rdma.c 50.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * NVMe over Fabrics RDMA host code.
 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/string.h>
#include <linux/atomic.h>
#include <linux/blk-mq.h>
#include <linux/types.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/scatterlist.h>
#include <linux/nvme.h>
#include <asm/unaligned.h>

#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <linux/nvme-rdma.h>

#include "nvme.h"
#include "fabrics.h"


37
#define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
38 39 40 41 42 43 44 45 46 47 48

#define NVME_RDMA_MAX_SEGMENTS		256

#define NVME_RDMA_MAX_INLINE_SEGMENTS	1

/*
 * We handle AEN commands ourselves and don't even let the
 * block layer know about them.
 */
#define NVME_RDMA_NR_AEN_COMMANDS      1
#define NVME_RDMA_AQ_BLKMQ_DEPTH       \
49
	(NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

struct nvme_rdma_device {
	struct ib_device       *dev;
	struct ib_pd	       *pd;
	struct kref		ref;
	struct list_head	entry;
};

struct nvme_rdma_qe {
	struct ib_cqe		cqe;
	void			*data;
	u64			dma;
};

struct nvme_rdma_queue;
struct nvme_rdma_request {
66
	struct nvme_request	req;
67 68 69 70 71 72 73 74 75 76 77 78 79 80
	struct ib_mr		*mr;
	struct nvme_rdma_qe	sqe;
	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
	u32			num_sge;
	int			nents;
	bool			inline_data;
	struct ib_reg_wr	reg_wr;
	struct ib_cqe		reg_cqe;
	struct nvme_rdma_queue  *queue;
	struct sg_table		sg_table;
	struct scatterlist	first_sgl[];
};

enum nvme_rdma_queue_flags {
81
	NVME_RDMA_Q_LIVE		= 0,
82
	NVME_RDMA_Q_DELETING		= 1,
83 84 85 86
};

struct nvme_rdma_queue {
	struct nvme_rdma_qe	*rsp_ring;
87
	atomic_t		sig_count;
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
	int			queue_size;
	size_t			cmnd_capsule_len;
	struct nvme_rdma_ctrl	*ctrl;
	struct nvme_rdma_device	*device;
	struct ib_cq		*ib_cq;
	struct ib_qp		*qp;

	unsigned long		flags;
	struct rdma_cm_id	*cm_id;
	int			cm_error;
	struct completion	cm_done;
};

struct nvme_rdma_ctrl {
	/* read only in the hot path */
	struct nvme_rdma_queue	*queues;

	/* other member variables */
	struct blk_mq_tag_set	tag_set;
	struct work_struct	delete_work;
	struct work_struct	err_work;

	struct nvme_rdma_qe	async_event_sqe;

	struct delayed_work	reconnect_work;

	struct list_head	list;

	struct blk_mq_tag_set	admin_tag_set;
	struct nvme_rdma_device	*device;

	u32			max_fr_pages;

121 122
	struct sockaddr_storage addr;
	struct sockaddr_storage src_addr;
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

	struct nvme_ctrl	ctrl;
};

static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
{
	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
}

static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_mutex);

static LIST_HEAD(nvme_rdma_ctrl_list);
static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);

/*
 * Disabling this option makes small I/O goes faster, but is fundamentally
 * unsafe.  With it turned off we will have to register a global rkey that
 * allows read and write access to all physical memory.
 */
static bool register_always = true;
module_param(register_always, bool, 0444);
MODULE_PARM_DESC(register_always,
	 "Use memory registration even for contiguous memory regions");

static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event);
static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);

152 153 154
static const struct blk_mq_ops nvme_rdma_mq_ops;
static const struct blk_mq_ops nvme_rdma_admin_mq_ops;

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
/* XXX: really should move to a generic header sooner or later.. */
static inline void put_unaligned_le24(u32 val, u8 *p)
{
	*p++ = val;
	*p++ = val >> 8;
	*p++ = val >> 16;
}

static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
{
	return queue - queue->ctrl->queues;
}

static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
{
	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
}

static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
		size_t capsule_size, enum dma_data_direction dir)
{
	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
	kfree(qe->data);
}

static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
		size_t capsule_size, enum dma_data_direction dir)
{
	qe->data = kzalloc(capsule_size, GFP_KERNEL);
	if (!qe->data)
		return -ENOMEM;

	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
	if (ib_dma_mapping_error(ibdev, qe->dma)) {
		kfree(qe->data);
		return -ENOMEM;
	}

	return 0;
}

static void nvme_rdma_free_ring(struct ib_device *ibdev,
		struct nvme_rdma_qe *ring, size_t ib_queue_size,
		size_t capsule_size, enum dma_data_direction dir)
{
	int i;

	for (i = 0; i < ib_queue_size; i++)
		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
	kfree(ring);
}

static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
		size_t ib_queue_size, size_t capsule_size,
		enum dma_data_direction dir)
{
	struct nvme_rdma_qe *ring;
	int i;

	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
	if (!ring)
		return NULL;

	for (i = 0; i < ib_queue_size; i++) {
		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
			goto out_free_ring;
	}

	return ring;

out_free_ring:
	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
	return NULL;
}

static void nvme_rdma_qp_event(struct ib_event *event, void *context)
{
232 233 234
	pr_debug("QP event %s (%d)\n",
		 ib_event_msg(event->event), event->event);

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
}

static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
{
	wait_for_completion_interruptible_timeout(&queue->cm_done,
			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
	return queue->cm_error;
}

static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
{
	struct nvme_rdma_device *dev = queue->device;
	struct ib_qp_init_attr init_attr;
	int ret;

	memset(&init_attr, 0, sizeof(init_attr));
	init_attr.event_handler = nvme_rdma_qp_event;
	/* +1 for drain */
	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
	/* +1 for drain */
	init_attr.cap.max_recv_wr = queue->queue_size + 1;
	init_attr.cap.max_recv_sge = 1;
	init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
	init_attr.qp_type = IB_QPT_RC;
	init_attr.send_cq = queue->ib_cq;
	init_attr.recv_cq = queue->ib_cq;

	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);

	queue->qp = queue->cm_id->qp;
	return ret;
}

static int nvme_rdma_reinit_request(void *data, struct request *rq)
{
	struct nvme_rdma_ctrl *ctrl = data;
	struct nvme_rdma_device *dev = ctrl->device;
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	int ret = 0;

	ib_dereg_mr(req->mr);

	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
			ctrl->max_fr_pages);
	if (IS_ERR(req->mr)) {
		ret = PTR_ERR(req->mr);
282
		req->mr = NULL;
283
		goto out;
284 285
	}

286
	req->mr->need_inval = false;
287 288 289 290 291

out:
	return ret;
}

292 293
static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
		struct request *rq, unsigned int hctx_idx)
294
{
295
	struct nvme_rdma_ctrl *ctrl = set->driver_data;
296
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
297
	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
298 299 300 301 302 303 304 305 306 307
	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
	struct nvme_rdma_device *dev = queue->device;

	if (req->mr)
		ib_dereg_mr(req->mr);

	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
			DMA_TO_DEVICE);
}

308 309 310
static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
		struct request *rq, unsigned int hctx_idx,
		unsigned int numa_node)
311
{
312
	struct nvme_rdma_ctrl *ctrl = set->driver_data;
313
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
314
	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;
	int ret;

	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
			DMA_TO_DEVICE);
	if (ret)
		return ret;

	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
			ctrl->max_fr_pages);
	if (IS_ERR(req->mr)) {
		ret = PTR_ERR(req->mr);
		goto out_free_qe;
	}

	req->queue = queue;

	return 0;

out_free_qe:
	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
			DMA_TO_DEVICE);
	return -ENOMEM;
}

static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
		unsigned int hctx_idx)
{
	struct nvme_rdma_ctrl *ctrl = data;
	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];

348
	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

	hctx->driver_data = queue;
	return 0;
}

static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
		unsigned int hctx_idx)
{
	struct nvme_rdma_ctrl *ctrl = data;
	struct nvme_rdma_queue *queue = &ctrl->queues[0];

	BUG_ON(hctx_idx != 0);

	hctx->driver_data = queue;
	return 0;
}

static void nvme_rdma_free_dev(struct kref *ref)
{
	struct nvme_rdma_device *ndev =
		container_of(ref, struct nvme_rdma_device, ref);

	mutex_lock(&device_list_mutex);
	list_del(&ndev->entry);
	mutex_unlock(&device_list_mutex);

	ib_dealloc_pd(ndev->pd);
	kfree(ndev);
}

static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
{
	kref_put(&dev->ref, nvme_rdma_free_dev);
}

static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
{
	return kref_get_unless_zero(&dev->ref);
}

static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
{
	struct nvme_rdma_device *ndev;

	mutex_lock(&device_list_mutex);
	list_for_each_entry(ndev, &device_list, entry) {
		if (ndev->dev->node_guid == cm_id->device->node_guid &&
		    nvme_rdma_dev_get(ndev))
			goto out_unlock;
	}

	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
	if (!ndev)
		goto out_err;

	ndev->dev = cm_id->device;
	kref_init(&ndev->ref);

408 409
	ndev->pd = ib_alloc_pd(ndev->dev,
		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
410 411 412 413 414 415 416
	if (IS_ERR(ndev->pd))
		goto out_free_dev;

	if (!(ndev->dev->attrs.device_cap_flags &
	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
		dev_err(&ndev->dev->dev,
			"Memory registrations not supported.\n");
417
		goto out_free_pd;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	}

	list_add(&ndev->entry, &device_list);
out_unlock:
	mutex_unlock(&device_list_mutex);
	return ndev;

out_free_pd:
	ib_dealloc_pd(ndev->pd);
out_free_dev:
	kfree(ndev);
out_err:
	mutex_unlock(&device_list_mutex);
	return NULL;
}

static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
{
436 437
	struct nvme_rdma_device *dev;
	struct ib_device *ibdev;
438

439 440
	dev = queue->device;
	ibdev = dev->dev;
441 442 443 444 445 446 447 448 449
	rdma_destroy_qp(queue->cm_id);
	ib_free_cq(queue->ib_cq);

	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
			sizeof(struct nvme_completion), DMA_FROM_DEVICE);

	nvme_rdma_dev_put(dev);
}

450
static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
451
{
452
	struct ib_device *ibdev;
453 454 455 456 457
	const int send_wr_factor = 3;			/* MR, SEND, INV */
	const int cq_factor = send_wr_factor + 1;	/* + RECV */
	int comp_vector, idx = nvme_rdma_queue_idx(queue);
	int ret;

458 459 460 461 462 463 464
	queue->device = nvme_rdma_find_get_device(queue->cm_id);
	if (!queue->device) {
		dev_err(queue->cm_id->device->dev.parent,
			"no client data found!\n");
		return -ECONNREFUSED;
	}
	ibdev = queue->device->dev;
465 466 467 468 469 470 471 472 473 474 475 476

	/*
	 * The admin queue is barely used once the controller is live, so don't
	 * bother to spread it out.
	 */
	if (idx == 0)
		comp_vector = 0;
	else
		comp_vector = idx % ibdev->num_comp_vectors;


	/* +1 for ib_stop_cq */
477 478 479
	queue->ib_cq = ib_alloc_cq(ibdev, queue,
				cq_factor * queue->queue_size + 1,
				comp_vector, IB_POLL_SOFTIRQ);
480 481
	if (IS_ERR(queue->ib_cq)) {
		ret = PTR_ERR(queue->ib_cq);
482
		goto out_put_dev;
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	}

	ret = nvme_rdma_create_qp(queue, send_wr_factor);
	if (ret)
		goto out_destroy_ib_cq;

	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
	if (!queue->rsp_ring) {
		ret = -ENOMEM;
		goto out_destroy_qp;
	}

	return 0;

out_destroy_qp:
	ib_destroy_qp(queue->qp);
out_destroy_ib_cq:
	ib_free_cq(queue->ib_cq);
502 503
out_put_dev:
	nvme_rdma_dev_put(queue->device);
504 505 506 507 508 509 510
	return ret;
}

static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
		int idx, size_t queue_size)
{
	struct nvme_rdma_queue *queue;
511
	struct sockaddr *src_addr = NULL;
512 513 514 515 516 517 518 519 520 521 522 523
	int ret;

	queue = &ctrl->queues[idx];
	queue->ctrl = ctrl;
	init_completion(&queue->cm_done);

	if (idx > 0)
		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
	else
		queue->cmnd_capsule_len = sizeof(struct nvme_command);

	queue->queue_size = queue_size;
524
	atomic_set(&queue->sig_count, 0);
525 526 527 528 529 530 531 532 533

	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
			RDMA_PS_TCP, IB_QPT_RC);
	if (IS_ERR(queue->cm_id)) {
		dev_info(ctrl->ctrl.device,
			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
		return PTR_ERR(queue->cm_id);
	}

534
	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
535
		src_addr = (struct sockaddr *)&ctrl->src_addr;
536

537 538 539
	queue->cm_error = -ETIMEDOUT;
	ret = rdma_resolve_addr(queue->cm_id, src_addr,
			(struct sockaddr *)&ctrl->addr,
540 541 542 543 544 545 546 547 548 549 550 551 552 553
			NVME_RDMA_CONNECT_TIMEOUT_MS);
	if (ret) {
		dev_info(ctrl->ctrl.device,
			"rdma_resolve_addr failed (%d).\n", ret);
		goto out_destroy_cm_id;
	}

	ret = nvme_rdma_wait_for_cm(queue);
	if (ret) {
		dev_info(ctrl->ctrl.device,
			"rdma_resolve_addr wait failed (%d).\n", ret);
		goto out_destroy_cm_id;
	}

554
	clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
555 556 557 558 559 560 561 562 563 564

	return 0;

out_destroy_cm_id:
	rdma_destroy_id(queue->cm_id);
	return ret;
}

static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
{
565 566 567
	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
		return;

568 569 570 571 572 573
	rdma_disconnect(queue->cm_id);
	ib_drain_qp(queue->qp);
}

static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
{
574 575 576
	if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
		return;

577 578 579 580
	nvme_rdma_destroy_queue_ib(queue);
	rdma_destroy_id(queue->cm_id);
}

581
static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
582
{
583 584 585 586
	int i;

	for (i = 1; i < ctrl->ctrl.queue_count; i++)
		nvme_rdma_free_queue(&ctrl->queues[i]);
587 588
}

589
static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
590 591 592
{
	int i;

593
	for (i = 1; i < ctrl->ctrl.queue_count; i++)
594
		nvme_rdma_stop_queue(&ctrl->queues[i]);
595 596 597 598 599 600
}

static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
{
	int i, ret = 0;

601
	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
602
		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
603 604 605
		if (ret) {
			dev_info(ctrl->ctrl.device,
				"failed to connect i/o queue: %d\n", ret);
606
			goto out_stop_queues;
607
		}
608
		set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
609 610
	}

611 612
	return 0;

613 614
out_stop_queues:
	nvme_rdma_stop_io_queues(ctrl);
615 616 617 618 619
	return ret;
}

static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
{
620 621
	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
	unsigned int nr_io_queues;
622 623
	int i, ret;

624 625 626 627 628
	nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
	if (ret)
		return ret;

629 630
	ctrl->ctrl.queue_count = nr_io_queues + 1;
	if (ctrl->ctrl.queue_count < 2)
631 632 633 634 635
		return 0;

	dev_info(ctrl->ctrl.device,
		"creating %d I/O queues.\n", nr_io_queues);

636
	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
637 638
		ret = nvme_rdma_init_queue(ctrl, i,
					   ctrl->ctrl.opts->queue_size);
639 640 641 642 643 644 645 646 647 648
		if (ret) {
			dev_info(ctrl->ctrl.device,
				"failed to initialize i/o queue: %d\n", ret);
			goto out_free_queues;
		}
	}

	return 0;

out_free_queues:
649
	for (i--; i >= 1; i--)
650
		nvme_rdma_free_queue(&ctrl->queues[i]);
651 652 653 654

	return ret;
}

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, bool admin)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
	struct blk_mq_tag_set *set = admin ?
			&ctrl->admin_tag_set : &ctrl->tag_set;

	blk_mq_free_tag_set(set);
	nvme_rdma_dev_put(ctrl->device);
}

static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
		bool admin)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
	struct blk_mq_tag_set *set;
	int ret;

	if (admin) {
		set = &ctrl->admin_tag_set;
		memset(set, 0, sizeof(*set));
		set->ops = &nvme_rdma_admin_mq_ops;
		set->queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
		set->reserved_tags = 2; /* connect + keep-alive */
		set->numa_node = NUMA_NO_NODE;
		set->cmd_size = sizeof(struct nvme_rdma_request) +
			SG_CHUNK_SIZE * sizeof(struct scatterlist);
		set->driver_data = ctrl;
		set->nr_hw_queues = 1;
		set->timeout = ADMIN_TIMEOUT;
	} else {
		set = &ctrl->tag_set;
		memset(set, 0, sizeof(*set));
		set->ops = &nvme_rdma_mq_ops;
		set->queue_depth = nctrl->opts->queue_size;
		set->reserved_tags = 1; /* fabric connect */
		set->numa_node = NUMA_NO_NODE;
		set->flags = BLK_MQ_F_SHOULD_MERGE;
		set->cmd_size = sizeof(struct nvme_rdma_request) +
			SG_CHUNK_SIZE * sizeof(struct scatterlist);
		set->driver_data = ctrl;
		set->nr_hw_queues = nctrl->queue_count - 1;
		set->timeout = NVME_IO_TIMEOUT;
	}

	ret = blk_mq_alloc_tag_set(set);
	if (ret)
		goto out;

	/*
	 * We need a reference on the device as long as the tag_set is alive,
	 * as the MRs in the request structures need a valid ib_device.
	 */
	ret = nvme_rdma_dev_get(ctrl->device);
	if (!ret) {
		ret = -EINVAL;
		goto out_free_tagset;
	}

	return set;

out_free_tagset:
	blk_mq_free_tag_set(set);
out:
	return ERR_PTR(ret);
}

721 722
static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
		bool remove)
723 724 725
{
	nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
			sizeof(struct nvme_command), DMA_TO_DEVICE);
726
	nvme_rdma_stop_queue(&ctrl->queues[0]);
727 728 729 730
	if (remove) {
		blk_cleanup_queue(ctrl->ctrl.admin_q);
		nvme_rdma_free_tagset(&ctrl->ctrl, true);
	}
731
	nvme_rdma_free_queue(&ctrl->queues[0]);
732 733
}

734 735
static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
		bool new)
736 737 738 739 740 741 742 743 744 745 746 747
{
	int error;

	error = nvme_rdma_init_queue(ctrl, 0, NVME_AQ_DEPTH);
	if (error)
		return error;

	ctrl->device = ctrl->queues[0].device;

	ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
		ctrl->device->dev->attrs.max_fast_reg_page_list_len);

748 749 750 751
	if (new) {
		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
		if (IS_ERR(ctrl->ctrl.admin_tagset))
			goto out_free_queue;
752

753 754 755 756 757 758 759 760 761 762
		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
		if (IS_ERR(ctrl->ctrl.admin_q)) {
			error = PTR_ERR(ctrl->ctrl.admin_q);
			goto out_free_tagset;
		}
	} else {
		error = blk_mq_reinit_tagset(&ctrl->admin_tag_set,
					     nvme_rdma_reinit_request);
		if (error)
			goto out_free_queue;
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	}

	error = nvmf_connect_admin_queue(&ctrl->ctrl);
	if (error)
		goto out_cleanup_queue;

	set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);

	error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP,
			&ctrl->ctrl.cap);
	if (error) {
		dev_err(ctrl->ctrl.device,
			"prop_get NVME_REG_CAP failed\n");
		goto out_cleanup_queue;
	}

	ctrl->ctrl.sqsize =
		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);

	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
	if (error)
		goto out_cleanup_queue;

	ctrl->ctrl.max_hw_sectors =
		(ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);

	error = nvme_init_identify(&ctrl->ctrl);
	if (error)
		goto out_cleanup_queue;

	error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
			&ctrl->async_event_sqe, sizeof(struct nvme_command),
			DMA_TO_DEVICE);
	if (error)
		goto out_cleanup_queue;

	return 0;

out_cleanup_queue:
802 803
	if (new)
		blk_cleanup_queue(ctrl->ctrl.admin_q);
804
out_free_tagset:
805 806
	if (new)
		nvme_rdma_free_tagset(&ctrl->ctrl, true);
807 808 809 810 811
out_free_queue:
	nvme_rdma_free_queue(&ctrl->queues[0]);
	return error;
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
		bool remove)
{
	nvme_rdma_stop_io_queues(ctrl);
	if (remove) {
		blk_cleanup_queue(ctrl->ctrl.connect_q);
		nvme_rdma_free_tagset(&ctrl->ctrl, false);
	}
	nvme_rdma_free_io_queues(ctrl);
}

static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
{
	int ret;

	ret = nvme_rdma_init_io_queues(ctrl);
	if (ret)
		return ret;

	if (new) {
		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
		if (IS_ERR(ctrl->ctrl.tagset))
			goto out_free_io_queues;

		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
		if (IS_ERR(ctrl->ctrl.connect_q)) {
			ret = PTR_ERR(ctrl->ctrl.connect_q);
			goto out_free_tag_set;
		}
	} else {
		ret = blk_mq_reinit_tagset(&ctrl->tag_set,
					   nvme_rdma_reinit_request);
		if (ret)
			goto out_free_io_queues;

		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
			ctrl->ctrl.queue_count - 1);
	}

	ret = nvme_rdma_connect_io_queues(ctrl);
	if (ret)
		goto out_cleanup_connect_q;

	return 0;

out_cleanup_connect_q:
	if (new)
		blk_cleanup_queue(ctrl->ctrl.connect_q);
out_free_tag_set:
	if (new)
		nvme_rdma_free_tagset(&ctrl->ctrl, false);
out_free_io_queues:
	nvme_rdma_free_io_queues(ctrl);
	return ret;
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);

	if (list_empty(&ctrl->list))
		goto free_ctrl;

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_del(&ctrl->list);
	mutex_unlock(&nvme_rdma_ctrl_mutex);

	kfree(ctrl->queues);
	nvmf_free_options(nctrl->opts);
free_ctrl:
	kfree(ctrl);
}

S
Sagi Grimberg 已提交
885 886 887 888 889 890 891 892 893 894 895 896
static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
{
	/* If we are resetting/deleting then do nothing */
	if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
			ctrl->ctrl.state == NVME_CTRL_LIVE);
		return;
	}

	if (nvmf_should_reconnect(&ctrl->ctrl)) {
		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
			ctrl->ctrl.opts->reconnect_delay);
897
		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
S
Sagi Grimberg 已提交
898 899 900
				ctrl->ctrl.opts->reconnect_delay * HZ);
	} else {
		dev_info(ctrl->ctrl.device, "Removing controller...\n");
901
		queue_work(nvme_wq, &ctrl->delete_work);
S
Sagi Grimberg 已提交
902 903 904
	}
}

905 906 907 908 909 910 911
static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvme_rdma_ctrl, reconnect_work);
	bool changed;
	int ret;

912
	++ctrl->ctrl.nr_reconnects;
S
Sagi Grimberg 已提交
913

914 915
	if (ctrl->ctrl.queue_count > 1)
		nvme_rdma_destroy_io_queues(ctrl, false);
916

917 918
	nvme_rdma_destroy_admin_queue(ctrl, false);
	ret = nvme_rdma_configure_admin_queue(ctrl, false);
919
	if (ret)
920
		goto requeue;
921

922
	if (ctrl->ctrl.queue_count > 1) {
923
		ret = nvme_rdma_configure_io_queues(ctrl, false);
924
		if (ret)
925
			goto requeue;
926 927 928 929
	}

	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
	WARN_ON_ONCE(!changed);
930
	ctrl->ctrl.nr_reconnects = 0;
931

932
	nvme_start_ctrl(&ctrl->ctrl);
933 934 935 936 937 938

	dev_info(ctrl->ctrl.device, "Successfully reconnected\n");

	return;

requeue:
S
Sagi Grimberg 已提交
939
	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
940
			ctrl->ctrl.nr_reconnects);
S
Sagi Grimberg 已提交
941
	nvme_rdma_reconnect_or_remove(ctrl);
942 943 944 945 946 947
}

static void nvme_rdma_error_recovery_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(work,
			struct nvme_rdma_ctrl, err_work);
948
	int i;
949

950
	nvme_stop_ctrl(&ctrl->ctrl);
951

952
	for (i = 0; i < ctrl->ctrl.queue_count; i++)
953
		clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
954

955
	if (ctrl->ctrl.queue_count > 1)
956
		nvme_stop_queues(&ctrl->ctrl);
957
	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
958 959

	/* We must take care of fastfail/requeue all our inflight requests */
960
	if (ctrl->ctrl.queue_count > 1)
961 962 963 964 965
		blk_mq_tagset_busy_iter(&ctrl->tag_set,
					nvme_cancel_request, &ctrl->ctrl);
	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
				nvme_cancel_request, &ctrl->ctrl);

966 967 968 969
	/*
	 * queues are not a live anymore, so restart the queues to fail fast
	 * new IO
	 */
970
	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
971 972
	nvme_start_queues(&ctrl->ctrl);

S
Sagi Grimberg 已提交
973
	nvme_rdma_reconnect_or_remove(ctrl);
974 975 976 977 978 979 980
}

static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
{
	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
		return;

981
	queue_work(nvme_wq, &ctrl->err_work);
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
}

static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
		const char *op)
{
	struct nvme_rdma_queue *queue = cq->cq_context;
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;

	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
		dev_info(ctrl->ctrl.device,
			     "%s for CQE 0x%p failed with status %s (%d)\n",
			     op, wc->wr_cqe,
			     ib_wc_status_msg(wc->status), wc->status);
	nvme_rdma_error_recovery(ctrl);
}

static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "MEMREG");
}

static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
}

static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req)
{
	struct ib_send_wr *bad_wr;
	struct ib_send_wr wr = {
		.opcode		    = IB_WR_LOCAL_INV,
		.next		    = NULL,
		.num_sge	    = 0,
		.send_flags	    = 0,
		.ex.invalidate_rkey = req->mr->rkey,
	};

	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
	wr.wr_cqe = &req->reg_cqe;

	return ib_post_send(queue->qp, &wr, &bad_wr);
}

static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
		struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;
	int res;

	if (!blk_rq_bytes(rq))
		return;

1040
	if (req->mr->need_inval) {
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		res = nvme_rdma_inv_rkey(queue, req);
		if (res < 0) {
			dev_err(ctrl->ctrl.device,
				"Queueing INV WR for rkey %#x failed (%d)\n",
				req->mr->rkey, res);
			nvme_rdma_error_recovery(queue->ctrl);
		}
	}

	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
			req->nents, rq_data_dir(rq) ==
				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);

	nvme_cleanup_cmd(rq);
	sg_free_table_chained(&req->sg_table, true);
}

static int nvme_rdma_set_sg_null(struct nvme_command *c)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;

	sg->addr = 0;
	put_unaligned_le24(0, sg->length);
	put_unaligned_le32(0, sg->key);
	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
	return 0;
}

static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c)
{
	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;

	req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
	req->sge[1].length = sg_dma_len(req->sg_table.sgl);
	req->sge[1].lkey = queue->device->pd->local_dma_lkey;

	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
	sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;

	req->inline_data = true;
	req->num_sge++;
	return 0;
}

static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;

	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1094
	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
	return 0;
}

static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
		struct nvme_rdma_request *req, struct nvme_command *c,
		int count)
{
	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
	int nr;

	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
	if (nr < count) {
		if (nr < 0)
			return nr;
		return -EINVAL;
	}

	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));

	req->reg_cqe.done = nvme_rdma_memreg_done;
	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
	req->reg_wr.wr.opcode = IB_WR_REG_MR;
	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
	req->reg_wr.wr.num_sge = 0;
	req->reg_wr.mr = req->mr;
	req->reg_wr.key = req->mr->rkey;
	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
			     IB_ACCESS_REMOTE_READ |
			     IB_ACCESS_REMOTE_WRITE;

1126
	req->mr->need_inval = true;
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

	sg->addr = cpu_to_le64(req->mr->iova);
	put_unaligned_le24(req->mr->length, sg->length);
	put_unaligned_le32(req->mr->rkey, sg->key);
	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
			NVME_SGL_FMT_INVALIDATE;

	return 0;
}

static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1138
		struct request *rq, struct nvme_command *c)
1139 1140 1141 1142
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_device *dev = queue->device;
	struct ib_device *ibdev = dev->dev;
1143
	int count, ret;
1144 1145 1146

	req->num_sge = 1;
	req->inline_data = false;
1147
	req->mr->need_inval = false;
1148 1149 1150 1151 1152 1153 1154

	c->common.flags |= NVME_CMD_SGL_METABUF;

	if (!blk_rq_bytes(rq))
		return nvme_rdma_set_sg_null(c);

	req->sg_table.sgl = req->first_sgl;
1155 1156
	ret = sg_alloc_table_chained(&req->sg_table,
			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1157 1158 1159
	if (ret)
		return -ENOMEM;

1160
	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1161

1162
	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1163 1164 1165 1166 1167 1168 1169
		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
	if (unlikely(count <= 0)) {
		sg_free_table_chained(&req->sg_table, true);
		return -EIO;
	}

	if (count == 1) {
1170 1171 1172
		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
		    blk_rq_payload_bytes(rq) <=
				nvme_rdma_inline_data_size(queue))
1173 1174
			return nvme_rdma_map_sg_inline(queue, req, c);

1175
		if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
			return nvme_rdma_map_sg_single(queue, req, c);
	}

	return nvme_rdma_map_sg_fr(queue, req, c, count);
}

static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
{
	if (unlikely(wc->status != IB_WC_SUCCESS))
		nvme_rdma_wr_error(cq, wc, "SEND");
}

1188 1189 1190 1191 1192 1193
/*
 * We want to signal completion at least every queue depth/2.  This returns the
 * largest power of two that is not above half of (queue size + 1) to optimize
 * (avoid divisions).
 */
static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue)
1194
{
1195
	int limit = 1 << ilog2((queue->queue_size + 1) / 2);
1196

1197
	return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0;
1198 1199
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
		struct ib_send_wr *first, bool flush)
{
	struct ib_send_wr wr, *bad_wr;
	int ret;

	sge->addr   = qe->dma;
	sge->length = sizeof(struct nvme_command),
	sge->lkey   = queue->device->pd->local_dma_lkey;

	qe->cqe.done = nvme_rdma_send_done;

	wr.next       = NULL;
	wr.wr_cqe     = &qe->cqe;
	wr.sg_list    = sge;
	wr.num_sge    = num_sge;
	wr.opcode     = IB_WR_SEND;
	wr.send_flags = 0;

	/*
	 * Unsignalled send completions are another giant desaster in the
	 * IB Verbs spec:  If we don't regularly post signalled sends
	 * the send queue will fill up and only a QP reset will rescue us.
	 * Would have been way to obvious to handle this in hardware or
	 * at least the RDMA stack..
	 *
	 * Always signal the flushes. The magic request used for the flush
	 * sequencer is not allocated in our driver's tagset and it's
	 * triggered to be freed by blk_cleanup_queue(). So we need to
	 * always mark it as signaled to ensure that the "wr_cqe", which is
1231
	 * embedded in request's payload, is not freed when __ib_process_cq()
1232 1233
	 * calls wr_cqe->done().
	 */
1234
	if (nvme_rdma_queue_sig_limit(queue) || flush)
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
		wr.send_flags |= IB_SEND_SIGNALED;

	if (first)
		first->next = &wr;
	else
		first = &wr;

	ret = ib_post_send(queue->qp, first, &bad_wr);
	if (ret) {
		dev_err(queue->ctrl->ctrl.device,
			     "%s failed with error code %d\n", __func__, ret);
	}
	return ret;
}

static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
		struct nvme_rdma_qe *qe)
{
	struct ib_recv_wr wr, *bad_wr;
	struct ib_sge list;
	int ret;

	list.addr   = qe->dma;
	list.length = sizeof(struct nvme_completion);
	list.lkey   = queue->device->pd->local_dma_lkey;

	qe->cqe.done = nvme_rdma_recv_done;

	wr.next     = NULL;
	wr.wr_cqe   = &qe->cqe;
	wr.sg_list  = &list;
	wr.num_sge  = 1;

	ret = ib_post_recv(queue->qp, &wr, &bad_wr);
	if (ret) {
		dev_err(queue->ctrl->ctrl.device,
			"%s failed with error code %d\n", __func__, ret);
	}
	return ret;
}

static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
{
	u32 queue_idx = nvme_rdma_queue_idx(queue);

	if (queue_idx == 0)
		return queue->ctrl->admin_tag_set.tags[queue_idx];
	return queue->ctrl->tag_set.tags[queue_idx - 1];
}

static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
	struct nvme_rdma_queue *queue = &ctrl->queues[0];
	struct ib_device *dev = queue->device->dev;
	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
	struct nvme_command *cmd = sqe->data;
	struct ib_sge sge;
	int ret;

	if (WARN_ON_ONCE(aer_idx != 0))
		return;

	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);

	memset(cmd, 0, sizeof(*cmd));
	cmd->common.opcode = nvme_admin_async_event;
	cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
	cmd->common.flags |= NVME_CMD_SGL_METABUF;
	nvme_rdma_set_sg_null(cmd);

	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
			DMA_TO_DEVICE);

	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
	WARN_ON_ONCE(ret);
}

static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
{
	struct request *rq;
	struct nvme_rdma_request *req;
	int ret = 0;

	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
	if (!rq) {
		dev_err(queue->ctrl->ctrl.device,
			"tag 0x%x on QP %#x not found\n",
			cqe->command_id, queue->qp->qp_num);
		nvme_rdma_error_recovery(queue->ctrl);
		return ret;
	}
	req = blk_mq_rq_to_pdu(rq);

	if (rq->tag == tag)
		ret = 1;

	if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
	    wc->ex.invalidate_rkey == req->mr->rkey)
1335
		req->mr->need_inval = false;
1336

1337
	nvme_end_request(rq, cqe->status, cqe->result);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	return ret;
}

static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
{
	struct nvme_rdma_qe *qe =
		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
	struct nvme_rdma_queue *queue = cq->cq_context;
	struct ib_device *ibdev = queue->device->dev;
	struct nvme_completion *cqe = qe->data;
	const size_t len = sizeof(struct nvme_completion);
	int ret = 0;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		nvme_rdma_wr_error(cq, wc, "RECV");
		return 0;
	}

	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
	/*
	 * AEN requests are special as they don't time out and can
	 * survive any kind of queue freeze and often don't respond to
	 * aborts.  We don't even bother to allocate a struct request
	 * for them but rather special case them here.
	 */
	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
			cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1365 1366
		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
				&cqe->result);
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	else
		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);

	nvme_rdma_post_recv(queue, qe);
	return ret;
}

static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
{
	__nvme_rdma_recv_done(cq, wc, -1);
}

static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
{
	int ret, i;

	for (i = 0; i < queue->queue_size; i++) {
		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
		if (ret)
			goto out_destroy_queue_ib;
	}

	return 0;

out_destroy_queue_ib:
	nvme_rdma_destroy_queue_ib(queue);
	return ret;
}

static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
		struct rdma_cm_event *ev)
{
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
	struct rdma_cm_id *cm_id = queue->cm_id;
	int status = ev->status;
	const char *rej_msg;
	const struct nvme_rdma_cm_rej *rej_data;
	u8 rej_data_len;

	rej_msg = rdma_reject_msg(cm_id, status);
	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);

	if (rej_data && rej_data_len >= sizeof(u16)) {
		u16 sts = le16_to_cpu(rej_data->sts);
1411 1412

		dev_err(queue->ctrl->ctrl.device,
1413 1414
		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1415 1416
	} else {
		dev_err(queue->ctrl->ctrl.device,
1417
			"Connect rejected: status %d (%s).\n", status, rej_msg);
1418 1419 1420 1421 1422 1423 1424 1425 1426
	}

	return -ECONNRESET;
}

static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
{
	int ret;

1427 1428 1429
	ret = nvme_rdma_create_queue_ib(queue);
	if (ret)
		return ret;
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
	if (ret) {
		dev_err(queue->ctrl->ctrl.device,
			"rdma_resolve_route failed (%d).\n",
			queue->cm_error);
		goto out_destroy_queue;
	}

	return 0;

out_destroy_queue:
	nvme_rdma_destroy_queue_ib(queue);
	return ret;
}

static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
{
	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
	struct rdma_conn_param param = { };
1450
	struct nvme_rdma_cm_req priv = { };
1451 1452 1453 1454 1455 1456
	int ret;

	param.qp_num = queue->qp->qp_num;
	param.flow_control = 1;

	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1457 1458
	/* maximum retry count */
	param.retry_count = 7;
1459 1460 1461 1462 1463 1464
	param.rnr_retry_count = 7;
	param.private_data = &priv;
	param.private_data_len = sizeof(priv);

	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1465 1466 1467 1468 1469
	/*
	 * set the admin queue depth to the minimum size
	 * specified by the Fabrics standard.
	 */
	if (priv.qid == 0) {
1470 1471
		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1472
	} else {
1473 1474 1475 1476 1477
		/*
		 * current interpretation of the fabrics spec
		 * is at minimum you make hrqsize sqsize+1, or a
		 * 1's based representation of sqsize.
		 */
1478
		priv.hrqsize = cpu_to_le16(queue->queue_size);
1479
		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1480
	}
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

	ret = rdma_connect(queue->cm_id, &param);
	if (ret) {
		dev_err(ctrl->ctrl.device,
			"rdma_connect failed (%d).\n", ret);
		goto out_destroy_queue_ib;
	}

	return 0;

out_destroy_queue_ib:
	nvme_rdma_destroy_queue_ib(queue);
	return ret;
}

static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *ev)
{
	struct nvme_rdma_queue *queue = cm_id->context;
	int cm_error = 0;

	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
		rdma_event_msg(ev->event), ev->event,
		ev->status, cm_id);

	switch (ev->event) {
	case RDMA_CM_EVENT_ADDR_RESOLVED:
		cm_error = nvme_rdma_addr_resolved(queue);
		break;
	case RDMA_CM_EVENT_ROUTE_RESOLVED:
		cm_error = nvme_rdma_route_resolved(queue);
		break;
	case RDMA_CM_EVENT_ESTABLISHED:
		queue->cm_error = nvme_rdma_conn_established(queue);
		/* complete cm_done regardless of success/failure */
		complete(&queue->cm_done);
		return 0;
	case RDMA_CM_EVENT_REJECTED:
1519
		nvme_rdma_destroy_queue_ib(queue);
1520 1521 1522 1523 1524
		cm_error = nvme_rdma_conn_rejected(queue, ev);
		break;
	case RDMA_CM_EVENT_ROUTE_ERROR:
	case RDMA_CM_EVENT_CONNECT_ERROR:
	case RDMA_CM_EVENT_UNREACHABLE:
1525 1526
		nvme_rdma_destroy_queue_ib(queue);
	case RDMA_CM_EVENT_ADDR_ERROR:
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
		dev_dbg(queue->ctrl->ctrl.device,
			"CM error event %d\n", ev->event);
		cm_error = -ECONNRESET;
		break;
	case RDMA_CM_EVENT_DISCONNECTED:
	case RDMA_CM_EVENT_ADDR_CHANGE:
	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
		dev_dbg(queue->ctrl->ctrl.device,
			"disconnect received - connection closed\n");
		nvme_rdma_error_recovery(queue->ctrl);
		break;
	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1539 1540
		/* device removal is handled via the ib_client API */
		break;
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	default:
		dev_err(queue->ctrl->ctrl.device,
			"Unexpected RDMA CM event (%d)\n", ev->event);
		nvme_rdma_error_recovery(queue->ctrl);
		break;
	}

	if (cm_error) {
		queue->cm_error = cm_error;
		complete(&queue->cm_done);
	}

	return 0;
}

static enum blk_eh_timer_return
nvme_rdma_timeout(struct request *rq, bool reserved)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);

	/* queue error recovery */
	nvme_rdma_error_recovery(req->queue->ctrl);

	/* fail with DNR on cmd timeout */
1565
	nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1566 1567 1568 1569

	return BLK_EH_HANDLED;
}

1570 1571 1572
/*
 * We cannot accept any other command until the Connect command has completed.
 */
C
Christoph Hellwig 已提交
1573 1574
static inline blk_status_t
nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1575 1576
{
	if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1577
		struct nvme_command *cmd = nvme_req(rq)->cmd;
1578

1579
		if (!blk_rq_is_passthrough(rq) ||
1580
		    cmd->common.opcode != nvme_fabrics_command ||
1581 1582 1583 1584 1585 1586 1587 1588 1589
		    cmd->fabrics.fctype != nvme_fabrics_type_connect) {
			/*
			 * reconnecting state means transport disruption, which
			 * can take a long time and even might fail permanently,
			 * so we can't let incoming I/O be requeued forever.
			 * fail it fast to allow upper layers a chance to
			 * failover.
			 */
			if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING)
C
Christoph Hellwig 已提交
1590 1591
				return BLK_STS_IOERR;
			return BLK_STS_RESOURCE; /* try again later */
1592
		}
1593 1594
	}

1595
	return 0;
1596 1597
}

1598
static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
		const struct blk_mq_queue_data *bd)
{
	struct nvme_ns *ns = hctx->queue->queuedata;
	struct nvme_rdma_queue *queue = hctx->driver_data;
	struct request *rq = bd->rq;
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
	struct nvme_rdma_qe *sqe = &req->sqe;
	struct nvme_command *c = sqe->data;
	bool flush = false;
	struct ib_device *dev;
1609 1610
	blk_status_t ret;
	int err;
1611 1612 1613

	WARN_ON_ONCE(rq->tag < 0);

1614 1615
	ret = nvme_rdma_queue_is_ready(queue, rq);
	if (unlikely(ret))
C
Christoph Hellwig 已提交
1616
		return ret;
1617

1618 1619 1620 1621 1622
	dev = queue->device->dev;
	ib_dma_sync_single_for_cpu(dev, sqe->dma,
			sizeof(struct nvme_command), DMA_TO_DEVICE);

	ret = nvme_setup_cmd(ns, rq, c);
1623
	if (ret)
1624 1625 1626 1627
		return ret;

	blk_mq_start_request(rq);

1628 1629
	err = nvme_rdma_map_data(queue, rq, c);
	if (err < 0) {
1630
		dev_err(queue->ctrl->ctrl.device,
1631
			     "Failed to map data (%d)\n", err);
1632 1633 1634 1635 1636 1637 1638
		nvme_cleanup_cmd(rq);
		goto err;
	}

	ib_dma_sync_single_for_device(dev, sqe->dma,
			sizeof(struct nvme_command), DMA_TO_DEVICE);

1639
	if (req_op(rq) == REQ_OP_FLUSH)
1640
		flush = true;
1641
	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1642
			req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1643
	if (err) {
1644 1645 1646 1647
		nvme_rdma_unmap_data(queue, rq);
		goto err;
	}

1648
	return BLK_STS_OK;
1649
err:
1650 1651 1652
	if (err == -ENOMEM || err == -EAGAIN)
		return BLK_STS_RESOURCE;
	return BLK_STS_IOERR;
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
}

static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
{
	struct nvme_rdma_queue *queue = hctx->driver_data;
	struct ib_cq *cq = queue->ib_cq;
	struct ib_wc wc;
	int found = 0;

	while (ib_poll_cq(cq, 1, &wc) > 0) {
		struct ib_cqe *cqe = wc.wr_cqe;

		if (cqe) {
			if (cqe->done == nvme_rdma_recv_done)
				found |= __nvme_rdma_recv_done(cq, &wc, tag);
			else
				cqe->done(cq, &wc);
		}
	}

	return found;
}

static void nvme_rdma_complete_rq(struct request *rq)
{
	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);

1680 1681
	nvme_rdma_unmap_data(req->queue, rq);
	nvme_complete_rq(rq);
1682 1683
}

1684
static const struct blk_mq_ops nvme_rdma_mq_ops = {
1685 1686 1687 1688 1689 1690 1691 1692 1693
	.queue_rq	= nvme_rdma_queue_rq,
	.complete	= nvme_rdma_complete_rq,
	.init_request	= nvme_rdma_init_request,
	.exit_request	= nvme_rdma_exit_request,
	.init_hctx	= nvme_rdma_init_hctx,
	.poll		= nvme_rdma_poll,
	.timeout	= nvme_rdma_timeout,
};

1694
static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1695 1696
	.queue_rq	= nvme_rdma_queue_rq,
	.complete	= nvme_rdma_complete_rq,
1697 1698
	.init_request	= nvme_rdma_init_request,
	.exit_request	= nvme_rdma_exit_request,
1699 1700 1701 1702
	.init_hctx	= nvme_rdma_init_admin_hctx,
	.timeout	= nvme_rdma_timeout,
};

1703
static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1704 1705 1706 1707
{
	cancel_work_sync(&ctrl->err_work);
	cancel_delayed_work_sync(&ctrl->reconnect_work);

1708
	if (ctrl->ctrl.queue_count > 1) {
1709 1710 1711
		nvme_stop_queues(&ctrl->ctrl);
		blk_mq_tagset_busy_iter(&ctrl->tag_set,
					nvme_cancel_request, &ctrl->ctrl);
1712
		nvme_rdma_destroy_io_queues(ctrl, shutdown);
1713 1714
	}

1715
	if (shutdown)
1716
		nvme_shutdown_ctrl(&ctrl->ctrl);
1717 1718
	else
		nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1719

1720
	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1721 1722
	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
				nvme_cancel_request, &ctrl->ctrl);
1723
	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1724
	nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1725 1726
}

1727 1728
static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
{
1729 1730
	nvme_stop_ctrl(&ctrl->ctrl);
	nvme_remove_namespaces(&ctrl->ctrl);
1731
	if (shutdown)
1732
		nvme_rdma_shutdown_ctrl(ctrl, shutdown);
1733

1734
	nvme_uninit_ctrl(&ctrl->ctrl);
1735 1736 1737
	nvme_put_ctrl(&ctrl->ctrl);
}

1738 1739 1740 1741 1742
static void nvme_rdma_del_ctrl_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(work,
				struct nvme_rdma_ctrl, delete_work);

1743
	__nvme_rdma_remove_ctrl(ctrl, true);
1744 1745 1746 1747 1748 1749 1750
}

static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
{
	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
		return -EBUSY;

1751
	if (!queue_work(nvme_wq, &ctrl->delete_work))
1752 1753 1754 1755 1756 1757 1758 1759
		return -EBUSY;

	return 0;
}

static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
{
	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1760
	int ret = 0;
1761

1762 1763 1764 1765 1766 1767
	/*
	 * Keep a reference until all work is flushed since
	 * __nvme_rdma_del_ctrl can free the ctrl mem
	 */
	if (!kref_get_unless_zero(&ctrl->ctrl.kref))
		return -EBUSY;
1768
	ret = __nvme_rdma_del_ctrl(ctrl);
1769 1770 1771 1772
	if (!ret)
		flush_work(&ctrl->delete_work);
	nvme_put_ctrl(&ctrl->ctrl);
	return ret;
1773 1774 1775 1776 1777 1778 1779
}

static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
{
	struct nvme_rdma_ctrl *ctrl = container_of(work,
				struct nvme_rdma_ctrl, delete_work);

1780
	__nvme_rdma_remove_ctrl(ctrl, false);
1781 1782 1783 1784
}

static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
{
1785 1786
	struct nvme_rdma_ctrl *ctrl =
		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1787 1788 1789
	int ret;
	bool changed;

1790
	nvme_stop_ctrl(&ctrl->ctrl);
1791
	nvme_rdma_shutdown_ctrl(ctrl, false);
1792

1793
	ret = nvme_rdma_configure_admin_queue(ctrl, false);
1794 1795 1796 1797 1798 1799
	if (ret) {
		/* ctrl is already shutdown, just remove the ctrl */
		INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
		goto del_dead_ctrl;
	}

1800
	if (ctrl->ctrl.queue_count > 1) {
1801
		ret = nvme_rdma_configure_io_queues(ctrl, false);
1802 1803 1804 1805 1806 1807 1808
		if (ret)
			goto del_dead_ctrl;
	}

	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
	WARN_ON_ONCE(!changed);

1809
	nvme_start_ctrl(&ctrl->ctrl);
1810 1811 1812 1813 1814 1815

	return;

del_dead_ctrl:
	/* Deleting this dead controller... */
	dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1816
	WARN_ON(!queue_work(nvme_wq, &ctrl->delete_work));
1817 1818 1819 1820 1821
}

static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
	.name			= "rdma",
	.module			= THIS_MODULE,
1822
	.flags			= NVME_F_FABRICS,
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	.reg_read32		= nvmf_reg_read32,
	.reg_read64		= nvmf_reg_read64,
	.reg_write32		= nvmf_reg_write32,
	.free_ctrl		= nvme_rdma_free_ctrl,
	.submit_async_event	= nvme_rdma_submit_async_event,
	.delete_ctrl		= nvme_rdma_del_ctrl,
	.get_address		= nvmf_get_address,
};

static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
		struct nvmf_ctrl_options *opts)
{
	struct nvme_rdma_ctrl *ctrl;
	int ret;
	bool changed;
1838
	char *port;
1839 1840 1841 1842 1843 1844 1845

	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
	if (!ctrl)
		return ERR_PTR(-ENOMEM);
	ctrl->ctrl.opts = opts;
	INIT_LIST_HEAD(&ctrl->list);

1846 1847 1848 1849 1850 1851 1852
	if (opts->mask & NVMF_OPT_TRSVCID)
		port = opts->trsvcid;
	else
		port = __stringify(NVME_RDMA_IP_PORT);

	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
			opts->traddr, port, &ctrl->addr);
1853
	if (ret) {
1854
		pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1855 1856 1857
		goto out_free_ctrl;
	}

1858
	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1859 1860
		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
			opts->host_traddr, NULL, &ctrl->src_addr);
1861
		if (ret) {
1862
			pr_err("malformed src address passed: %s\n",
1863 1864 1865 1866 1867
			       opts->host_traddr);
			goto out_free_ctrl;
		}
	}

1868 1869 1870 1871 1872 1873 1874 1875 1876
	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
				0 /* no quirks, we're perfect! */);
	if (ret)
		goto out_free_ctrl;

	INIT_DELAYED_WORK(&ctrl->reconnect_work,
			nvme_rdma_reconnect_ctrl_work);
	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
	INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1877
	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1878

1879
	ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1880
	ctrl->ctrl.sqsize = opts->queue_size - 1;
1881 1882 1883
	ctrl->ctrl.kato = opts->kato;

	ret = -ENOMEM;
1884
	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1885 1886 1887 1888
				GFP_KERNEL);
	if (!ctrl->queues)
		goto out_uninit_ctrl;

1889
	ret = nvme_rdma_configure_admin_queue(ctrl, true);
1890 1891 1892 1893 1894 1895
	if (ret)
		goto out_kfree_queues;

	/* sanity check icdoff */
	if (ctrl->ctrl.icdoff) {
		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1896
		ret = -EINVAL;
1897 1898 1899 1900 1901 1902
		goto out_remove_admin_queue;
	}

	/* sanity check keyed sgls */
	if (!(ctrl->ctrl.sgls & (1 << 20))) {
		dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1903
		ret = -EINVAL;
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
		goto out_remove_admin_queue;
	}

	if (opts->queue_size > ctrl->ctrl.maxcmd) {
		/* warn if maxcmd is lower than queue_size */
		dev_warn(ctrl->ctrl.device,
			"queue_size %zu > ctrl maxcmd %u, clamping down\n",
			opts->queue_size, ctrl->ctrl.maxcmd);
		opts->queue_size = ctrl->ctrl.maxcmd;
	}

1915 1916 1917 1918 1919 1920 1921 1922
	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
		/* warn if sqsize is lower than queue_size */
		dev_warn(ctrl->ctrl.device,
			"queue_size %zu > ctrl sqsize %u, clamping down\n",
			opts->queue_size, ctrl->ctrl.sqsize + 1);
		opts->queue_size = ctrl->ctrl.sqsize + 1;
	}

1923
	if (opts->nr_io_queues) {
1924
		ret = nvme_rdma_configure_io_queues(ctrl, true);
1925 1926 1927 1928 1929 1930 1931
		if (ret)
			goto out_remove_admin_queue;
	}

	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
	WARN_ON_ONCE(!changed);

1932
	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1933 1934 1935 1936 1937 1938 1939 1940
		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);

	kref_get(&ctrl->ctrl.kref);

	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
	mutex_unlock(&nvme_rdma_ctrl_mutex);

1941
	nvme_start_ctrl(&ctrl->ctrl);
1942 1943 1944 1945

	return &ctrl->ctrl;

out_remove_admin_queue:
1946
	nvme_rdma_destroy_admin_queue(ctrl, true);
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
out_kfree_queues:
	kfree(ctrl->queues);
out_uninit_ctrl:
	nvme_uninit_ctrl(&ctrl->ctrl);
	nvme_put_ctrl(&ctrl->ctrl);
	if (ret > 0)
		ret = -EIO;
	return ERR_PTR(ret);
out_free_ctrl:
	kfree(ctrl);
	return ERR_PTR(ret);
}

static struct nvmf_transport_ops nvme_rdma_transport = {
	.name		= "rdma",
	.required_opts	= NVMF_OPT_TRADDR,
1963
	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
S
Sagi Grimberg 已提交
1964
			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
1965 1966 1967
	.create_ctrl	= nvme_rdma_create_ctrl,
};

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
static void nvme_rdma_add_one(struct ib_device *ib_device)
{
}

static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
{
	struct nvme_rdma_ctrl *ctrl;

	/* Delete all controllers using this device */
	mutex_lock(&nvme_rdma_ctrl_mutex);
	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
		if (ctrl->device->dev != ib_device)
			continue;
		dev_info(ctrl->ctrl.device,
			"Removing ctrl: NQN \"%s\", addr %pISp\n",
			ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
		__nvme_rdma_del_ctrl(ctrl);
	}
	mutex_unlock(&nvme_rdma_ctrl_mutex);

1988
	flush_workqueue(nvme_wq);
1989 1990 1991 1992 1993 1994 1995 1996
}

static struct ib_client nvme_rdma_ib_client = {
	.name   = "nvme_rdma",
	.add = nvme_rdma_add_one,
	.remove = nvme_rdma_remove_one
};

1997 1998
static int __init nvme_rdma_init_module(void)
{
1999 2000 2001
	int ret;

	ret = ib_register_client(&nvme_rdma_ib_client);
2002
	if (ret)
2003
		return ret;
2004 2005 2006 2007

	ret = nvmf_register_transport(&nvme_rdma_transport);
	if (ret)
		goto err_unreg_client;
2008

2009
	return 0;
2010

2011 2012 2013
err_unreg_client:
	ib_unregister_client(&nvme_rdma_ib_client);
	return ret;
2014 2015 2016 2017 2018
}

static void __exit nvme_rdma_cleanup_module(void)
{
	nvmf_unregister_transport(&nvme_rdma_transport);
2019
	ib_unregister_client(&nvme_rdma_ib_client);
2020 2021 2022 2023 2024 2025
}

module_init(nvme_rdma_init_module);
module_exit(nvme_rdma_cleanup_module);

MODULE_LICENSE("GPL v2");