STAT_DD) {
		struct sk_buff *skb;
		u8 status;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;

		status = rx_desc->status;
		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		++i;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = true;
		cleaned_count++;
		pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
		               PCI_DMA_FROMDEVICE);
		buffer_info->dma = 0;

		length = le16_to_cpu(rx_desc->length);

		/* errors is only valid for DD + EOP descriptors */
		if (unlikely((status & E1000_RXD_STAT_EOP) &&
		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
				/* recycle both page and skb */
				buffer_info->skb = skb;
				/* an error means any chain goes out the window
				 * too */
				if (rx_ring->rx_skb_top)
					dev_kfree_skb(rx_ring->rx_skb_top);
				rx_ring->rx_skb_top = NULL;
				goto next_desc;
		}

#define rxtop rx_ring->rx_skb_top
		if (!(status & E1000_RXD_STAT_EOP)) {
			/* this descriptor is only the beginning (or middle) */
			if (!rxtop) {
				/* this is the beginning of a chain */
				rxtop = skb;
				skb_fill_page_desc(rxtop, 0, buffer_info->page,
				                   0, length);
			} else {
				/* this is the middle of a chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the skb, only consumed the page */
				buffer_info->skb = skb;
			}
			e1000_consume_page(buffer_info, rxtop, length);
			goto next_desc;
		} else {
			if (rxtop) {
				/* end of the chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the current skb, we only consumed the
				 * page */
				buffer_info->skb = skb;
				skb = rxtop;
				rxtop = NULL;
				e1000_consume_page(buffer_info, skb, length);
			} else {
				/* no chain, got EOP, this buf is the packet
				 * copybreak to save the put_page/alloc_page */
				if (length <= copybreak &&
				    skb_tailroom(skb) >= length) {
					u8 *vaddr;
					vaddr = kmap_atomic(buffer_info->page,
					                   KM_SKB_DATA_SOFTIRQ);
					memcpy(skb_tail_pointer(skb), vaddr,
					       length);
					kunmap_atomic(vaddr,
					              KM_SKB_DATA_SOFTIRQ);
					/* re-use the page, so don't erase
					 * buffer_info->page */
					skb_put(skb, length);
				} else {
					skb_fill_page_desc(skb, 0,
					                   buffer_info->page, 0,
				                           length);
					e1000_consume_page(buffer_info, skb,
					                   length);
				}
			}
		}

		/* Receive Checksum Offload XXX recompute due to CRC strip? */
		e1000_rx_checksum(adapter,
		                  (u32)(status) |
		                  ((u32)(rx_desc->errors) << 24),
		                  le16_to_cpu(rx_desc->csum), skb);

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		/* eth type trans needs skb->data to point to something */
		if (!pskb_may_pull(skb, ETH_HLEN)) {
1002
			e_err("pskb_may_pull failed.\n");
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
			dev_kfree_skb(skb);
			goto next_desc;
		}

		e1000_receive_skb(adapter, netdev, skb, status,
		                  rx_desc->special);

next_desc:
		rx_desc->status = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
			adapter->alloc_rx_buf(adapter, cleaned_count);
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
		adapter->alloc_rx_buf(adapter, cleaned_count);

	adapter->total_rx_bytes += total_rx_bytes;
	adapter->total_rx_packets += total_rx_packets;
1031 1032
	netdev->stats.rx_bytes += total_rx_bytes;
	netdev->stats.rx_packets += total_rx_packets;
1033 1034 1035
	return cleaned;
}

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
/**
 * e1000_clean_rx_ring - Free Rx Buffers per Queue
 * @adapter: board private structure
 **/
static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
{
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct pci_dev *pdev = adapter->pdev;
	unsigned int i, j;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->clean_rx == e1000_clean_rx_irq)
				pci_unmap_single(pdev, buffer_info->dma,
						 adapter->rx_buffer_len,
						 PCI_DMA_FROMDEVICE);
1056 1057 1058 1059
			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
				pci_unmap_page(pdev, buffer_info->dma,
				               PAGE_SIZE,
				               PCI_DMA_FROMDEVICE);
1060 1061 1062 1063 1064 1065 1066
			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
				pci_unmap_single(pdev, buffer_info->dma,
						 adapter->rx_ps_bsize0,
						 PCI_DMA_FROMDEVICE);
			buffer_info->dma = 0;
		}

1067 1068 1069 1070 1071
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
		}

1072 1073 1074 1075 1076 1077
		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
1078
			ps_page = &buffer_info->ps_pages[j];
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
			if (!ps_page->page)
				break;
			pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
				       PCI_DMA_FROMDEVICE);
			ps_page->dma = 0;
			put_page(ps_page->page);
			ps_page->page = NULL;
		}
	}

	/* there also may be some cached data from a chained receive */
	if (rx_ring->rx_skb_top) {
		dev_kfree_skb(rx_ring->rx_skb_top);
		rx_ring->rx_skb_top = NULL;
	}

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	writel(0, adapter->hw.hw_addr + rx_ring->head);
	writel(0, adapter->hw.hw_addr + rx_ring->tail);
}

1105 1106 1107 1108 1109 1110 1111 1112
static void e1000e_downshift_workaround(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, downshift_task);

	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
/**
 * e1000_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

1125 1126 1127
	/*
	 * read ICR disables interrupts using IAM
	 */
1128

1129
	if (icr & E1000_ICR_LSC) {
1130
		hw->mac.get_link_status = 1;
1131 1132 1133 1134
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1135 1136
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1137
			schedule_work(&adapter->downshift_task);
1138

1139 1140
		/*
		 * 80003ES2LAN workaround-- For packet buffer work-around on
1141
		 * link down event; disable receives here in the ISR and reset
1142 1143
		 * adapter in watchdog
		 */
1144 1145 1146 1147 1148
		if (netif_carrier_ok(netdev) &&
		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
			/* disable receives */
			u32 rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1149
			adapter->flags |= FLAG_RX_RESTART_NOW;
1150 1151 1152 1153 1154 1155
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1156
	if (napi_schedule_prep(&adapter->napi)) {
1157 1158 1159 1160
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1161
		__napi_schedule(&adapter->napi);
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	}

	return IRQ_HANDLED;
}

/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, icr = er32(ICR);
1178

1179
	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1180 1181
		return IRQ_NONE;  /* Not our interrupt */

1182 1183 1184 1185
	/*
	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt
	 */
1186 1187 1188
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

1189 1190 1191 1192 1193
	/*
	 * Interrupt Auto-Mask...upon reading ICR,
	 * interrupts are masked.  No need for the
	 * IMC write
	 */
1194

1195
	if (icr & E1000_ICR_LSC) {
1196
		hw->mac.get_link_status = 1;
1197 1198 1199 1200
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1201 1202
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1203
			schedule_work(&adapter->downshift_task);
1204

1205 1206
		/*
		 * 80003ES2LAN workaround--
1207 1208 1209 1210 1211 1212 1213 1214 1215
		 * For packet buffer work-around on link down event;
		 * disable receives here in the ISR and
		 * reset adapter in watchdog
		 */
		if (netif_carrier_ok(netdev) &&
		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
			/* disable receives */
			rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1216
			adapter->flags |= FLAG_RX_RESTART_NOW;
1217 1218 1219 1220 1221 1222
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1223
	if (napi_schedule_prep(&adapter->napi)) {
1224 1225 1226 1227
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1228
		__napi_schedule(&adapter->napi);
1229 1230 1231 1232 1233
	}

	return IRQ_HANDLED;
}

1234 1235 1236 1237 1238 1239 1240 1241
static irqreturn_t e1000_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1242 1243
		if (!test_bit(__E1000_DOWN, &adapter->state))
			ew32(IMS, E1000_IMS_OTHER);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
		return IRQ_NONE;
	}

	if (icr & adapter->eiac_mask)
		ew32(ICS, (icr & adapter->eiac_mask));

	if (icr & E1000_ICR_OTHER) {
		if (!(icr & E1000_ICR_LSC))
			goto no_link_interrupt;
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

no_link_interrupt:
1260 1261
	if (!test_bit(__E1000_DOWN, &adapter->state))
		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

	return IRQ_HANDLED;
}


static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;


	adapter->total_tx_bytes = 0;
	adapter->total_tx_packets = 0;

	if (!e1000_clean_tx_irq(adapter))
		/* Ring was not completely cleaned, so fire another interrupt */
		ew32(ICS, tx_ring->ims_val);

	return IRQ_HANDLED;
}

static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
	if (adapter->rx_ring->set_itr) {
		writel(1000000000 / (adapter->rx_ring->itr_val * 256),
		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
		adapter->rx_ring->set_itr = 0;
	}

1299
	if (napi_schedule_prep(&adapter->napi)) {
1300 1301
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1302
		__napi_schedule(&adapter->napi);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	}
	return IRQ_HANDLED;
}

/**
 * e1000_configure_msix - Configure MSI-X hardware
 *
 * e1000_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int vector = 0;
	u32 ctrl_ext, ivar = 0;

	adapter->eiac_mask = 0;

	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
	if (hw->mac.type == e1000_82574) {
		u32 rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_ACK_DIS;
		ew32(RFCTL, rfctl);
	}

#define E1000_IVAR_INT_ALLOC_VALID	0x8
	/* Configure Rx vector */
	rx_ring->ims_val = E1000_IMS_RXQ0;
	adapter->eiac_mask |= rx_ring->ims_val;
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + rx_ring->itr_register);
	else
		writel(1, hw->hw_addr + rx_ring->itr_register);
	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;

	/* Configure Tx vector */
	tx_ring->ims_val = E1000_IMS_TXQ0;
	vector++;
	if (tx_ring->itr_val)
		writel(1000000000 / (tx_ring->itr_val * 256),
		       hw->hw_addr + tx_ring->itr_register);
	else
		writel(1, hw->hw_addr + tx_ring->itr_register);
	adapter->eiac_mask |= tx_ring->ims_val;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);

	/* set vector for Other Causes, e.g. link changes */
	vector++;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + E1000_EITR_82574(vector));
	else
		writel(1, hw->hw_addr + E1000_EITR_82574(vector));

	/* Cause Tx interrupts on every write back */
	ivar |= (1 << 31);

	ew32(IVAR, ivar);

	/* enable MSI-X PBA support */
	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;

	/* Auto-Mask Other interrupts upon ICR read */
#define E1000_EIAC_MASK_82574   0x01F00000
	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
	ctrl_ext |= E1000_CTRL_EXT_EIAME;
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
}

void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
	} else if (adapter->flags & FLAG_MSI_ENABLED) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~FLAG_MSI_ENABLED;
	}

	return;
}

/**
 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
	int err;
	int numvecs, i;


	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		if (adapter->flags & FLAG_HAS_MSIX) {
			numvecs = 3; /* RxQ0, TxQ0 and other */
			adapter->msix_entries = kcalloc(numvecs,
						      sizeof(struct msix_entry),
						      GFP_KERNEL);
			if (adapter->msix_entries) {
				for (i = 0; i < numvecs; i++)
					adapter->msix_entries[i].entry = i;

				err = pci_enable_msix(adapter->pdev,
						      adapter->msix_entries,
						      numvecs);
				if (err == 0)
					return;
			}
			/* MSI-X failed, so fall through and try MSI */
			e_err("Failed to initialize MSI-X interrupts.  "
			      "Falling back to MSI interrupts.\n");
			e1000e_reset_interrupt_capability(adapter);
		}
		adapter->int_mode = E1000E_INT_MODE_MSI;
		/* Fall through */
	case E1000E_INT_MODE_MSI:
		if (!pci_enable_msi(adapter->pdev)) {
			adapter->flags |= FLAG_MSI_ENABLED;
		} else {
			adapter->int_mode = E1000E_INT_MODE_LEGACY;
			e_err("Failed to initialize MSI interrupts.  Falling "
			      "back to legacy interrupts.\n");
		}
		/* Fall through */
	case E1000E_INT_MODE_LEGACY:
		/* Don't do anything; this is the system default */
		break;
	}

	return;
}

/**
 * e1000_request_msix - Initialize MSI-X interrupts
 *
 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err = 0, vector = 0;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1457
		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1458 1459 1460
	else
		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1461
			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1462 1463 1464 1465 1466 1467 1468 1469
			  netdev);
	if (err)
		goto out;
	adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
	adapter->rx_ring->itr_val = adapter->itr;
	vector++;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1470
		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1471 1472 1473
	else
		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1474
			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1475 1476 1477 1478 1479 1480 1481 1482
			  netdev);
	if (err)
		goto out;
	adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
	adapter->tx_ring->itr_val = adapter->itr;
	vector++;

	err = request_irq(adapter->msix_entries[vector].vector,
1483
			  e1000_msix_other, 0, netdev->name, netdev);
1484 1485 1486 1487 1488 1489 1490 1491 1492
	if (err)
		goto out;

	e1000_configure_msix(adapter);
	return 0;
out:
	return err;
}

1493 1494 1495 1496 1497 1498
/**
 * e1000_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
1499 1500 1501 1502 1503
static int e1000_request_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err;

1504 1505 1506 1507 1508 1509 1510 1511
	if (adapter->msix_entries) {
		err = e1000_request_msix(adapter);
		if (!err)
			return err;
		/* fall back to MSI */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_MSI;
		e1000e_set_interrupt_capability(adapter);
1512
	}
1513
	if (adapter->flags & FLAG_MSI_ENABLED) {
1514
		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1515 1516 1517
				  netdev->name, netdev);
		if (!err)
			return err;
1518

1519 1520 1521
		/* fall back to legacy interrupt */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1522 1523
	}

1524
	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1525 1526 1527 1528
			  netdev->name, netdev);
	if (err)
		e_err("Unable to allocate interrupt, Error: %d\n", err);

1529 1530 1531 1532 1533 1534 1535
	return err;
}

static void e1000_free_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	if (adapter->msix_entries) {
		int vector = 0;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		/* Other Causes interrupt vector */
		free_irq(adapter->msix_entries[vector].vector, netdev);
		return;
1548
	}
1549 1550

	free_irq(adapter->pdev->irq, netdev);
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
}

/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 **/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	ew32(IMC, ~0);
1561 1562
	if (adapter->msix_entries)
		ew32(EIAC_82574, 0);
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	e1e_flush();
	synchronize_irq(adapter->pdev->irq);
}

/**
 * e1000_irq_enable - Enable default interrupt generation settings
 **/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1574 1575 1576 1577 1578 1579
	if (adapter->msix_entries) {
		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
	} else {
		ew32(IMS, IMS_ENABLE_MASK);
	}
J
Jesse Brandeburg 已提交
1580
	e1e_flush();
1581 1582 1583 1584 1585 1586
}

/**
 * e1000_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
1587
 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded. For AMT version (only with 82573)
 * of the f/w this means that the network i/f is open.
 **/
static void e1000_get_hw_control(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware know the driver has taken over */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
1604
		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1605 1606 1607 1608 1609 1610 1611
	}
}

/**
 * e1000_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
1612
 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded. For AMT version (only with 82573) i
 * of the f/w this means that the network i/f is closed.
 *
 **/
static void e1000_release_hw_control(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware taken over control of h/w */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
1630
		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	}
}

/**
 * @e1000_alloc_ring - allocate memory for a ring structure
 **/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
				struct e1000_ring *ring)
{
	struct pci_dev *pdev = adapter->pdev;

	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
					GFP_KERNEL);
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

/**
 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int err = -ENOMEM, size;

	size = sizeof(struct e1000_buffer) * tx_ring->count;
	tx_ring->buffer_info = vmalloc(size);
	if (!tx_ring->buffer_info)
		goto err;
	memset(tx_ring->buffer_info, 0, size);

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, tx_ring);
	if (err)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;
err:
	vfree(tx_ring->buffer_info);
1681
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	return err;
}

/**
 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
 * @adapter: board private structure
 *
 * Returns 0 on success, negative on failure
 **/
int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
{
	struct e1000_ring *rx_ring = adapter->rx_ring;
A
Auke Kok 已提交
1694 1695
	struct e1000_buffer *buffer_info;
	int i, size, desc_len, err = -ENOMEM;
1696 1697 1698 1699 1700 1701 1702

	size = sizeof(struct e1000_buffer) * rx_ring->count;
	rx_ring->buffer_info = vmalloc(size);
	if (!rx_ring->buffer_info)
		goto err;
	memset(rx_ring->buffer_info, 0, size);

A
Auke Kok 已提交
1703 1704 1705 1706 1707 1708 1709 1710
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
						sizeof(struct e1000_ps_page),
						GFP_KERNEL);
		if (!buffer_info->ps_pages)
			goto err_pages;
	}
1711 1712 1713 1714 1715 1716 1717 1718 1719

	desc_len = sizeof(union e1000_rx_desc_packet_split);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, rx_ring);
	if (err)
A
Auke Kok 已提交
1720
		goto err_pages;
1721 1722 1723 1724 1725 1726

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
	rx_ring->rx_skb_top = NULL;

	return 0;
A
Auke Kok 已提交
1727 1728 1729 1730 1731 1732

err_pages:
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		kfree(buffer_info->ps_pages);
	}
1733 1734
err:
	vfree(rx_ring->buffer_info);
1735
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	return err;
}

/**
 * e1000_clean_tx_ring - Free Tx Buffers
 * @adapter: board private structure
 **/
static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
		e1000_put_txbuf(adapter, buffer_info);
	}

	size = sizeof(struct e1000_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	writel(0, adapter->hw.hw_addr + tx_ring->head);
	writel(0, adapter->hw.hw_addr + tx_ring->tail);
}

/**
 * e1000e_free_tx_resources - Free Tx Resources per Queue
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
void e1000e_free_tx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *tx_ring = adapter->tx_ring;

	e1000_clean_tx_ring(adapter);

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
			  tx_ring->dma);
	tx_ring->desc = NULL;
}

/**
 * e1000e_free_rx_resources - Free Rx Resources
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/

void e1000e_free_rx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
A
Auke Kok 已提交
1799
	int i;
1800 1801 1802

	e1000_clean_rx_ring(adapter);

A
Auke Kok 已提交
1803 1804 1805 1806
	for (i = 0; i < rx_ring->count; i++) {
		kfree(rx_ring->buffer_info[i].ps_pages);
	}

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
			  rx_ring->dma);
	rx_ring->desc = NULL;
}

/**
 * e1000_update_itr - update the dynamic ITR value based on statistics
1817 1818 1819 1820 1821
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 *
1822 1823 1824 1825 1826 1827
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
1828 1829
 *      while increasing bulk throughput.  This functionality is controlled
 *      by the InterruptThrottleRate module parameter.
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
 **/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
				     u16 itr_setting, int packets,
				     int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
		else if ((packets < 5) && (bytes > 512)) {
			retval = low_latency;
		}
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
				retval = bulk_latency;
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
				retval = bulk_latency;
			} else if ((packets > 35)) {
				retval = lowest_latency;
			}
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35) {
				retval = low_latency;
			}
		} else if (bytes < 6000) {
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

static void e1000_set_itr(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 current_itr;
	u32 new_itr = adapter->itr;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

	adapter->tx_itr = e1000_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->total_tx_packets,
				    adapter->total_tx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
		adapter->tx_itr = low_latency;

	adapter->rx_itr = e1000_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->total_rx_packets,
				    adapter->total_rx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
		adapter->rx_itr = low_latency;

	current_itr = max(adapter->rx_itr, adapter->tx_itr);

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = 70000;
		break;
	case low_latency:
		new_itr = 20000; /* aka hwitr = ~200 */
		break;
	case bulk_latency:
		new_itr = 4000;
		break;
	default:
		break;
	}

set_itr_now:
	if (new_itr != adapter->itr) {
1928 1929
		/*
		 * this attempts to bias the interrupt rate towards Bulk
1930
		 * by adding intermediate steps when interrupt rate is
1931 1932
		 * increasing
		 */
1933 1934 1935 1936
		new_itr = new_itr > adapter->itr ?
			     min(adapter->itr + (new_itr >> 2), new_itr) :
			     new_itr;
		adapter->itr = new_itr;
1937 1938 1939 1940 1941
		adapter->rx_ring->itr_val = new_itr;
		if (adapter->msix_entries)
			adapter->rx_ring->set_itr = 1;
		else
			ew32(ITR, 1000000000 / (new_itr * 256));
1942 1943 1944
	}
}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
/**
 * e1000_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 **/
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
{
	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!adapter->tx_ring)
		goto err;

	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!adapter->rx_ring)
		goto err;

	return 0;
err:
	e_err("Unable to allocate memory for queues\n");
	kfree(adapter->rx_ring);
	kfree(adapter->tx_ring);
	return -ENOMEM;
}

1967 1968
/**
 * e1000_clean - NAPI Rx polling callback
1969
 * @napi: struct associated with this polling callback
1970
 * @budget: amount of packets driver is allowed to process this poll
1971 1972 1973 1974
 **/
static int e1000_clean(struct napi_struct *napi, int budget)
{
	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1975
	struct e1000_hw *hw = &adapter->hw;
1976
	struct net_device *poll_dev = adapter->netdev;
1977
	int tx_cleaned = 1, work_done = 0;
1978

1979
	adapter = netdev_priv(poll_dev);
1980

1981 1982 1983 1984
	if (adapter->msix_entries &&
	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
		goto clean_rx;

1985
	tx_cleaned = e1000_clean_tx_irq(adapter);
1986

1987
clean_rx:
1988
	adapter->clean_rx(adapter, &work_done, budget);
1989

1990
	if (!tx_cleaned)
1991
		work_done = budget;
1992

1993 1994
	/* If budget not fully consumed, exit the polling mode */
	if (work_done < budget) {
1995 1996
		if (adapter->itr_setting & 3)
			e1000_set_itr(adapter);
1997
		napi_complete(napi);
1998 1999 2000 2001 2002 2003
		if (!test_bit(__E1000_DOWN, &adapter->state)) {
			if (adapter->msix_entries)
				ew32(IMS, adapter->rx_ring->ims_val);
			else
				e1000_irq_enable(adapter);
		}
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
	}

	return work_done;
}

static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	/* don't update vlan cookie if already programmed */
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
		return;
	/* add VID to filter table */
	index = (vid >> 5) & 0x7F;
	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
	vfta |= (1 << (vid & 0x1F));
	e1000e_write_vfta(hw, index, vfta);
}

static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

J
Jesse Brandeburg 已提交
2033 2034
	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_disable(adapter);
2035
	vlan_group_set_device(adapter->vlgrp, vid, NULL);
J
Jesse Brandeburg 已提交
2036 2037 2038

	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_enable(adapter);
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
		e1000_release_hw_control(adapter);
		return;
	}

	/* remove VID from filter table */
	index = (vid >> 5) & 0x7F;
	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
	vfta &= ~(1 << (vid & 0x1F));
	e1000e_write_vfta(hw, index, vfta);
}

static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;

	if (!adapter->vlgrp)
		return;

	if (!vlan_group_get_device(adapter->vlgrp, vid)) {
		adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
		if (adapter->hw.mng_cookie.status &
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
			e1000_vlan_rx_add_vid(netdev, vid);
			adapter->mng_vlan_id = vid;
		}

		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
				(vid != old_vid) &&
		    !vlan_group_get_device(adapter->vlgrp, old_vid))
			e1000_vlan_rx_kill_vid(netdev, old_vid);
	} else {
		adapter->mng_vlan_id = vid;
	}
}


static void e1000_vlan_rx_register(struct net_device *netdev,
				   struct vlan_group *grp)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

J
Jesse Brandeburg 已提交
2089 2090
	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_disable(adapter);
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	adapter->vlgrp = grp;

	if (grp) {
		/* enable VLAN tag insert/strip */
		ctrl = er32(CTRL);
		ctrl |= E1000_CTRL_VME;
		ew32(CTRL, ctrl);

		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
			/* enable VLAN receive filtering */
			rctl = er32(RCTL);
			rctl &= ~E1000_RCTL_CFIEN;
			ew32(RCTL, rctl);
			e1000_update_mng_vlan(adapter);
		}
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = er32(CTRL);
		ctrl &= ~E1000_CTRL_VME;
		ew32(CTRL, ctrl);

		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
			if (adapter->mng_vlan_id !=
			    (u16)E1000_MNG_VLAN_NONE) {
				e1000_vlan_rx_kill_vid(netdev,
						       adapter->mng_vlan_id);
				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
			}
		}
	}

J
Jesse Brandeburg 已提交
2122 2123
	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_enable(adapter);
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
}

static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
	u16 vid;

	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);

	if (!adapter->vlgrp)
		return;

	for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
		if (!vlan_group_get_device(adapter->vlgrp, vid))
			continue;
		e1000_vlan_rx_add_vid(adapter->netdev, vid);
	}
}

static void e1000_init_manageability(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 manc, manc2h;

	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
		return;

	manc = er32(MANC);

2152 2153
	/*
	 * enable receiving management packets to the host. this will probably
2154
	 * generate destination unreachable messages from the host OS, but
2155 2156
	 * the packets will be handled on SMBUS
	 */
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	manc |= E1000_MANC_EN_MNG2HOST;
	manc2h = er32(MANC2H);
#define E1000_MNG2HOST_PORT_623 (1 << 5)
#define E1000_MNG2HOST_PORT_664 (1 << 6)
	manc2h |= E1000_MNG2HOST_PORT_623;
	manc2h |= E1000_MNG2HOST_PORT_664;
	ew32(MANC2H, manc2h);
	ew32(MANC, manc);
}

/**
 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	u64 tdba;
	u32 tdlen, tctl, tipg, tarc;
	u32 ipgr1, ipgr2;

	/* Setup the HW Tx Head and Tail descriptor pointers */
	tdba = tx_ring->dma;
	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2184
	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	ew32(TDBAH, (tdba >> 32));
	ew32(TDLEN, tdlen);
	ew32(TDH, 0);
	ew32(TDT, 0);
	tx_ring->head = E1000_TDH;
	tx_ring->tail = E1000_TDT;

	/* Set the default values for the Tx Inter Packet Gap timer */
	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */

	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */

	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
	ew32(TIPG, tipg);

	/* Set the Tx Interrupt Delay register */
	ew32(TIDV, adapter->tx_int_delay);
2206
	/* Tx irq moderation */
2207 2208 2209 2210 2211 2212 2213 2214 2215
	ew32(TADV, adapter->tx_abs_int_delay);

	/* Program the Transmit Control Register */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2216
		tarc = er32(TARC(0));
2217 2218 2219 2220
		/*
		 * set the speed mode bit, we'll clear it if we're not at
		 * gigabit link later
		 */
2221 2222
#define SPEED_MODE_BIT (1 << 21)
		tarc |= SPEED_MODE_BIT;
2223
		ew32(TARC(0), tarc);
2224 2225 2226 2227
	}

	/* errata: program both queues to unweighted RR */
	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2228
		tarc = er32(TARC(0));
2229
		tarc |= 1;
2230 2231
		ew32(TARC(0), tarc);
		tarc = er32(TARC(1));
2232
		tarc |= 1;
2233
		ew32(TARC(1), tarc);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
	}

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;

	/* only set IDE if we are delaying interrupts using the timers */
	if (adapter->tx_int_delay)
		adapter->txd_cmd |= E1000_TXD_CMD_IDE;

	/* enable Report Status bit */
	adapter->txd_cmd |= E1000_TXD_CMD_RS;

	ew32(TCTL, tctl);

2248 2249
	e1000e_config_collision_dist(hw);

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
	adapter->tx_queue_len = adapter->netdev->tx_queue_len;
}

/**
 * e1000_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rfctl;
	u32 psrctl = 0;
	u32 pages = 0;

	/* Program MC offset vector base */
	rctl = er32(RCTL);
	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* Do not Store bad packets */
	rctl &= ~E1000_RCTL_SBP;

	/* Enable Long Packet receive */
	if (adapter->netdev->mtu <= ETH_DATA_LEN)
		rctl &= ~E1000_RCTL_LPE;
	else
		rctl |= E1000_RCTL_LPE;

J
Jeff Kirsher 已提交
2282 2283 2284 2285 2286 2287
	/* Some systems expect that the CRC is included in SMBUS traffic. The
	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
	 * host memory when this is enabled
	 */
	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
		rctl |= E1000_RCTL_SECRC;
2288

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
		u16 phy_data;

		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
		phy_data &= 0xfff8;
		phy_data |= (1 << 2);
		e1e_wphy(hw, PHY_REG(770, 26), phy_data);

		e1e_rphy(hw, 22, &phy_data);
		phy_data &= 0x0fff;
		phy_data |= (1 << 14);
		e1e_wphy(hw, 0x10, 0x2823);
		e1e_wphy(hw, 0x11, 0x0003);
		e1e_wphy(hw, 22, phy_data);
	}

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	/* Setup buffer sizes */
	rctl &= ~E1000_RCTL_SZ_4096;
	rctl |= E1000_RCTL_BSEX;
	switch (adapter->rx_buffer_len) {
	case 256:
		rctl |= E1000_RCTL_SZ_256;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 512:
		rctl |= E1000_RCTL_SZ_512;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 1024:
		rctl |= E1000_RCTL_SZ_1024;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 2048:
	default:
		rctl |= E1000_RCTL_SZ_2048;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 4096:
		rctl |= E1000_RCTL_SZ_4096;
		break;
	case 8192:
		rctl |= E1000_RCTL_SZ_8192;
		break;
	case 16384:
		rctl |= E1000_RCTL_SZ_16384;
		break;
	}

	/*
	 * 82571 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 *
	 * allocations using alloc_page take too long for regular MTU
	 * so only enable packet split for jumbo frames
	 *
	 * Using pages when the page size is greater than 16k wastes
	 * a lot of memory, since we allocate 3 pages at all times
	 * per packet.
	 */
	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2354 2355
	if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
	    (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2356
		adapter->rx_ps_pages = pages;
2357 2358
	else
		adapter->rx_ps_pages = 0;
2359 2360 2361 2362 2363

	if (adapter->rx_ps_pages) {
		/* Configure extra packet-split registers */
		rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_EXTEN;
2364 2365 2366 2367
		/*
		 * disable packet split support for IPv6 extension headers,
		 * because some malformed IPv6 headers can hang the Rx
		 */
2368 2369 2370 2371 2372
		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
			  E1000_RFCTL_NEW_IPV6_EXT_DIS);

		ew32(RFCTL, rfctl);

A
Auke Kok 已提交
2373 2374
		/* Enable Packet split descriptors */
		rctl |= E1000_RCTL_DTYP_PS;
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395

		psrctl |= adapter->rx_ps_bsize0 >>
			E1000_PSRCTL_BSIZE0_SHIFT;

		switch (adapter->rx_ps_pages) {
		case 3:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE3_SHIFT;
		case 2:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE2_SHIFT;
		case 1:
			psrctl |= PAGE_SIZE >>
				E1000_PSRCTL_BSIZE1_SHIFT;
			break;
		}

		ew32(PSRCTL, psrctl);
	}

	ew32(RCTL, rctl);
2396 2397
	/* just started the receive unit, no need to restart */
	adapter->flags &= ~FLAG_RX_RESTART_NOW;
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
}

/**
 * e1000_configure_rx - Configure Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	u64 rdba;
	u32 rdlen, rctl, rxcsum, ctrl_ext;

	if (adapter->rx_ps_pages) {
		/* this is a 32 byte descriptor */
		rdlen = rx_ring->count *
			sizeof(union e1000_rx_desc_packet_split);
		adapter->clean_rx = e1000_clean_rx_irq_ps;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2419 2420 2421 2422
	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2423
	} else {
2424
		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
		adapter->clean_rx = e1000_clean_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
	}

	/* disable receives while setting up the descriptors */
	rctl = er32(RCTL);
	ew32(RCTL, rctl & ~E1000_RCTL_EN);
	e1e_flush();
	msleep(10);

	/* set the Receive Delay Timer Register */
	ew32(RDTR, adapter->rx_int_delay);

	/* irq moderation */
	ew32(RADV, adapter->rx_abs_int_delay);
	if (adapter->itr_setting != 0)
2441
		ew32(ITR, 1000000000 / (adapter->itr * 256));
2442 2443 2444 2445 2446 2447 2448 2449

	ctrl_ext = er32(CTRL_EXT);
	/* Auto-Mask interrupts upon ICR access */
	ctrl_ext |= E1000_CTRL_EXT_IAME;
	ew32(IAM, 0xffffffff);
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();

2450 2451 2452 2453
	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
2454
	rdba = rx_ring->dma;
2455
	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	ew32(RDBAH, (rdba >> 32));
	ew32(RDLEN, rdlen);
	ew32(RDH, 0);
	ew32(RDT, 0);
	rx_ring->head = E1000_RDH;
	rx_ring->tail = E1000_RDT;

	/* Enable Receive Checksum Offload for TCP and UDP */
	rxcsum = er32(RXCSUM);
	if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
		rxcsum |= E1000_RXCSUM_TUOFL;

2468 2469 2470 2471
		/*
		 * IPv4 payload checksum for UDP fragments must be
		 * used in conjunction with packet-split.
		 */
2472 2473 2474 2475 2476 2477 2478 2479
		if (adapter->rx_ps_pages)
			rxcsum |= E1000_RXCSUM_IPPCSE;
	} else {
		rxcsum &= ~E1000_RXCSUM_TUOFL;
		/* no need to clear IPPCSE as it defaults to 0 */
	}
	ew32(RXCSUM, rxcsum);

2480 2481
	/*
	 * Enable early receives on supported devices, only takes effect when
2482
	 * packet size is equal or larger than the specified value (in 8 byte
2483 2484
	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
	 */
2485
	if ((adapter->flags & FLAG_HAS_ERT) &&
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
	    (adapter->netdev->mtu > ETH_DATA_LEN)) {
		u32 rxdctl = er32(RXDCTL(0));
		ew32(RXDCTL(0), rxdctl | 0x3);
		ew32(ERT, E1000_ERT_2048 | (1 << 13));
		/*
		 * With jumbo frames and early-receive enabled, excessive
		 * C4->C2 latencies result in dropped transactions.
		 */
		pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
					  e1000e_driver_name, 55);
	} else {
		pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
					  e1000e_driver_name,
					  PM_QOS_DEFAULT_VALUE);
	}
2501 2502 2503 2504 2505 2506

	/* Enable Receives */
	ew32(RCTL, rctl);
}

/**
2507
 *  e1000_update_mc_addr_list - Update Multicast addresses
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
 *  @hw: pointer to the HW structure
 *  @mc_addr_list: array of multicast addresses to program
 *  @mc_addr_count: number of multicast addresses to program
 *  @rar_used_count: the first RAR register free to program
 *  @rar_count: total number of supported Receive Address Registers
 *
 *  Updates the Receive Address Registers and Multicast Table Array.
 *  The caller must have a packed mc_addr_list of multicast addresses.
 *  The parameter rar_count will usually be hw->mac.rar_entry_count
 *  unless there are workarounds that change this.  Currently no func pointer
 *  exists and all implementations are handled in the generic version of this
 *  function.
 **/
2521 2522 2523
static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
				      u32 mc_addr_count, u32 rar_used_count,
				      u32 rar_count)
2524
{
2525
	hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
				        rar_used_count, rar_count);
}

/**
 * e1000_set_multi - Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_multi entry point is called whenever the multicast address
 * list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void e1000_set_multi(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &hw->mac;
	struct dev_mc_list *mc_ptr;
	u8  *mta_list;
	u32 rctl;
	int i;

	/* Check for Promiscuous and All Multicast modes */

	rctl = er32(RCTL);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2554
		rctl &= ~E1000_RCTL_VFE;
2555
	} else {
2556 2557 2558 2559 2560 2561
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			rctl &= ~E1000_RCTL_UPE;
		} else {
			rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
		}
2562
		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2563
			rctl |= E1000_RCTL_VFE;
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
	}

	ew32(RCTL, rctl);

	if (netdev->mc_count) {
		mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
		if (!mta_list)
			return;

		/* prepare a packed array of only addresses. */
		mc_ptr = netdev->mc_list;

		for (i = 0; i < netdev->mc_count; i++) {
			if (!mc_ptr)
				break;
			memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
			       ETH_ALEN);
			mc_ptr = mc_ptr->next;
		}

2584
		e1000_update_mc_addr_list(hw, mta_list, i, 1,
2585 2586 2587 2588 2589 2590 2591
					  mac->rar_entry_count);
		kfree(mta_list);
	} else {
		/*
		 * if we're called from probe, we might not have
		 * anything to do here, so clear out the list
		 */
2592
		e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2593 2594 2595 2596
	}
}

/**
2597
 * e1000_configure - configure the hardware for Rx and Tx
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
 * @adapter: private board structure
 **/
static void e1000_configure(struct e1000_adapter *adapter)
{
	e1000_set_multi(adapter->netdev);

	e1000_restore_vlan(adapter);
	e1000_init_manageability(adapter);

	e1000_configure_tx(adapter);
	e1000_setup_rctl(adapter);
	e1000_configure_rx(adapter);
2610
	adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
}

/**
 * e1000e_power_up_phy - restore link in case the phy was powered down
 * @adapter: address of board private structure
 *
 * The phy may be powered down to save power and turn off link when the
 * driver is unloaded and wake on lan is not enabled (among others)
 * *** this routine MUST be followed by a call to e1000e_reset ***
 **/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
	u16 mii_reg = 0;

	/* Just clear the power down bit to wake the phy back up */
2626
	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2627 2628 2629 2630
		/*
		 * According to the manual, the phy will retain its
		 * settings across a power-down/up cycle
		 */
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
		e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
		mii_reg &= ~MII_CR_POWER_DOWN;
		e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
	}

	adapter->hw.mac.ops.setup_link(&adapter->hw);
}

/**
 * e1000_power_down_phy - Power down the PHY
 *
 * Power down the PHY so no link is implied when interface is down
 * The PHY cannot be powered down is management or WoL is active
 */
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 mii_reg;

	/* WoL is enabled */
2651
	if (adapter->wol)
2652 2653 2654
		return;

	/* non-copper PHY? */
2655
	if (adapter->hw.phy.media_type != e1000_media_type_copper)
2656 2657 2658
		return;

	/* reset is blocked because of a SoL/IDER session */
2659
	if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2660 2661
		return;

2662
	/* manageability (AMT) is enabled */
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	if (er32(MANC) & E1000_MANC_SMBUS_EN)
		return;

	/* power down the PHY */
	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
	mii_reg |= MII_CR_POWER_DOWN;
	e1e_wphy(hw, PHY_CONTROL, mii_reg);
	mdelay(1);
}

/**
 * e1000e_reset - bring the hardware into a known good state
 *
 * This function boots the hardware and enables some settings that
 * require a configuration cycle of the hardware - those cannot be
 * set/changed during runtime. After reset the device needs to be
2679
 * properly configured for Rx, Tx etc.
2680 2681 2682 2683
 */
void e1000e_reset(struct e1000_adapter *adapter)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;
2684
	struct e1000_fc_info *fc = &adapter->hw.fc;
2685 2686
	struct e1000_hw *hw = &adapter->hw;
	u32 tx_space, min_tx_space, min_rx_space;
2687
	u32 pba = adapter->pba;
2688 2689
	u16 hwm;

2690
	/* reset Packet Buffer Allocation to default */
2691
	ew32(PBA, pba);
2692

2693
	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2694 2695
		/*
		 * To maintain wire speed transmits, the Tx FIFO should be
2696 2697 2698 2699
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
2700 2701
		 * expressed in KB.
		 */
2702
		pba = er32(PBA);
2703
		/* upper 16 bits has Tx packet buffer allocation size in KB */
2704
		tx_space = pba >> 16;
2705
		/* lower 16 bits has Rx packet buffer allocation size in KB */
2706
		pba &= 0xffff;
2707 2708 2709
		/*
		 * the Tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it
2710 2711
		 */
		min_tx_space = (adapter->max_frame_size +
2712 2713 2714 2715 2716
				sizeof(struct e1000_tx_desc) -
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
2717
		min_rx_space = adapter->max_frame_size;
2718 2719 2720
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

2721 2722
		/*
		 * If current Tx allocation is less than the min Tx FIFO size,
2723
		 * and the min Tx FIFO size is less than the current Rx FIFO
2724 2725
		 * allocation, take space away from current Rx allocation
		 */
2726 2727 2728
		if ((tx_space < min_tx_space) &&
		    ((min_tx_space - tx_space) < pba)) {
			pba -= min_tx_space - tx_space;
2729

2730 2731 2732 2733
			/*
			 * if short on Rx space, Rx wins and must trump tx
			 * adjustment or use Early Receive if available
			 */
2734
			if ((pba < min_rx_space) &&
2735 2736
			    (!(adapter->flags & FLAG_HAS_ERT)))
				/* ERT enabled in e1000_configure_rx */
2737
				pba = min_rx_space;
2738
		}
2739 2740

		ew32(PBA, pba);
2741 2742 2743
	}


2744 2745 2746
	/*
	 * flow control settings
	 *
2747
	 * The high water mark must be low enough to fit two full frame
2748 2749 2750 2751 2752
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, and
	 * - the full Rx FIFO size minus the early receive size (for parts
	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
2753
	 * - the full Rx FIFO size minus two full frames
2754
	 */
2755 2756
	if ((adapter->flags & FLAG_HAS_ERT) &&
	    (adapter->netdev->mtu > ETH_DATA_LEN))
2757 2758
		hwm = min(((pba << 10) * 9 / 10),
			  ((pba << 10) - (E1000_ERT_2048 << 3)));
2759
	else
2760
		hwm = min(((pba << 10) * 9 / 10),
2761
			  ((pba << 10) - (2 * adapter->max_frame_size)));
2762

2763 2764 2765
	fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
	fc->low_water = (fc->high_water - (2 * adapter->max_frame_size));
	fc->low_water &= E1000_FCRTL_RTL; /* 8-byte granularity */
2766 2767

	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2768
		fc->pause_time = 0xFFFF;
2769
	else
2770 2771
		fc->pause_time = E1000_FC_PAUSE_TIME;
	fc->send_xon = 1;
2772
	fc->current_mode = fc->requested_mode;
2773 2774 2775

	/* Allow time for pending master requests to run */
	mac->ops.reset_hw(hw);
2776 2777 2778 2779 2780

	/*
	 * For parts with AMT enabled, let the firmware know
	 * that the network interface is in control
	 */
J
Jesse Brandeburg 已提交
2781
	if (adapter->flags & FLAG_HAS_AMT)
2782 2783
		e1000_get_hw_control(adapter);

2784
	ew32(WUC, 0);
2785 2786
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
		e1e_wphy(&adapter->hw, BM_WUC, 0);
2787 2788

	if (mac->ops.init_hw(hw))
2789
		e_err("Hardware Error\n");
2790 2791 2792 2793 2794 2795 2796 2797 2798

	e1000_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	ew32(VET, ETH_P_8021Q);

	e1000e_reset_adaptive(hw);
	e1000_get_phy_info(hw);

2799 2800
	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2801
		u16 phy_data = 0;
2802 2803
		/*
		 * speed up time to link by disabling smart power down, ignore
2804
		 * the return value of this function because there is nothing
2805 2806
		 * different we would do if it failed
		 */
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
		phy_data &= ~IGP02E1000_PM_SPD;
		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
	}
}

int e1000e_up(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* hardware has been reset, we need to reload some things */
	e1000_configure(adapter);

	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);
2823 2824
	if (adapter->msix_entries)
		e1000_configure_msix(adapter);
2825 2826
	e1000_irq_enable(adapter);

2827 2828
	netif_wake_queue(adapter->netdev);

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
	/* fire a link change interrupt to start the watchdog */
	ew32(ICS, E1000_ICS_LSC);
	return 0;
}

void e1000e_down(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl, rctl;

2840 2841 2842 2843
	/*
	 * signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
2844 2845 2846 2847 2848 2849 2850
	set_bit(__E1000_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = er32(RCTL);
	ew32(RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

2851
	netif_stop_queue(netdev);
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871

	/* disable transmits in the hardware */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_EN;
	ew32(TCTL, tctl);
	/* flush both disables and wait for them to finish */
	e1e_flush();
	msleep(10);

	napi_disable(&adapter->napi);
	e1000_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netdev->tx_queue_len = adapter->tx_queue_len;
	netif_carrier_off(netdev);
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

2872 2873
	if (!pci_channel_offline(adapter->pdev))
		e1000e_reset(adapter);
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
	e1000_clean_tx_ring(adapter);
	e1000_clean_rx_ring(adapter);

	/*
	 * TODO: for power management, we could drop the link and
	 * pci_disable_device here.
	 */
}

void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
	might_sleep();
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
		msleep(1);
	e1000e_down(adapter);
	e1000e_up(adapter);
	clear_bit(__E1000_RESETTING, &adapter->state);
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
	adapter->rx_ps_bsize0 = 128;
2907 2908
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2909

2910
	e1000e_set_interrupt_capability(adapter);
2911

2912 2913
	if (e1000_alloc_queues(adapter))
		return -ENOMEM;
2914 2915 2916 2917 2918 2919 2920 2921

	/* Explicitly disable IRQ since the NIC can be in any state. */
	e1000_irq_disable(adapter);

	set_bit(__E1000_DOWN, &adapter->state);
	return 0;
}

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
/**
 * e1000_intr_msi_test - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

	e_dbg("%s: icr is %08X\n", netdev->name, icr);
	if (icr & E1000_ICR_RXSEQ) {
		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
		wmb();
	}

	return IRQ_HANDLED;
}

/**
 * e1000_test_msi_interrupt - Returns 0 for successful test
 * @adapter: board private struct
 *
 * code flow taken from tg3.c
 **/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* poll_enable hasn't been called yet, so don't need disable */
	/* clear any pending events */
	er32(ICR);

	/* free the real vector and request a test handler */
	e1000_free_irq(adapter);
2961
	e1000e_reset_interrupt_capability(adapter);
2962 2963 2964 2965 2966 2967 2968 2969 2970

	/* Assume that the test fails, if it succeeds then the test
	 * MSI irq handler will unset this flag */
	adapter->flags |= FLAG_MSI_TEST_FAILED;

	err = pci_enable_msi(adapter->pdev);
	if (err)
		goto msi_test_failed;

2971
	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
			  netdev->name, netdev);
	if (err) {
		pci_disable_msi(adapter->pdev);
		goto msi_test_failed;
	}

	wmb();

	e1000_irq_enable(adapter);

	/* fire an unusual interrupt on the test handler */
	ew32(ICS, E1000_ICS_RXSEQ);
	e1e_flush();
	msleep(50);

	e1000_irq_disable(adapter);

	rmb();

	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
2992
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
		err = -EIO;
		e_info("MSI interrupt test failed!\n");
	}

	free_irq(adapter->pdev->irq, netdev);
	pci_disable_msi(adapter->pdev);

	if (err == -EIO)
		goto msi_test_failed;

	/* okay so the test worked, restore settings */
	e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
msi_test_failed:
3006
	e1000e_set_interrupt_capability(adapter);
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
	e1000_request_irq(adapter);
	return err;
}

/**
 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
 * @adapter: board private struct
 *
 * code flow taken from tg3.c, called with e1000 interrupts disabled.
 **/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
	int err;
	u16 pci_cmd;

	if (!(adapter->flags & FLAG_MSI_ENABLED))
		return 0;

	/* disable SERR in case the MSI write causes a master abort */
	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
	pci_write_config_word(adapter->pdev, PCI_COMMAND,
			      pci_cmd & ~PCI_COMMAND_SERR);

	err = e1000_test_msi_interrupt(adapter);

	/* restore previous setting of command word */
	pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);

	/* success ! */
	if (!err)
		return 0;

	/* EIO means MSI test failed */
	if (err != -EIO)
		return err;

	/* back to INTx mode */
	e_warn("MSI interrupt test failed, using legacy interrupt.\n");

	e1000_free_irq(adapter);

	err = e1000_request_irq(adapter);

	return err;
}

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int e1000_open(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* disallow open during test */
	if (test_bit(__E1000_TESTING, &adapter->state))
		return -EBUSY;

3075 3076
	netif_carrier_off(netdev);

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
	/* allocate transmit descriptors */
	err = e1000e_setup_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = e1000e_setup_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

	e1000e_power_up_phy(adapter);

	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		e1000_update_mng_vlan(adapter);

3094 3095 3096 3097
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now open
	 */
J
Jesse Brandeburg 已提交
3098
	if (adapter->flags & FLAG_HAS_AMT)
3099 3100
		e1000_get_hw_control(adapter);

3101 3102
	/*
	 * before we allocate an interrupt, we must be ready to handle it.
3103 3104
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
3105 3106
	 * clean_rx handler before we do so.
	 */
3107 3108 3109 3110 3111 3112
	e1000_configure(adapter);

	err = e1000_request_irq(adapter);
	if (err)
		goto err_req_irq;

3113 3114 3115 3116 3117
	/*
	 * Work around PCIe errata with MSI interrupts causing some chipsets to
	 * ignore e1000e MSI messages, which means we need to test our MSI
	 * interrupt now
	 */
3118
	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3119 3120 3121 3122 3123 3124 3125
		err = e1000_test_msi(adapter);
		if (err) {
			e_err("Interrupt allocation failed\n");
			goto err_req_irq;
		}
	}

3126 3127 3128 3129 3130 3131 3132
	/* From here on the code is the same as e1000e_up() */
	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);

	e1000_irq_enable(adapter);

3133
	netif_start_queue(netdev);
3134

3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
	/* fire a link status change interrupt to start the watchdog */
	ew32(ICS, E1000_ICS_LSC);

	return 0;

err_req_irq:
	e1000_release_hw_control(adapter);
	e1000_power_down_phy(adapter);
	e1000e_free_rx_resources(adapter);
err_setup_rx:
	e1000e_free_tx_resources(adapter);
err_setup_tx:
	e1000e_reset(adapter);

	return err;
}

/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int e1000_close(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
	e1000e_down(adapter);
	e1000_power_down_phy(adapter);
	e1000_free_irq(adapter);

	e1000e_free_tx_resources(adapter);
	e1000e_free_rx_resources(adapter);

3175 3176 3177 3178
	/*
	 * kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it)
	 */
3179 3180 3181 3182 3183 3184
	if ((adapter->hw.mng_cookie.status &
			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	     !(adapter->vlgrp &&
	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

3185 3186 3187 3188
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now closed
	 */
J
Jesse Brandeburg 已提交
3189
	if (adapter->flags & FLAG_HAS_AMT)
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
		e1000_release_hw_control(adapter);

	return 0;
}
/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);

	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);

	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
		/* activate the work around */
		e1000e_set_laa_state_82571(&adapter->hw, 1);

3218 3219
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
3220 3221 3222 3223
		 * between the time RAR[0] gets clobbered  and the time it
		 * gets fixed (in e1000_watchdog), the actual LAA is in one
		 * of the RARs and no incoming packets directed to this port
		 * are dropped. Eventually the LAA will be in RAR[0] and
3224 3225
		 * RAR[14]
		 */
3226 3227 3228 3229 3230 3231 3232 3233
		e1000e_rar_set(&adapter->hw,
			      adapter->hw.mac.addr,
			      adapter->hw.mac.rar_entry_count - 1);
	}

	return 0;
}

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
/**
 * e1000e_update_phy_task - work thread to update phy
 * @work: pointer to our work struct
 *
 * this worker thread exists because we must acquire a
 * semaphore to read the phy, which we could msleep while
 * waiting for it, and we can't msleep in a timer.
 **/
static void e1000e_update_phy_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, update_phy_task);
	e1000_get_phy_info(&adapter->hw);
}

3249 3250 3251 3252
/*
 * Need to wait a few seconds after link up to get diagnostic information from
 * the phy
 */
3253 3254 3255
static void e1000_update_phy_info(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3256
	schedule_work(&adapter->update_phy_task);
3257 3258 3259 3260 3261 3262 3263 3264
}

/**
 * e1000e_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/
void e1000e_update_stats(struct e1000_adapter *adapter)
{
3265
	struct net_device *netdev = adapter->netdev;
3266 3267
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
3268
	u16 phy_data;
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += er32(CRCERRS);
	adapter->stats.gprc += er32(GPRC);
3281 3282
	adapter->stats.gorc += er32(GORCL);
	er32(GORCH); /* Clear gorc */
3283 3284 3285 3286 3287
	adapter->stats.bprc += er32(BPRC);
	adapter->stats.mprc += er32(MPRC);
	adapter->stats.roc += er32(ROC);

	adapter->stats.mpc += er32(MPC);
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	if ((hw->phy.type == e1000_phy_82578) ||
	    (hw->phy.type == e1000_phy_82577)) {
		e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
		e1e_rphy(hw, HV_SCC_LOWER, &phy_data);
		adapter->stats.scc += phy_data;

		e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
		e1e_rphy(hw, HV_ECOL_LOWER, &phy_data);
		adapter->stats.ecol += phy_data;

		e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
		e1e_rphy(hw, HV_MCC_LOWER, &phy_data);
		adapter->stats.mcc += phy_data;

		e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
		e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data);
		adapter->stats.latecol += phy_data;

		e1e_rphy(hw, HV_DC_UPPER, &phy_data);
		e1e_rphy(hw, HV_DC_LOWER, &phy_data);
		adapter->stats.dc += phy_data;
	} else {
		adapter->stats.scc += er32(SCC);
		adapter->stats.ecol += er32(ECOL);
		adapter->stats.mcc += er32(MCC);
		adapter->stats.latecol += er32(LATECOL);
		adapter->stats.dc += er32(DC);
	}
3316 3317 3318 3319 3320
	adapter->stats.xonrxc += er32(XONRXC);
	adapter->stats.xontxc += er32(XONTXC);
	adapter->stats.xoffrxc += er32(XOFFRXC);
	adapter->stats.xofftxc += er32(XOFFTXC);
	adapter->stats.gptc += er32(GPTC);
3321 3322
	adapter->stats.gotc += er32(GOTCL);
	er32(GOTCH); /* Clear gotc */
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
	adapter->stats.rnbc += er32(RNBC);
	adapter->stats.ruc += er32(RUC);

	adapter->stats.mptc += er32(MPTC);
	adapter->stats.bptc += er32(BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = er32(TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;
3333 3334 3335 3336 3337 3338 3339 3340
	if ((hw->phy.type == e1000_phy_82578) ||
	    (hw->phy.type == e1000_phy_82577)) {
		e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
		e1e_rphy(hw, HV_COLC_LOWER, &phy_data);
		hw->mac.collision_delta = phy_data;
	} else {
		hw->mac.collision_delta = er32(COLC);
	}
3341 3342 3343 3344
	adapter->stats.colc += hw->mac.collision_delta;

	adapter->stats.algnerrc += er32(ALGNERRC);
	adapter->stats.rxerrc += er32(RXERRC);
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
	if ((hw->phy.type == e1000_phy_82578) ||
	    (hw->phy.type == e1000_phy_82577)) {
		e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
		e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data);
		adapter->stats.tncrs += phy_data;
	} else {
		if ((hw->mac.type != e1000_82574) &&
		    (hw->mac.type != e1000_82583))
			adapter->stats.tncrs += er32(TNCRS);
	}
3355 3356 3357 3358 3359
	adapter->stats.cexterr += er32(CEXTERR);
	adapter->stats.tsctc += er32(TSCTC);
	adapter->stats.tsctfc += er32(TSCTFC);

	/* Fill out the OS statistics structure */
3360 3361
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
3362 3363 3364

	/* Rx Errors */

3365 3366 3367 3368
	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
3369
	netdev->stats.rx_errors = adapter->stats.rxerrc +
3370 3371 3372
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
3373
	netdev->stats.rx_length_errors = adapter->stats.ruc +
3374
					      adapter->stats.roc;
3375 3376 3377
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3378 3379

	/* Tx Errors */
3380
	netdev->stats.tx_errors = adapter->stats.ecol +
3381
				       adapter->stats.latecol;
3382 3383 3384
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3385 3386 3387 3388 3389 3390 3391 3392 3393

	/* Tx Dropped needs to be maintained elsewhere */

	/* Management Stats */
	adapter->stats.mgptc += er32(MGTPTC);
	adapter->stats.mgprc += er32(MGTPRC);
	adapter->stats.mgpdc += er32(MGTPDC);
}

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
/**
 * e1000_phy_read_status - Update the PHY register status snapshot
 * @adapter: board private structure
 **/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_phy_regs *phy = &adapter->phy_regs;
	int ret_val;

	if ((er32(STATUS) & E1000_STATUS_LU) &&
	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
		if (ret_val)
3415
			e_warn("Error reading PHY register\n");
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
	} else {
		/*
		 * Do not read PHY registers if link is not up
		 * Set values to typical power-on defaults
		 */
		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
			     BMSR_ERCAP);
		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
				  ADVERTISE_ALL | ADVERTISE_CSMA);
		phy->lpa = 0;
		phy->expansion = EXPANSION_ENABLENPAGE;
		phy->ctrl1000 = ADVERTISE_1000FULL;
		phy->stat1000 = 0;
		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
	}
}

3435 3436 3437 3438 3439
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);

3440 3441 3442 3443
	/* Link status message must follow this format for user tools */
	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
	       "Flow Control: %s\n",
	       adapter->netdev->name,
3444 3445 3446 3447 3448 3449 3450
	       adapter->link_speed,
	       (adapter->link_duplex == FULL_DUPLEX) ?
	                        "Full Duplex" : "Half Duplex",
	       ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
	                        "RX/TX" :
	       ((ctrl & E1000_CTRL_RFCE) ? "RX" :
	       ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3451 3452
}

3453
bool e1000_has_link(struct e1000_adapter *adapter)
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = 0;
	s32 ret_val = 0;

	/*
	 * get_link_status is set on LSC (link status) interrupt or
	 * Rx sequence error interrupt.  get_link_status will stay
	 * false until the check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = 1;
		}
		break;
	case e1000_media_type_fiber:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = adapter->hw.mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3490
		e_info("Gigabit has been disabled, downgrading speed\n");
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
	}

	return link_active;
}

static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
	/* make sure the receive unit is started */
	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
		struct e1000_hw *hw = &adapter->hw;
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl | E1000_RCTL_EN);
		adapter->flags &= ~FLAG_RX_RESTART_NOW;
	}
}

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void e1000_watchdog(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;

	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);

	/* TODO: make this use queue_delayed_work() */
}

static void e1000_watchdog_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, watchdog_task);
	struct net_device *netdev = adapter->netdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;
B
Bruce Allan 已提交
3528
	struct e1000_phy_info *phy = &adapter->hw.phy;
3529 3530 3531 3532 3533
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_hw *hw = &adapter->hw;
	u32 link, tctl;
	int tx_pending = 0;

3534 3535 3536
	link = e1000_has_link(adapter);
	if ((netif_carrier_ok(netdev)) && link) {
		e1000e_enable_receives(adapter);
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
		goto link_up;
	}

	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
		e1000_update_mng_vlan(adapter);

	if (link) {
		if (!netif_carrier_ok(netdev)) {
			bool txb2b = 1;
3547
			/* update snapshot of PHY registers on LSC */
3548
			e1000_phy_read_status(adapter);
3549 3550 3551 3552
			mac->ops.get_link_up_info(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);
			e1000_print_link_info(adapter);
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
			/*
			 * On supported PHYs, check for duplex mismatch only
			 * if link has autonegotiated at 10/100 half
			 */
			if ((hw->phy.type == e1000_phy_igp_3 ||
			     hw->phy.type == e1000_phy_bm) &&
			    (hw->mac.autoneg == true) &&
			    (adapter->link_speed == SPEED_10 ||
			     adapter->link_speed == SPEED_100) &&
			    (adapter->link_duplex == HALF_DUPLEX)) {
				u16 autoneg_exp;

				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);

				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
					e_info("Autonegotiated half duplex but"
					       " link partner cannot autoneg. "
					       " Try forcing full duplex if "
					       "link gets many collisions.\n");
			}

3574 3575 3576 3577
			/*
			 * tweak tx_queue_len according to speed/duplex
			 * and adjust the timeout factor
			 */
3578 3579 3580 3581 3582 3583
			netdev->tx_queue_len = adapter->tx_queue_len;
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				txb2b = 0;
				netdev->tx_queue_len = 10;
3584
				adapter->tx_timeout_factor = 16;
3585 3586 3587 3588 3589 3590 3591 3592
				break;
			case SPEED_100:
				txb2b = 0;
				netdev->tx_queue_len = 100;
				/* maybe add some timeout factor ? */
				break;
			}

3593 3594 3595 3596
			/*
			 * workaround: re-program speed mode bit after
			 * link-up event
			 */
3597 3598 3599
			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
			    !txb2b) {
				u32 tarc0;
3600
				tarc0 = er32(TARC(0));
3601
				tarc0 &= ~SPEED_MODE_BIT;
3602
				ew32(TARC(0), tarc0);
3603 3604
			}

3605 3606 3607 3608
			/*
			 * disable TSO for pcie and 10/100 speeds, to avoid
			 * some hardware issues
			 */
3609 3610 3611 3612
			if (!(adapter->flags & FLAG_TSO_FORCE)) {
				switch (adapter->link_speed) {
				case SPEED_10:
				case SPEED_100:
3613
					e_info("10/100 speed: disabling TSO\n");
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
					netdev->features &= ~NETIF_F_TSO;
					netdev->features &= ~NETIF_F_TSO6;
					break;
				case SPEED_1000:
					netdev->features |= NETIF_F_TSO;
					netdev->features |= NETIF_F_TSO6;
					break;
				default:
					/* oops */
					break;
				}
			}

3627 3628 3629 3630
			/*
			 * enable transmits in the hardware, need to do this
			 * after setting TARC(0)
			 */
3631 3632 3633 3634
			tctl = er32(TCTL);
			tctl |= E1000_TCTL_EN;
			ew32(TCTL, tctl);

B
Bruce Allan 已提交
3635 3636 3637 3638 3639 3640 3641
                        /*
			 * Perform any post-link-up configuration before
			 * reporting link up.
			 */
			if (phy->ops.cfg_on_link_up)
				phy->ops.cfg_on_link_up(hw);

3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
			netif_carrier_on(netdev);

			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3652 3653 3654
			/* Link status message must follow this format */
			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
			       adapter->netdev->name);
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
			netif_carrier_off(netdev);
			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));

			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
				schedule_work(&adapter->reset_task);
		}
	}

link_up:
	e1000e_update_stats(adapter);

	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
	adapter->tpt_old = adapter->stats.tpt;
	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
	adapter->colc_old = adapter->stats.colc;

3673 3674 3675 3676
	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;
3677 3678 3679 3680 3681 3682 3683

	e1000e_update_adaptive(&adapter->hw);

	if (!netif_carrier_ok(netdev)) {
		tx_pending = (e1000_desc_unused(tx_ring) + 1 <
			       tx_ring->count);
		if (tx_pending) {
3684 3685
			/*
			 * We've lost link, so the controller stops DMA,
3686 3687
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
3688 3689
			 * (Do the reset outside of interrupt context).
			 */
3690 3691
			adapter->tx_timeout_count++;
			schedule_work(&adapter->reset_task);
3692 3693
			/* return immediately since reset is imminent */
			return;
3694 3695 3696
		}
	}

3697
	/* Cause software interrupt to ensure Rx ring is cleaned */
3698 3699 3700 3701
	if (adapter->msix_entries)
		ew32(ICS, adapter->rx_ring->ims_val);
	else
		ew32(ICS, E1000_ICS_RXDMT0);
3702 3703 3704 3705

	/* Force detection of hung controller every watchdog period */
	adapter->detect_tx_hung = 1;

3706 3707 3708 3709
	/*
	 * With 82571 controllers, LAA may be overwritten due to controller
	 * reset from the other port. Set the appropriate LAA in RAR[0]
	 */
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
	if (e1000e_get_laa_state_82571(hw))
		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);

	/* Reset the timer */
	if (!test_bit(__E1000_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

#define E1000_TX_FLAGS_CSUM		0x00000001
#define E1000_TX_FLAGS_VLAN		0x00000002
#define E1000_TX_FLAGS_TSO		0x00000004
#define E1000_TX_FLAGS_IPV4		0x00000008
#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT	16

static int e1000_tso(struct e1000_adapter *adapter,
		     struct sk_buff *skb)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u32 cmd_length = 0;
	u16 ipcse = 0, tucse, mss;
	u8 ipcss, ipcso, tucss, tucso, hdr_len;
	int err;

	if (skb_is_gso(skb)) {
		if (skb_header_cloned(skb)) {
			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
			if (err)
				return err;
		}

		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
		mss = skb_shinfo(skb)->gso_size;
		if (skb->protocol == htons(ETH_P_IP)) {
			struct iphdr *iph = ip_hdr(skb);
			iph->tot_len = 0;
			iph->check = 0;
			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
								 iph->daddr, 0,
								 IPPROTO_TCP,
								 0);
			cmd_length = E1000_TXD_CMD_IP;
			ipcse = skb_transport_offset(skb) - 1;
		} else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
			ipv6_hdr(skb)->payload_len = 0;
			tcp_hdr(skb)->check =
				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						 &ipv6_hdr(skb)->daddr,
						 0, IPPROTO_TCP, 0);
			ipcse = 0;
		}
		ipcss = skb_network_offset(skb);
		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
		tucss = skb_transport_offset(skb);
		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
		tucse = 0;

		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));

		i = tx_ring->next_to_use;
		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
		buffer_info = &tx_ring->buffer_info[i];

		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
		context_desc->upper_setup.tcp_fields.tucss = tucss;
		context_desc->upper_setup.tcp_fields.tucso = tucso;
		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
		context_desc->cmd_and_length = cpu_to_le32(cmd_length);

		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;

		i++;
		if (i == tx_ring->count)
			i = 0;
		tx_ring->next_to_use = i;

		return 1;
	}

	return 0;
}

static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u8 css;
3809
	u32 cmd_len = E1000_TXD_CMD_DEXT;
3810
	__be16 protocol;
3811

3812 3813
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;
3814

3815 3816 3817 3818 3819
	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
	else
		protocol = skb->protocol;

A
Arthur Jones 已提交
3820
	switch (protocol) {
3821
	case cpu_to_be16(ETH_P_IP):
3822 3823 3824
		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
3825
	case cpu_to_be16(ETH_P_IPV6):
3826 3827 3828 3829 3830 3831
		/* XXX not handling all IPV6 headers */
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
	default:
		if (unlikely(net_ratelimit()))
3832 3833
			e_warn("checksum_partial proto=%x!\n",
			       be16_to_cpu(protocol));
3834
		break;
3835 3836
	}

3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
	css = skb_transport_offset(skb);

	i = tx_ring->next_to_use;
	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);

	context_desc->lower_setup.ip_config = 0;
	context_desc->upper_setup.tcp_fields.tucss = css;
	context_desc->upper_setup.tcp_fields.tucso =
				css + skb->csum_offset;
	context_desc->upper_setup.tcp_fields.tucse = 0;
	context_desc->tcp_seg_setup.data = 0;
	context_desc->cmd_and_length = cpu_to_le32(cmd_len);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
}

#define E1000_MAX_PER_TXD	8192
#define E1000_MAX_TXD_PWR	12

static int e1000_tx_map(struct e1000_adapter *adapter,
			struct sk_buff *skb, unsigned int first,
			unsigned int max_per_txd, unsigned int nr_frags,
			unsigned int mss)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
3871
	struct e1000_buffer *buffer_info;
J
Jesse Brandeburg 已提交
3872 3873
	unsigned int len = skb_headlen(skb);
	unsigned int offset, size, count = 0, i;
3874
	unsigned int f;
3875
	dma_addr_t *map;
3876 3877 3878

	i = tx_ring->next_to_use;

J
Jesse Brandeburg 已提交
3879 3880 3881
	if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
		dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
		adapter->tx_dma_failed++;
3882
		return 0;
J
Jesse Brandeburg 已提交
3883 3884
	}

3885
	map = skb_shinfo(skb)->dma_maps;
J
Jesse Brandeburg 已提交
3886 3887
	offset = 0;

3888
	while (len) {
3889
		buffer_info = &tx_ring->buffer_info[i];
3890 3891 3892 3893 3894
		size = min(len, max_per_txd);

		buffer_info->length = size;
		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;
E
Eric Dumazet 已提交
3895
		buffer_info->dma = skb_shinfo(skb)->dma_head + offset;
3896
		count++;
3897 3898 3899

		len -= size;
		offset += size;
3900 3901 3902 3903 3904 3905

		if (len) {
			i++;
			if (i == tx_ring->count)
				i = 0;
		}
3906 3907 3908 3909 3910 3911 3912
	}

	for (f = 0; f < nr_frags; f++) {
		struct skb_frag_struct *frag;

		frag = &skb_shinfo(skb)->frags[f];
		len = frag->size;
J
Jesse Brandeburg 已提交
3913
		offset = 0;
3914 3915

		while (len) {
3916 3917 3918 3919
			i++;
			if (i == tx_ring->count)
				i = 0;

3920 3921 3922 3923 3924 3925
			buffer_info = &tx_ring->buffer_info[i];
			size = min(len, max_per_txd);

			buffer_info->length = size;
			buffer_info->time_stamp = jiffies;
			buffer_info->next_to_watch = i;
E
Eric Dumazet 已提交
3926
			buffer_info->dma = map[f] + offset;
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984

			len -= size;
			offset += size;
			count++;
		}
	}

	tx_ring->buffer_info[i].skb = skb;
	tx_ring->buffer_info[first].next_to_watch = i;

	return count;
}

static void e1000_tx_queue(struct e1000_adapter *adapter,
			   int tx_flags, int count)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc = NULL;
	struct e1000_buffer *buffer_info;
	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
	unsigned int i;

	if (tx_flags & E1000_TX_FLAGS_TSO) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
			     E1000_TXD_CMD_TSE;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;

		if (tx_flags & E1000_TX_FLAGS_IPV4)
			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_CSUM) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_VLAN) {
		txd_lower |= E1000_TXD_CMD_VLE;
		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
	}

	i = tx_ring->next_to_use;

	while (count--) {
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->lower.data =
			cpu_to_le32(txd_lower | buffer_info->length);
		tx_desc->upper.data = cpu_to_le32(txd_upper);

		i++;
		if (i == tx_ring->count)
			i = 0;
	}

	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);

3985 3986
	/*
	 * Force memory writes to complete before letting h/w
3987 3988
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
3989 3990
	 * such as IA-64).
	 */
3991 3992 3993 3994
	wmb();

	tx_ring->next_to_use = i;
	writel(i, adapter->hw.hw_addr + tx_ring->tail);
3995 3996 3997 3998
	/*
	 * we need this if more than one processor can write to our tail
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
	mmiowb();
}

#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
				    struct sk_buff *skb)
{
	struct e1000_hw *hw =  &adapter->hw;
	u16 length, offset;

	if (vlan_tx_tag_present(skb)) {
		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
		    && (adapter->hw.mng_cookie.status &
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
			return 0;
	}

	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
		return 0;

	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
		return 0;

	{
		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
		struct udphdr *udp;

		if (ip->protocol != IPPROTO_UDP)
			return 0;

		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
		if (ntohs(udp->dest) != 67)
			return 0;

		offset = (u8 *)udp + 8 - skb->data;
		length = skb->len - offset;
		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
	}

	return 0;
}

static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_stop_queue(netdev);
4046 4047
	/*
	 * Herbert's original patch had:
4048
	 *  smp_mb__after_netif_stop_queue();
4049 4050
	 * but since that doesn't exist yet, just open code it.
	 */
4051 4052
	smp_mb();

4053 4054 4055 4056
	/*
	 * We need to check again in a case another CPU has just
	 * made room available.
	 */
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
	if (e1000_desc_unused(adapter->tx_ring) < size)
		return -EBUSY;

	/* A reprieve! */
	netif_start_queue(netdev);
	++adapter->restart_queue;
	return 0;
}

static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000_desc_unused(adapter->tx_ring) >= size)
		return 0;
	return __e1000_maybe_stop_tx(netdev, size);
}

#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4076 4077
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
				    struct net_device *netdev)
4078 4079 4080 4081 4082 4083 4084
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int first;
	unsigned int max_per_txd = E1000_MAX_PER_TXD;
	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
	unsigned int tx_flags = 0;
4085 4086 4087
	unsigned int len = skb->len - skb->data_len;
	unsigned int nr_frags;
	unsigned int mss;
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
	int count = 0;
	int tso;
	unsigned int f;

	if (test_bit(__E1000_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	mss = skb_shinfo(skb)->gso_size;
4103 4104
	/*
	 * The controller does a simple calculation to
4105 4106 4107 4108
	 * make sure there is enough room in the FIFO before
	 * initiating the DMA for each buffer.  The calc is:
	 * 4 = ceil(buffer len/mss).  To make sure we don't
	 * overrun the FIFO, adjust the max buffer len if mss
4109 4110
	 * drops.
	 */
4111 4112 4113 4114 4115
	if (mss) {
		u8 hdr_len;
		max_per_txd = min(mss << 2, max_per_txd);
		max_txd_pwr = fls(max_per_txd) - 1;

4116 4117 4118 4119 4120
		/*
		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
		 * points to just header, pull a few bytes of payload from
		 * frags into skb->data
		 */
4121
		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4122 4123 4124 4125
		/*
		 * we do this workaround for ES2LAN, but it is un-necessary,
		 * avoiding it could save a lot of cycles
		 */
4126
		if (skb->data_len && (hdr_len == len)) {
4127 4128 4129 4130
			unsigned int pull_size;

			pull_size = min((unsigned int)4, skb->data_len);
			if (!__pskb_pull_tail(skb, pull_size)) {
4131
				e_err("__pskb_pull_tail failed.\n");
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
				dev_kfree_skb_any(skb);
				return NETDEV_TX_OK;
			}
			len = skb->len - skb->data_len;
		}
	}

	/* reserve a descriptor for the offload context */
	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
		count++;
	count++;

	count += TXD_USE_COUNT(len, max_txd_pwr);

	nr_frags = skb_shinfo(skb)->nr_frags;
	for (f = 0; f < nr_frags; f++)
		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
				       max_txd_pwr);

	if (adapter->hw.mac.tx_pkt_filtering)
		e1000_transfer_dhcp_info(adapter, skb);

4154 4155 4156 4157
	/*
	 * need: count + 2 desc gap to keep tail from touching
	 * head, otherwise try next time
	 */
4158
	if (e1000_maybe_stop_tx(netdev, count + 2))
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
		return NETDEV_TX_BUSY;

	if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
		tx_flags |= E1000_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
	}

	first = tx_ring->next_to_use;

	tso = e1000_tso(adapter, skb);
	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= E1000_TX_FLAGS_TSO;
	else if (e1000_tx_csum(adapter, skb))
		tx_flags |= E1000_TX_FLAGS_CSUM;

4179 4180
	/*
	 * Old method was to assume IPv4 packet by default if TSO was enabled.
4181
	 * 82571 hardware supports TSO capabilities for IPv6 as well...
4182 4183
	 * no longer assume, we must.
	 */
4184 4185 4186
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= E1000_TX_FLAGS_IPV4;

4187
	/* if count is 0 then mapping error has occured */
4188
	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4189 4190 4191 4192 4193 4194
	if (count) {
		e1000_tx_queue(adapter, tx_flags, count);
		/* Make sure there is space in the ring for the next send. */
		e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);

	} else {
4195
		dev_kfree_skb_any(skb);
4196 4197
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
	}

	return NETDEV_TX_OK;
}

/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void e1000_tx_timeout(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
}

static void e1000_reset_task(struct work_struct *work)
{
	struct e1000_adapter *adapter;
	adapter = container_of(work, struct e1000_adapter, reset_task);

	e1000e_reinit_locked(adapter);
}

/**
 * e1000_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 **/
static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
{
	/* only return the current stats */
4234
	return &netdev->stats;
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
}

/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

4249 4250 4251 4252
	/* Jumbo frame support */
	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
		e_err("Jumbo Frames not supported.\n");
4253 4254 4255
		return -EINVAL;
	}

4256 4257 4258 4259
	/* Supported frame sizes */
	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
	    (max_frame > adapter->max_hw_frame_size)) {
		e_err("Unsupported MTU setting\n");
4260 4261 4262 4263 4264 4265
		return -EINVAL;
	}

	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
		msleep(1);
	/* e1000e_down has a dependency on max_frame_size */
4266
	adapter->max_frame_size = max_frame;
4267 4268 4269
	if (netif_running(netdev))
		e1000e_down(adapter);

4270 4271
	/*
	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4272 4273
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
4274
	 * i.e. RXBUFFER_2048 --> size-4096 slab
4275 4276
	 * However with the new *_jumbo_rx* routines, jumbo receives will use
	 * fragmented skbs
4277
	 */
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293

	if (max_frame <= 256)
		adapter->rx_buffer_len = 256;
	else if (max_frame <= 512)
		adapter->rx_buffer_len = 512;
	else if (max_frame <= 1024)
		adapter->rx_buffer_len = 1024;
	else if (max_frame <= 2048)
		adapter->rx_buffer_len = 2048;
	else
		adapter->rx_buffer_len = 4096;

	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4294
					 + ETH_FCS_LEN;
4295

4296
	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		e1000e_up(adapter);
	else
		e1000e_reset(adapter);

	clear_bit(__E1000_RESETTING, &adapter->state);

	return 0;
}

static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
			   int cmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

4315
	if (adapter->hw.phy.media_type != e1000_media_type_copper)
4316 4317 4318 4319 4320 4321 4322
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
		switch (data->reg_num & 0x1F) {
		case MII_BMCR:
			data->val_out = adapter->phy_regs.bmcr;
			break;
		case MII_BMSR:
			data->val_out = adapter->phy_regs.bmsr;
			break;
		case MII_PHYSID1:
			data->val_out = (adapter->hw.phy.id >> 16);
			break;
		case MII_PHYSID2:
			data->val_out = (adapter->hw.phy.id & 0xFFFF);
			break;
		case MII_ADVERTISE:
			data->val_out = adapter->phy_regs.advertise;
			break;
		case MII_LPA:
			data->val_out = adapter->phy_regs.lpa;
			break;
		case MII_EXPANSION:
			data->val_out = adapter->phy_regs.expansion;
			break;
		case MII_CTRL1000:
			data->val_out = adapter->phy_regs.ctrl1000;
			break;
		case MII_STAT1000:
			data->val_out = adapter->phy_regs.stat1000;
			break;
		case MII_ESTATUS:
			data->val_out = adapter->phy_regs.estatus;
			break;
		default:
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
			return -EIO;
		}
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return e1000_mii_ioctl(netdev, ifr, cmd);
	default:
		return -EOPNOTSUPP;
	}
}

4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 i, mac_reg;
	u16 phy_reg;
	int retval = 0;

	/* copy MAC RARs to PHY RARs */
	for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
		mac_reg = er32(RAL(i));
		e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
		e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
		mac_reg = er32(RAH(i));
		e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
		e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF));
	}

	/* copy MAC MTA to PHY MTA */
	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
		e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
		e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
	}

	/* configure PHY Rx Control register */
	e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
	mac_reg = er32(RCTL);
	if (mac_reg & E1000_RCTL_UPE)
		phy_reg |= BM_RCTL_UPE;
	if (mac_reg & E1000_RCTL_MPE)
		phy_reg |= BM_RCTL_MPE;
	phy_reg &= ~(BM_RCTL_MO_MASK);
	if (mac_reg & E1000_RCTL_MO_3)
		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
				<< BM_RCTL_MO_SHIFT);
	if (mac_reg & E1000_RCTL_BAM)
		phy_reg |= BM_RCTL_BAM;
	if (mac_reg & E1000_RCTL_PMCF)
		phy_reg |= BM_RCTL_PMCF;
	mac_reg = er32(CTRL);
	if (mac_reg & E1000_CTRL_RFCE)
		phy_reg |= BM_RCTL_RFCE;
	e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);

	/* enable PHY wakeup in MAC register */
	ew32(WUFC, wufc);
	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);

	/* configure and enable PHY wakeup in PHY registers */
	e1e_wphy(&adapter->hw, BM_WUFC, wufc);
	e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);

	/* activate PHY wakeup */
	retval = hw->phy.ops.acquire_phy(hw);
	if (retval) {
		e_err("Could not acquire PHY\n");
		return retval;
	}
	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
	retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
	if (retval) {
		e_err("Could not read PHY page 769\n");
		goto out;
	}
	phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
	retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
	if (retval)
		e_err("Could not set PHY Host Wakeup bit\n");
out:
	hw->phy.ops.release_phy(hw);

	return retval;
}

4452
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, ctrl_ext, rctl, status;
	u32 wufc = adapter->wol;
	int retval = 0;

	netif_device_detach(netdev);

	if (netif_running(netdev)) {
		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
4468
	e1000e_reset_interrupt_capability(adapter);
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493

	retval = pci_save_state(pdev);
	if (retval)
		return retval;

	status = er32(STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		e1000_setup_rctl(adapter);
		e1000_set_multi(netdev);

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_MPE;
			ew32(RCTL, rctl);
		}

		ctrl = er32(CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4494 4495 4496
		ctrl |= E1000_CTRL_ADVD3WUC;
		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
4497 4498
		ew32(CTRL, ctrl);

4499 4500 4501
		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
		    adapter->hw.phy.media_type ==
		    e1000_media_type_internal_serdes) {
4502 4503 4504 4505 4506 4507
			/* keep the laser running in D3 */
			ctrl_ext = er32(CTRL_EXT);
			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
			ew32(CTRL_EXT, ctrl_ext);
		}

4508 4509 4510
		if (adapter->flags & FLAG_IS_ICH)
			e1000e_disable_gig_wol_ich8lan(&adapter->hw);

4511 4512 4513
		/* Allow time for pending master requests to run */
		e1000e_disable_pcie_master(&adapter->hw);

4514
		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4515 4516 4517 4518 4519 4520 4521 4522 4523
			/* enable wakeup by the PHY */
			retval = e1000_init_phy_wakeup(adapter, wufc);
			if (retval)
				return retval;
		} else {
			/* enable wakeup by the MAC */
			ew32(WUFC, wufc);
			ew32(WUC, E1000_WUC_PME_EN);
		}
4524 4525 4526 4527 4528
	} else {
		ew32(WUC, 0);
		ew32(WUFC, 0);
	}

4529 4530
	*enable_wake = !!wufc;

4531
	/* make sure adapter isn't asleep if manageability is enabled */
4532 4533
	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
	    (hw->mac.ops.check_mng_mode(hw)))
4534
		*enable_wake = true;
4535 4536 4537 4538

	if (adapter->hw.phy.type == e1000_phy_igp_3)
		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);

4539 4540 4541 4542
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
4543 4544 4545 4546
	e1000_release_hw_control(adapter);

	pci_disable_device(pdev);

4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
	return 0;
}

static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
{
	if (sleep && wake) {
		pci_prepare_to_sleep(pdev);
		return;
	}

	pci_wake_from_d3(pdev, wake);
	pci_set_power_state(pdev, PCI_D3hot);
}

static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
                                    bool wake)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
	/*
	 * The pci-e switch on some quad port adapters will report a
	 * correctable error when the MAC transitions from D0 to D3.  To
	 * prevent this we need to mask off the correctable errors on the
	 * downstream port of the pci-e switch.
	 */
	if (adapter->flags & FLAG_IS_QUAD_PORT) {
		struct pci_dev *us_dev = pdev->bus->self;
		int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
		u16 devctl;

		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
		                      (devctl & ~PCI_EXP_DEVCTL_CERE));

4582
		e1000_power_off(pdev, sleep, wake);
4583 4584 4585

		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
	} else {
4586
		e1000_power_off(pdev, sleep, wake);
4587
	}
4588 4589
}

4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
static void e1000e_disable_l1aspm(struct pci_dev *pdev)
{
	int pos;
	u16 val;

	/*
	 * 82573 workaround - disable L1 ASPM on mobile chipsets
	 *
	 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
	 * resulting in lost data or garbage information on the pci-e link
	 * level. This could result in (false) bad EEPROM checksum errors,
	 * long ping times (up to 2s) or even a system freeze/hang.
	 *
	 * Unfortunately this feature saves about 1W power consumption when
	 * active.
	 */
	pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
	if (val & 0x2) {
		dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
		val &= ~0x2;
		pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
	}
}

4615
#ifdef CONFIG_PM
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __e1000_shutdown(pdev, &wake);
	if (!retval)
		e1000_complete_shutdown(pdev, true, wake);

	return retval;
}

4628 4629 4630 4631 4632 4633 4634 4635 4636
static int e1000_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
4637
	e1000e_disable_l1aspm(pdev);
T
Taku Izumi 已提交
4638

4639
	err = pci_enable_device_mem(pdev);
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
	if (err) {
		dev_err(&pdev->dev,
			"Cannot enable PCI device from suspend\n");
		return err;
	}

	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

4651
	e1000e_set_interrupt_capability(adapter);
4652 4653 4654 4655 4656 4657 4658
	if (netif_running(netdev)) {
		err = e1000_request_irq(adapter);
		if (err)
			return err;
	}

	e1000e_power_up_phy(adapter);
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688

	/* report the system wakeup cause from S3/S4 */
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
		u16 phy_data;

		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
		if (phy_data) {
			e_info("PHY Wakeup cause - %s\n",
				phy_data & E1000_WUS_EX ? "Unicast Packet" :
				phy_data & E1000_WUS_MC ? "Multicast Packet" :
				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
				phy_data & E1000_WUS_MAG ? "Magic Packet" :
				phy_data & E1000_WUS_LNKC ? "Link Status "
				" Change" : "other");
		}
		e1e_wphy(&adapter->hw, BM_WUS, ~0);
	} else {
		u32 wus = er32(WUS);
		if (wus) {
			e_info("MAC Wakeup cause - %s\n",
				wus & E1000_WUS_EX ? "Unicast Packet" :
				wus & E1000_WUS_MC ? "Multicast Packet" :
				wus & E1000_WUS_BC ? "Broadcast Packet" :
				wus & E1000_WUS_MAG ? "Magic Packet" :
				wus & E1000_WUS_LNKC ? "Link Status Change" :
				"other");
		}
		ew32(WUS, ~0);
	}

4689 4690 4691 4692 4693 4694 4695 4696 4697
	e1000e_reset(adapter);

	e1000_init_manageability(adapter);

	if (netif_running(netdev))
		e1000e_up(adapter);

	netif_device_attach(netdev);

4698 4699
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
4700
	 * is up.  For all other cases, let the f/w know that the h/w is now
4701 4702
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
4703
	if (!(adapter->flags & FLAG_HAS_AMT))
4704 4705 4706 4707 4708 4709 4710 4711
		e1000_get_hw_control(adapter);

	return 0;
}
#endif

static void e1000_shutdown(struct pci_dev *pdev)
{
4712 4713 4714 4715 4716 4717
	bool wake = false;

	__e1000_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF)
		e1000_complete_shutdown(pdev, false, wake);
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void e1000_netpoll(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	disable_irq(adapter->pdev->irq);
	e1000_intr(adapter->pdev->irq, netdev);

	enable_irq(adapter->pdev->irq);
}
#endif

/**
 * e1000_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
						pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

4753 4754 4755
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
	if (netif_running(netdev))
		e1000e_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * e1000_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
T
Taku Izumi 已提交
4776
	int err;
J
Jesse Brandeburg 已提交
4777
	pci_ers_result_t result;
4778

4779
	e1000e_disable_l1aspm(pdev);
4780
	err = pci_enable_device_mem(pdev);
T
Taku Izumi 已提交
4781
	if (err) {
4782 4783
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
J
Jesse Brandeburg 已提交
4784 4785 4786 4787
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
4788

J
Jesse Brandeburg 已提交
4789 4790
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
4791

J
Jesse Brandeburg 已提交
4792 4793 4794 4795
		e1000e_reset(adapter);
		ew32(WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
4796

J
Jesse Brandeburg 已提交
4797 4798 4799
	pci_cleanup_aer_uncorrect_error_status(pdev);

	return result;
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
}

/**
 * e1000_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the e1000_resume routine.
 */
static void e1000_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	e1000_init_manageability(adapter);

	if (netif_running(netdev)) {
		if (e1000e_up(adapter)) {
			dev_err(&pdev->dev,
				"can't bring device back up after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

4827 4828
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
4829
	 * is up.  For all other cases, let the f/w know that the h/w is now
4830 4831
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
4832
	if (!(adapter->flags & FLAG_HAS_AMT))
4833 4834 4835 4836 4837 4838 4839 4840
		e1000_get_hw_control(adapter);

}

static void e1000_print_device_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
J
Jeff Kirsher 已提交
4841
	u32 pba_num;
4842 4843

	/* print bus type/speed/width info */
J
Johannes Berg 已提交
4844
	e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4845 4846 4847 4848
	       /* bus width */
	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
	        "Width x1"),
	       /* MAC address */
J
Johannes Berg 已提交
4849
	       netdev->dev_addr);
4850 4851
	e_info("Intel(R) PRO/%s Network Connection\n",
	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
J
Jeff Kirsher 已提交
4852
	e1000e_read_pba_num(hw, &pba_num);
4853 4854
	e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
	       hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4855 4856
}

4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int ret_val;
	u16 buf = 0;

	if (hw->mac.type != e1000_82573)
		return;

	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4867
	if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
4868
		/* Deep Smart Power Down (DSPD) */
4869 4870
		dev_warn(&adapter->pdev->dev,
			 "Warning: detected DSPD enabled in EEPROM\n");
4871 4872 4873
	}

	ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4874
	if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) {
4875
		/* ASPM enable */
4876 4877
		dev_warn(&adapter->pdev->dev,
			 "Warning: detected ASPM enabled in EEPROM\n");
4878 4879 4880
	}
}

4881 4882 4883
static const struct net_device_ops e1000e_netdev_ops = {
	.ndo_open		= e1000_open,
	.ndo_stop		= e1000_close,
4884
	.ndo_start_xmit		= e1000_xmit_frame,
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
	.ndo_get_stats		= e1000_get_stats,
	.ndo_set_multicast_list	= e1000_set_multi,
	.ndo_set_mac_address	= e1000_set_mac,
	.ndo_change_mtu		= e1000_change_mtu,
	.ndo_do_ioctl		= e1000_ioctl,
	.ndo_tx_timeout		= e1000_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,

	.ndo_vlan_rx_register	= e1000_vlan_rx_register,
	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= e1000_netpoll,
#endif
};

4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit e1000_probe(struct pci_dev *pdev,
				 const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct e1000_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4919 4920
	resource_size_t mmio_start, mmio_len;
	resource_size_t flash_start, flash_len;
4921 4922 4923 4924 4925 4926

	static int cards_found;
	int i, err, pci_using_dac;
	u16 eeprom_data = 0;
	u16 eeprom_apme_mask = E1000_EEPROM_APME;

4927
	e1000e_disable_l1aspm(pdev);
T
Taku Izumi 已提交
4928

4929
	err = pci_enable_device_mem(pdev);
4930 4931 4932 4933
	if (err)
		return err;

	pci_using_dac = 0;
4934
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4935
	if (!err) {
4936
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4937 4938 4939
		if (!err)
			pci_using_dac = 1;
	} else {
4940
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4941 4942
		if (err) {
			err = pci_set_consistent_dma_mask(pdev,
4943
							  DMA_BIT_MASK(32));
4944 4945 4946 4947 4948 4949 4950 4951
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

4952
	err = pci_request_selected_regions_exclusive(pdev,
4953 4954
	                                  pci_select_bars(pdev, IORESOURCE_MEM),
	                                  e1000e_driver_name);
4955 4956 4957
	if (err)
		goto err_pci_reg;

4958
	/* AER (Advanced Error Reporting) hooks */
4959
	pci_enable_pcie_error_reporting(pdev);
4960

4961
	pci_set_master(pdev);
4962 4963 4964 4965
	/* PCI config space info */
	err = pci_save_state(pdev);
	if (err)
		goto err_alloc_etherdev;
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981

	err = -ENOMEM;
	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	hw = &adapter->hw;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->ei = ei;
	adapter->pba = ei->pba;
	adapter->flags = ei->flags;
J
Jeff Kirsher 已提交
4982
	adapter->flags2 = ei->flags2;
4983 4984
	adapter->hw.adapter = adapter;
	adapter->hw.mac.type = ei->mac;
4985
	adapter->max_hw_frame_size = ei->max_hw_frame_size;
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
	if (!adapter->hw.hw_addr)
		goto err_ioremap;

	if ((adapter->flags & FLAG_HAS_FLASH) &&
	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
		flash_start = pci_resource_start(pdev, 1);
		flash_len = pci_resource_len(pdev, 1);
		adapter->hw.flash_address = ioremap(flash_start, flash_len);
		if (!adapter->hw.flash_address)
			goto err_flashmap;
	}

	/* construct the net_device struct */
5006
	netdev->netdev_ops		= &e1000e_netdev_ops;
5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
	e1000e_set_ethtool_ops(netdev);
	netdev->watchdog_timeo		= 5 * HZ;
	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	adapter->bd_number = cards_found++;

5017 5018
	e1000e_check_options(adapter);

5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
	/* setup adapter struct */
	err = e1000_sw_init(adapter);
	if (err)
		goto err_sw_init;

	err = -EIO;

	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));

J
Jeff Kirsher 已提交
5030
	err = ei->get_variants(adapter);
5031 5032 5033
	if (err)
		goto err_hw_init;

5034 5035 5036 5037
	if ((adapter->flags & FLAG_IS_ICH) &&
	    (adapter->flags & FLAG_READ_ONLY_NVM))
		e1000e_write_protect_nvm_ich8lan(&adapter->hw);

5038 5039
	hw->mac.ops.get_bus_info(&adapter->hw);

5040
	adapter->hw.phy.autoneg_wait_to_complete = 0;
5041 5042

	/* Copper options */
5043
	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5044 5045 5046 5047 5048 5049
		adapter->hw.phy.mdix = AUTO_ALL_MODES;
		adapter->hw.phy.disable_polarity_correction = 0;
		adapter->hw.phy.ms_type = e1000_ms_hw_default;
	}

	if (e1000_check_reset_block(&adapter->hw))
5050
		e_info("PHY reset is blocked due to SOL/IDER session.\n");
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062

	netdev->features = NETIF_F_SG |
			   NETIF_F_HW_CSUM |
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_RX;

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
		netdev->features |= NETIF_F_HW_VLAN_FILTER;

	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;

5063 5064 5065 5066 5067
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
	netdev->vlan_features |= NETIF_F_HW_CSUM;
	netdev->vlan_features |= NETIF_F_SG;

5068 5069 5070 5071 5072 5073
	if (pci_using_dac)
		netdev->features |= NETIF_F_HIGHDMA;

	if (e1000e_enable_mng_pass_thru(&adapter->hw))
		adapter->flags |= FLAG_MNG_PT_ENABLED;

5074 5075 5076 5077
	/*
	 * before reading the NVM, reset the controller to
	 * put the device in a known good starting state
	 */
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
	adapter->hw.mac.ops.reset_hw(&adapter->hw);

	/*
	 * systems with ASPM and others may see the checksum fail on the first
	 * attempt. Let's give it a few tries
	 */
	for (i = 0;; i++) {
		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
			break;
		if (i == 2) {
5088
			e_err("The NVM Checksum Is Not Valid\n");
5089 5090 5091 5092 5093
			err = -EIO;
			goto err_eeprom;
		}
	}

5094 5095
	e1000_eeprom_checks(adapter);

5096 5097
	/* copy the MAC address out of the NVM */
	if (e1000e_read_mac_addr(&adapter->hw))
5098
		e_err("NVM Read Error while reading MAC address\n");
5099 5100 5101 5102 5103

	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
J
Johannes Berg 已提交
5104
		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
		err = -EIO;
		goto err_eeprom;
	}

	init_timer(&adapter->watchdog_timer);
	adapter->watchdog_timer.function = &e1000_watchdog;
	adapter->watchdog_timer.data = (unsigned long) adapter;

	init_timer(&adapter->phy_info_timer);
	adapter->phy_info_timer.function = &e1000_update_phy_info;
	adapter->phy_info_timer.data = (unsigned long) adapter;

	INIT_WORK(&adapter->reset_task, e1000_reset_task);
	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5119 5120
	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5121 5122 5123

	/* Initialize link parameters. User can change them with ethtool */
	adapter->hw.mac.autoneg = 1;
5124
	adapter->fc_autoneg = 1;
5125 5126
	adapter->hw.fc.requested_mode = e1000_fc_default;
	adapter->hw.fc.current_mode = e1000_fc_default;
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
	adapter->hw.phy.autoneg_advertised = 0x2f;

	/* ring size defaults */
	adapter->rx_ring->count = 256;
	adapter->tx_ring->count = 256;

	/*
	 * Initial Wake on LAN setting - If APM wake is enabled in
	 * the EEPROM, enable the ACPI Magic Packet filter
	 */
	if (adapter->flags & FLAG_APME_IN_WUC) {
		/* APME bit in EEPROM is mapped to WUC.APME */
		eeprom_data = er32(WUC);
		eeprom_apme_mask = E1000_WUC_APME;
5141 5142
		if (eeprom_data & E1000_WUC_PHY_WAKE)
			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
		    (adapter->hw.bus.func == 1))
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
		else
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
	}

	/* fetch WoL from EEPROM */
	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/*
	 * now that we have the eeprom settings, apply the special cases
	 * where the eeprom may be wrong or the board simply won't support
	 * wake on lan on a particular port
	 */
	if (!(adapter->flags & FLAG_HAS_WOL))
		adapter->eeprom_wol = 0;

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
5167
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5168

5169 5170 5171
	/* save off EEPROM version number */
	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);

5172 5173 5174
	/* reset the hardware with the new settings */
	e1000e_reset(adapter);

5175 5176
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5177
	 * is up.  For all other cases, let the f/w know that the h/w is now
5178 5179
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5180
	if (!(adapter->flags & FLAG_HAS_AMT))
5181 5182 5183 5184 5185 5186 5187
		e1000_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

5188 5189 5190
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

5191 5192 5193 5194 5195
	e1000_print_device_info(adapter);

	return 0;

err_register:
J
Jesse Brandeburg 已提交
5196 5197
	if (!(adapter->flags & FLAG_HAS_AMT))
		e1000_release_hw_control(adapter);
5198 5199 5200
err_eeprom:
	if (!e1000_check_reset_block(&adapter->hw))
		e1000_phy_hw_reset(&adapter->hw);
J
Jesse Brandeburg 已提交
5201
err_hw_init:
5202 5203 5204 5205

	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
err_sw_init:
J
Jesse Brandeburg 已提交
5206 5207
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
5208
	e1000e_reset_interrupt_capability(adapter);
J
Jesse Brandeburg 已提交
5209
err_flashmap:
5210 5211 5212 5213
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
5214 5215
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit e1000_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5236 5237 5238 5239
	/*
	 * flush_scheduled work may reschedule our watchdog task, so
	 * explicitly disable watchdog tasks from being rescheduled
	 */
5240 5241 5242 5243 5244 5245
	set_bit(__E1000_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	flush_scheduled_work();

5246 5247 5248 5249
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
5250 5251 5252 5253 5254 5255 5256
	e1000_release_hw_control(adapter);

	unregister_netdev(netdev);

	if (!e1000_check_reset_block(&adapter->hw))
		e1000_phy_hw_reset(&adapter->hw);

5257
	e1000e_reset_interrupt_capability(adapter);
5258 5259 5260 5261 5262 5263
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	iounmap(adapter->hw.hw_addr);
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
5264 5265
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
5266 5267 5268

	free_netdev(netdev);

J
Jesse Brandeburg 已提交
5269
	/* AER disable */
5270
	pci_disable_pcie_error_reporting(pdev);
J
Jesse Brandeburg 已提交
5271

5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
	pci_disable_device(pdev);
}

/* PCI Error Recovery (ERS) */
static struct pci_error_handlers e1000_err_handler = {
	.error_detected = e1000_io_error_detected,
	.slot_reset = e1000_io_slot_reset,
	.resume = e1000_io_resume,
};

static struct pci_device_id e1000_pci_tbl[] = {
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5289 5290 5291
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5292

5293 5294 5295 5296
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5297

5298 5299 5300
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5301

5302
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5303
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
5304
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
5305

5306 5307 5308 5309 5310 5311 5312 5313
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
	  board_80003es2lan },
5314

5315 5316 5317 5318 5319 5320 5321
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5322

5323 5324 5325 5326 5327
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5328
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5329 5330 5331 5332 5333 5334 5335
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },

	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5336

5337 5338 5339
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },

5340 5341 5342 5343 5344
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },

5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
	{ }	/* terminate list */
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);

/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
	.name     = e1000e_driver_name,
	.id_table = e1000_pci_tbl,
	.probe    = e1000_probe,
	.remove   = __devexit_p(e1000_remove),
#ifdef CONFIG_PM
5356
	/* Power Management Hooks */
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
	.suspend  = e1000_suspend,
	.resume   = e1000_resume,
#endif
	.shutdown = e1000_shutdown,
	.err_handler = &e1000_err_handler
};

/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init e1000_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
	       e1000e_driver_name, e1000e_driver_version);
5375
	printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
5376 5377
	       e1000e_driver_name);
	ret = pci_register_driver(&e1000_driver);
5378 5379 5380
	pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
			       PM_QOS_DEFAULT_VALUE);
				
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
	return ret;
}
module_init(e1000_init_module);

/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit e1000_exit_module(void)
{
	pci_unregister_driver(&e1000_driver);
5394
	pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
}
module_exit(e1000_exit_module);


MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

/* e1000_main.c */