spu_task_sync.c 17.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Cell Broadband Engine OProfile Support
 *
 * (C) Copyright IBM Corporation 2006
 *
 * Author: Maynard Johnson <maynardj@us.ibm.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

/* The purpose of this file is to handle SPU event task switching
 * and to record SPU context information into the OProfile
 * event buffer.
 *
 * Additionally, the spu_sync_buffer function is provided as a helper
 * for recoding actual SPU program counter samples to the event buffer.
 */
#include <linux/dcookies.h>
#include <linux/kref.h>
#include <linux/mm.h>
A
Alexey Dobriyan 已提交
24
#include <linux/fs.h>
25 26 27 28
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/numa.h>
#include <linux/oprofile.h>
29
#include <linux/slab.h>
30 31 32 33 34 35 36 37 38
#include <linux/spinlock.h>
#include "pr_util.h"

#define RELEASE_ALL 9999

static DEFINE_SPINLOCK(buffer_lock);
static DEFINE_SPINLOCK(cache_lock);
static int num_spu_nodes;
int spu_prof_num_nodes;
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE];
struct delayed_work spu_work;
static unsigned max_spu_buff;

static void spu_buff_add(unsigned long int value, int spu)
{
	/* spu buff is a circular buffer.  Add entries to the
	 * head.  Head is the index to store the next value.
	 * The buffer is full when there is one available entry
	 * in the queue, i.e. head and tail can't be equal.
	 * That way we can tell the difference between the
	 * buffer being full versus empty.
	 *
	 *  ASSUPTION: the buffer_lock is held when this function
	 *             is called to lock the buffer, head and tail.
	 */
	int full = 1;

	if (spu_buff[spu].head >= spu_buff[spu].tail) {
		if ((spu_buff[spu].head - spu_buff[spu].tail)
		    <  (max_spu_buff - 1))
			full = 0;

	} else if (spu_buff[spu].tail > spu_buff[spu].head) {
		if ((spu_buff[spu].tail - spu_buff[spu].head)
		    > 1)
			full = 0;
	}

	if (!full) {
		spu_buff[spu].buff[spu_buff[spu].head] = value;
		spu_buff[spu].head++;

		if (spu_buff[spu].head >= max_spu_buff)
			spu_buff[spu].head = 0;
	} else {
		/* From the user's perspective make the SPU buffer
		 * size management/overflow look like we are using
		 * per cpu buffers.  The user uses the same
		 * per cpu parameter to adjust the SPU buffer size.
		 * Increment the sample_lost_overflow to inform
		 * the user the buffer size needs to be increased.
		 */
		oprofile_cpu_buffer_inc_smpl_lost();
	}
}

/* This function copies the per SPU buffers to the
 * OProfile kernel buffer.
 */
void sync_spu_buff(void)
{
	int spu;
	unsigned long flags;
	int curr_head;

	for (spu = 0; spu < num_spu_nodes; spu++) {
		/* In case there was an issue and the buffer didn't
		 * get created skip it.
		 */
		if (spu_buff[spu].buff == NULL)
			continue;

		/* Hold the lock to make sure the head/tail
		 * doesn't change while spu_buff_add() is
		 * deciding if the buffer is full or not.
		 * Being a little paranoid.
		 */
		spin_lock_irqsave(&buffer_lock, flags);
		curr_head = spu_buff[spu].head;
		spin_unlock_irqrestore(&buffer_lock, flags);

		/* Transfer the current contents to the kernel buffer.
		 * data can still be added to the head of the buffer.
		 */
		oprofile_put_buff(spu_buff[spu].buff,
				  spu_buff[spu].tail,
				  curr_head, max_spu_buff);

		spin_lock_irqsave(&buffer_lock, flags);
		spu_buff[spu].tail = curr_head;
		spin_unlock_irqrestore(&buffer_lock, flags);
	}

}

static void wq_sync_spu_buff(struct work_struct *work)
{
	/* move data from spu buffers to kernel buffer */
	sync_spu_buff();

	/* only reschedule if profiling is not done */
	if (spu_prof_running)
		schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
}
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

/* Container for caching information about an active SPU task. */
struct cached_info {
	struct vma_to_fileoffset_map *map;
	struct spu *the_spu;	/* needed to access pointer to local_store */
	struct kref cache_ref;
};

static struct cached_info *spu_info[MAX_NUMNODES * 8];

static void destroy_cached_info(struct kref *kref)
{
	struct cached_info *info;

	info = container_of(kref, struct cached_info, cache_ref);
	vma_map_free(info->map);
	kfree(info);
	module_put(THIS_MODULE);
}

/* Return the cached_info for the passed SPU number.
 * ATTENTION:  Callers are responsible for obtaining the
 *	       cache_lock if needed prior to invoking this function.
 */
static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
{
	struct kref *ref;
	struct cached_info *ret_info;

	if (spu_num >= num_spu_nodes) {
		printk(KERN_ERR "SPU_PROF: "
		       "%s, line %d: Invalid index %d into spu info cache\n",
167
		       __func__, __LINE__, spu_num);
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
		ret_info = NULL;
		goto out;
	}
	if (!spu_info[spu_num] && the_spu) {
		ref = spu_get_profile_private_kref(the_spu->ctx);
		if (ref) {
			spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
			kref_get(&spu_info[spu_num]->cache_ref);
		}
	}

	ret_info = spu_info[spu_num];
 out:
	return ret_info;
}


/* Looks for cached info for the passed spu.  If not found, the
 * cached info is created for the passed spu.
 * Returns 0 for success; otherwise, -1 for error.
 */
static int
prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
{
	unsigned long flags;
	struct vma_to_fileoffset_map *new_map;
	int retval = 0;
	struct cached_info *info;

	/* We won't bother getting cache_lock here since
	 * don't do anything with the cached_info that's returned.
	 */
	info = get_cached_info(spu, spu->number);

	if (info) {
		pr_debug("Found cached SPU info.\n");
		goto out;
	}

	/* Create cached_info and set spu_info[spu->number] to point to it.
	 * spu->number is a system-wide value, not a per-node value.
	 */
	info = kzalloc(sizeof(struct cached_info), GFP_KERNEL);
	if (!info) {
		printk(KERN_ERR "SPU_PROF: "
		       "%s, line %d: create vma_map failed\n",
214
		       __func__, __LINE__);
215 216 217 218 219 220 221
		retval = -ENOMEM;
		goto err_alloc;
	}
	new_map = create_vma_map(spu, objectId);
	if (!new_map) {
		printk(KERN_ERR "SPU_PROF: "
		       "%s, line %d: create vma_map failed\n",
222
		       __func__, __LINE__);
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
		retval = -ENOMEM;
		goto err_alloc;
	}

	pr_debug("Created vma_map\n");
	info->map = new_map;
	info->the_spu = spu;
	kref_init(&info->cache_ref);
	spin_lock_irqsave(&cache_lock, flags);
	spu_info[spu->number] = info;
	/* Increment count before passing off ref to SPUFS. */
	kref_get(&info->cache_ref);

	/* We increment the module refcount here since SPUFS is
	 * responsible for the final destruction of the cached_info,
	 * and it must be able to access the destroy_cached_info()
	 * function defined in the OProfile module.  We decrement
	 * the module refcount in destroy_cached_info.
	 */
	try_module_get(THIS_MODULE);
	spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
				destroy_cached_info);
	spin_unlock_irqrestore(&cache_lock, flags);
	goto out;

err_alloc:
	kfree(info);
out:
	return retval;
}

/*
 * NOTE:  The caller is responsible for locking the
 *	  cache_lock prior to calling this function.
 */
static int release_cached_info(int spu_index)
{
	int index, end;

	if (spu_index == RELEASE_ALL) {
		end = num_spu_nodes;
		index = 0;
	} else {
		if (spu_index >= num_spu_nodes) {
			printk(KERN_ERR "SPU_PROF: "
				"%s, line %d: "
				"Invalid index %d into spu info cache\n",
270
				__func__, __LINE__, spu_index);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
			goto out;
		}
		end = spu_index + 1;
		index = spu_index;
	}
	for (; index < end; index++) {
		if (spu_info[index]) {
			kref_put(&spu_info[index]->cache_ref,
				 destroy_cached_info);
			spu_info[index] = NULL;
		}
	}

out:
	return 0;
}

/* The source code for fast_get_dcookie was "borrowed"
 * from drivers/oprofile/buffer_sync.c.
 */

/* Optimisation. We can manage without taking the dcookie sem
 * because we cannot reach this code without at least one
 * dcookie user still being registered (namely, the reader
 * of the event buffer).
 */
297
static inline unsigned long fast_get_dcookie(struct path *path)
298 299 300
{
	unsigned long cookie;

N
Nick Piggin 已提交
301
	if (path->dentry->d_flags & DCACHE_COOKIE)
302 303
		return (unsigned long)path->dentry;
	get_dcookie(path, &cookie);
304 305 306
	return cookie;
}

307
/* Look up the dcookie for the task's mm->exe_file,
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
 * which corresponds loosely to "application name". Also, determine
 * the offset for the SPU ELF object.  If computed offset is
 * non-zero, it implies an embedded SPU object; otherwise, it's a
 * separate SPU binary, in which case we retrieve it's dcookie.
 * For the embedded case, we must determine if SPU ELF is embedded
 * in the executable application or another file (i.e., shared lib).
 * If embedded in a shared lib, we must get the dcookie and return
 * that to the caller.
 */
static unsigned long
get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
			    unsigned long *spu_bin_dcookie,
			    unsigned long spu_ref)
{
	unsigned long app_cookie = 0;
	unsigned int my_offset = 0;
	struct vm_area_struct *vma;
	struct mm_struct *mm = spu->mm;

	if (!mm)
		goto out;

	down_read(&mm->mmap_sem);

332 333
	if (mm->exe_file) {
		app_cookie = fast_get_dcookie(&mm->exe_file->f_path);
A
Al Viro 已提交
334
		pr_debug("got dcookie for %pD\n", mm->exe_file);
335 336 337 338 339 340 341 342 343
	}

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
			continue;
		my_offset = spu_ref - vma->vm_start;
		if (!vma->vm_file)
			goto fail_no_image_cookie;

A
Al Viro 已提交
344 345
		pr_debug("Found spu ELF at %X(object-id:%lx) for file %pD\n",
			 my_offset, spu_ref, vma->vm_file);
346 347 348 349
		*offsetp = my_offset;
		break;
	}

350
	*spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
A
Al Viro 已提交
351
	pr_debug("got dcookie for %pD\n", vma->vm_file);
352 353 354 355 356 357 358 359 360 361 362

	up_read(&mm->mmap_sem);

out:
	return app_cookie;

fail_no_image_cookie:
	up_read(&mm->mmap_sem);

	printk(KERN_ERR "SPU_PROF: "
		"%s, line %d: Cannot find dcookie for SPU binary\n",
363
		__func__, __LINE__);
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
	goto out;
}



/* This function finds or creates cached context information for the
 * passed SPU and records SPU context information into the OProfile
 * event buffer.
 */
static int process_context_switch(struct spu *spu, unsigned long objectId)
{
	unsigned long flags;
	int retval;
	unsigned int offset = 0;
	unsigned long spu_cookie = 0, app_dcookie;

	retval = prepare_cached_spu_info(spu, objectId);
	if (retval)
		goto out;

	/* Get dcookie first because a mutex_lock is taken in that
	 * code path, so interrupts must not be disabled.
	 */
	app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
	if (!app_dcookie || !spu_cookie) {
		retval  = -ENOENT;
		goto out;
	}

	/* Record context info in event buffer */
	spin_lock_irqsave(&buffer_lock, flags);
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	spu_buff_add(ESCAPE_CODE, spu->number);
	spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number);
	spu_buff_add(spu->number, spu->number);
	spu_buff_add(spu->pid, spu->number);
	spu_buff_add(spu->tgid, spu->number);
	spu_buff_add(app_dcookie, spu->number);
	spu_buff_add(spu_cookie, spu->number);
	spu_buff_add(offset, spu->number);

	/* Set flag to indicate SPU PC data can now be written out.  If
	 * the SPU program counter data is seen before an SPU context
	 * record is seen, the postprocessing will fail.
	 */
	spu_buff[spu->number].ctx_sw_seen = 1;

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
	spin_unlock_irqrestore(&buffer_lock, flags);
	smp_wmb();	/* insure spu event buffer updates are written */
			/* don't want entries intermingled... */
out:
	return retval;
}

/*
 * This function is invoked on either a bind_context or unbind_context.
 * If called for an unbind_context, the val arg is 0; otherwise,
 * it is the object-id value for the spu context.
 * The data arg is of type 'struct spu *'.
 */
static int spu_active_notify(struct notifier_block *self, unsigned long val,
				void *data)
{
	int retval;
	unsigned long flags;
	struct spu *the_spu = data;

	pr_debug("SPU event notification arrived\n");
	if (!val) {
		spin_lock_irqsave(&cache_lock, flags);
		retval = release_cached_info(the_spu->number);
		spin_unlock_irqrestore(&cache_lock, flags);
	} else {
		retval = process_context_switch(the_spu, val);
	}
	return retval;
}

static struct notifier_block spu_active = {
	.notifier_call = spu_active_notify,
};

static int number_of_online_nodes(void)
{
        u32 cpu; u32 tmp;
        int nodes = 0;
        for_each_online_cpu(cpu) {
                tmp = cbe_cpu_to_node(cpu) + 1;
                if (tmp > nodes)
                        nodes++;
        }
        return nodes;
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
static int oprofile_spu_buff_create(void)
{
	int spu;

	max_spu_buff = oprofile_get_cpu_buffer_size();

	for (spu = 0; spu < num_spu_nodes; spu++) {
		/* create circular buffers to store the data in.
		 * use locks to manage accessing the buffers
		 */
		spu_buff[spu].head = 0;
		spu_buff[spu].tail = 0;

		/*
		 * Create a buffer for each SPU.  Can't reliably
		 * create a single buffer for all spus due to not
		 * enough contiguous kernel memory.
		 */

		spu_buff[spu].buff = kzalloc((max_spu_buff
					      * sizeof(unsigned long)),
					     GFP_KERNEL);

		if (!spu_buff[spu].buff) {
			printk(KERN_ERR "SPU_PROF: "
			       "%s, line %d:  oprofile_spu_buff_create "
		       "failed to allocate spu buffer %d.\n",
			       __func__, __LINE__, spu);

			/* release the spu buffers that have been allocated */
			while (spu >= 0) {
				kfree(spu_buff[spu].buff);
				spu_buff[spu].buff = 0;
				spu--;
			}
			return -ENOMEM;
		}
	}
	return 0;
}

498 499 500 501 502 503 504 505 506 507 508 509
/* The main purpose of this function is to synchronize
 * OProfile with SPUFS by registering to be notified of
 * SPU task switches.
 *
 * NOTE: When profiling SPUs, we must ensure that only
 * spu_sync_start is invoked and not the generic sync_start
 * in drivers/oprofile/oprof.c.	 A return value of
 * SKIP_GENERIC_SYNC or SYNC_START_ERROR will
 * accomplish this.
 */
int spu_sync_start(void)
{
510
	int spu;
511 512 513 514 515 516
	int ret = SKIP_GENERIC_SYNC;
	int register_ret;
	unsigned long flags = 0;

	spu_prof_num_nodes = number_of_online_nodes();
	num_spu_nodes = spu_prof_num_nodes * 8;
517 518 519 520 521 522 523 524
	INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff);

	/* create buffer for storing the SPU data to put in
	 * the kernel buffer.
	 */
	ret = oprofile_spu_buff_create();
	if (ret)
		goto out;
525 526

	spin_lock_irqsave(&buffer_lock, flags);
527 528 529 530 531
	for (spu = 0; spu < num_spu_nodes; spu++) {
		spu_buff_add(ESCAPE_CODE, spu);
		spu_buff_add(SPU_PROFILING_CODE, spu);
		spu_buff_add(num_spu_nodes, spu);
	}
532 533
	spin_unlock_irqrestore(&buffer_lock, flags);

534 535 536 537 538
	for (spu = 0; spu < num_spu_nodes; spu++) {
		spu_buff[spu].ctx_sw_seen = 0;
		spu_buff[spu].last_guard_val = 0;
	}

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	/* Register for SPU events  */
	register_ret = spu_switch_event_register(&spu_active);
	if (register_ret) {
		ret = SYNC_START_ERROR;
		goto out;
	}

	pr_debug("spu_sync_start -- running.\n");
out:
	return ret;
}

/* Record SPU program counter samples to the oprofile event buffer. */
void spu_sync_buffer(int spu_num, unsigned int *samples,
		     int num_samples)
{
	unsigned long long file_offset;
	unsigned long flags;
	int i;
	struct vma_to_fileoffset_map *map;
	struct spu *the_spu;
	unsigned long long spu_num_ll = spu_num;
	unsigned long long spu_num_shifted = spu_num_ll << 32;
	struct cached_info *c_info;

	/* We need to obtain the cache_lock here because it's
	 * possible that after getting the cached_info, the SPU job
	 * corresponding to this cached_info may end, thus resulting
	 * in the destruction of the cached_info.
	 */
	spin_lock_irqsave(&cache_lock, flags);
	c_info = get_cached_info(NULL, spu_num);
	if (!c_info) {
		/* This legitimately happens when the SPU task ends before all
		 * samples are recorded.
		 * No big deal -- so we just drop a few samples.
		 */
		pr_debug("SPU_PROF: No cached SPU contex "
			  "for SPU #%d. Dropping samples.\n", spu_num);
		goto out;
	}

	map = c_info->map;
	the_spu = c_info->the_spu;
	spin_lock(&buffer_lock);
	for (i = 0; i < num_samples; i++) {
		unsigned int sample = *(samples+i);
		int grd_val = 0;
		file_offset = 0;
		if (sample == 0)
			continue;
		file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);

		/* If overlays are used by this SPU application, the guard
		 * value is non-zero, indicating which overlay section is in
		 * use.	 We need to discard samples taken during the time
		 * period which an overlay occurs (i.e., guard value changes).
		 */
597 598
		if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) {
			spu_buff[spu_num].last_guard_val = grd_val;
599 600 601 602
			/* Drop the rest of the samples. */
			break;
		}

603 604 605 606 607 608 609 610
		/* We must ensure that the SPU context switch has been written
		 * out before samples for the SPU.  Otherwise, the SPU context
		 * information is not available and the postprocessing of the
		 * SPU PC will fail with no available anonymous map information.
		 */
		if (spu_buff[spu_num].ctx_sw_seen)
			spu_buff_add((file_offset | spu_num_shifted),
					 spu_num);
611 612 613 614 615 616 617 618 619 620
	}
	spin_unlock(&buffer_lock);
out:
	spin_unlock_irqrestore(&cache_lock, flags);
}


int spu_sync_stop(void)
{
	unsigned long flags = 0;
621 622 623 624 625 626
	int ret;
	int k;

	ret = spu_switch_event_unregister(&spu_active);

	if (ret)
627
		printk(KERN_ERR "SPU_PROF: "
628 629 630 631 632 633
		       "%s, line %d: spu_switch_event_unregister "	\
		       "returned %d\n",
		       __func__, __LINE__, ret);

	/* flush any remaining data in the per SPU buffers */
	sync_spu_buff();
634 635 636 637

	spin_lock_irqsave(&cache_lock, flags);
	ret = release_cached_info(RELEASE_ALL);
	spin_unlock_irqrestore(&cache_lock, flags);
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

	/* remove scheduled work queue item rather then waiting
	 * for every queued entry to execute.  Then flush pending
	 * system wide buffer to event buffer.
	 */
	cancel_delayed_work(&spu_work);

	for (k = 0; k < num_spu_nodes; k++) {
		spu_buff[k].ctx_sw_seen = 0;

		/*
		 * spu_sys_buff will be null if there was a problem
		 * allocating the buffer.  Only delete if it exists.
		 */
		kfree(spu_buff[k].buff);
		spu_buff[k].buff = 0;
	}
655 656 657 658
	pr_debug("spu_sync_stop -- done.\n");
	return ret;
}