vpe.c 55.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * TI VPE mem2mem driver, based on the virtual v4l2-mem2mem example driver
 *
 * Copyright (c) 2013 Texas Instruments Inc.
 * David Griego, <dagriego@biglakesoftware.com>
 * Dale Farnsworth, <dale@farnsworth.org>
 * Archit Taneja, <archit@ti.com>
 *
 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
 * Pawel Osciak, <pawel@osciak.com>
 * Marek Szyprowski, <m.szyprowski@samsung.com>
 *
 * Based on the virtual v4l2-mem2mem example device
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation
 */

#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioctl.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
33
#include <linux/log2.h>
34 35 36 37 38 39 40 41 42 43 44 45

#include <media/v4l2-common.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-mem2mem.h>
#include <media/videobuf2-core.h>
#include <media/videobuf2-dma-contig.h>

#include "vpdma.h"
#include "vpe_regs.h"
46
#include "sc.h"
47
#include "csc.h"
48 49 50 51

#define VPE_MODULE_NAME "vpe"

/* minimum and maximum frame sizes */
52 53
#define MIN_W		32
#define MIN_H		32
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#define MAX_W		1920
#define MAX_H		1080

/* required alignments */
#define S_ALIGN		0	/* multiple of 1 */
#define H_ALIGN		1	/* multiple of 2 */

/* flags that indicate a format can be used for capture/output */
#define VPE_FMT_TYPE_CAPTURE	(1 << 0)
#define VPE_FMT_TYPE_OUTPUT	(1 << 1)

/* used as plane indices */
#define VPE_MAX_PLANES	2
#define VPE_LUMA	0
#define VPE_CHROMA	1

/* per m2m context info */
71 72
#define VPE_MAX_SRC_BUFS	3	/* need 3 src fields to de-interlace */

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
#define VPE_DEF_BUFS_PER_JOB	1	/* default one buffer per batch job */

/*
 * each VPE context can need up to 3 config desciptors, 7 input descriptors,
 * 3 output descriptors, and 10 control descriptors
 */
#define VPE_DESC_LIST_SIZE	(10 * VPDMA_DTD_DESC_SIZE +	\
					13 * VPDMA_CFD_CTD_DESC_SIZE)

#define vpe_dbg(vpedev, fmt, arg...)	\
		dev_dbg((vpedev)->v4l2_dev.dev, fmt, ##arg)
#define vpe_err(vpedev, fmt, arg...)	\
		dev_err((vpedev)->v4l2_dev.dev, fmt, ##arg)

struct vpe_us_coeffs {
	unsigned short	anchor_fid0_c0;
	unsigned short	anchor_fid0_c1;
	unsigned short	anchor_fid0_c2;
	unsigned short	anchor_fid0_c3;
	unsigned short	interp_fid0_c0;
	unsigned short	interp_fid0_c1;
	unsigned short	interp_fid0_c2;
	unsigned short	interp_fid0_c3;
	unsigned short	anchor_fid1_c0;
	unsigned short	anchor_fid1_c1;
	unsigned short	anchor_fid1_c2;
	unsigned short	anchor_fid1_c3;
	unsigned short	interp_fid1_c0;
	unsigned short	interp_fid1_c1;
	unsigned short	interp_fid1_c2;
	unsigned short	interp_fid1_c3;
};

/*
 * Default upsampler coefficients
 */
static const struct vpe_us_coeffs us_coeffs[] = {
	{
		/* Coefficients for progressive input */
		0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
		0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
	},
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
	{
		/* Coefficients for Top Field Interlaced input */
		0x0051, 0x03D5, 0x3FE3, 0x3FF7, 0x3FB5, 0x02E9, 0x018F, 0x3FD3,
		/* Coefficients for Bottom Field Interlaced input */
		0x016B, 0x0247, 0x00B1, 0x3F9D, 0x3FCF, 0x03DB, 0x005D, 0x3FF9,
	},
};

/*
 * the following registers are for configuring some of the parameters of the
 * motion and edge detection blocks inside DEI, these generally remain the same,
 * these could be passed later via userspace if some one needs to tweak these.
 */
struct vpe_dei_regs {
	unsigned long mdt_spacial_freq_thr_reg;		/* VPE_DEI_REG2 */
	unsigned long edi_config_reg;			/* VPE_DEI_REG3 */
	unsigned long edi_lut_reg0;			/* VPE_DEI_REG4 */
	unsigned long edi_lut_reg1;			/* VPE_DEI_REG5 */
	unsigned long edi_lut_reg2;			/* VPE_DEI_REG6 */
	unsigned long edi_lut_reg3;			/* VPE_DEI_REG7 */
};

/*
 * default expert DEI register values, unlikely to be modified.
 */
static const struct vpe_dei_regs dei_regs = {
	0x020C0804u,
	0x0118100Fu,
	0x08040200u,
	0x1010100Cu,
	0x10101010u,
	0x10101010u,
147 148 149 150 151 152 153
};

/*
 * The port_data structure contains per-port data.
 */
struct vpe_port_data {
	enum vpdma_channel channel;	/* VPDMA channel */
154
	u8	vb_index;		/* input frame f, f-1, f-2 index */
155 156 157 158 159 160 161 162
	u8	vb_part;		/* plane index for co-panar formats */
};

/*
 * Define indices into the port_data tables
 */
#define VPE_PORT_LUMA1_IN	0
#define VPE_PORT_CHROMA1_IN	1
163 164 165 166 167 168
#define VPE_PORT_LUMA2_IN	2
#define VPE_PORT_CHROMA2_IN	3
#define VPE_PORT_LUMA3_IN	4
#define VPE_PORT_CHROMA3_IN	5
#define VPE_PORT_MV_IN		6
#define VPE_PORT_MV_OUT		7
169 170 171 172 173 174 175
#define VPE_PORT_LUMA_OUT	8
#define VPE_PORT_CHROMA_OUT	9
#define VPE_PORT_RGB_OUT	10

static const struct vpe_port_data port_data[11] = {
	[VPE_PORT_LUMA1_IN] = {
		.channel	= VPE_CHAN_LUMA1_IN,
176
		.vb_index	= 0,
177 178 179 180
		.vb_part	= VPE_LUMA,
	},
	[VPE_PORT_CHROMA1_IN] = {
		.channel	= VPE_CHAN_CHROMA1_IN,
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
		.vb_index	= 0,
		.vb_part	= VPE_CHROMA,
	},
	[VPE_PORT_LUMA2_IN] = {
		.channel	= VPE_CHAN_LUMA2_IN,
		.vb_index	= 1,
		.vb_part	= VPE_LUMA,
	},
	[VPE_PORT_CHROMA2_IN] = {
		.channel	= VPE_CHAN_CHROMA2_IN,
		.vb_index	= 1,
		.vb_part	= VPE_CHROMA,
	},
	[VPE_PORT_LUMA3_IN] = {
		.channel	= VPE_CHAN_LUMA3_IN,
		.vb_index	= 2,
		.vb_part	= VPE_LUMA,
	},
	[VPE_PORT_CHROMA3_IN] = {
		.channel	= VPE_CHAN_CHROMA3_IN,
		.vb_index	= 2,
202 203
		.vb_part	= VPE_CHROMA,
	},
204 205 206 207 208 209
	[VPE_PORT_MV_IN] = {
		.channel	= VPE_CHAN_MV_IN,
	},
	[VPE_PORT_MV_OUT] = {
		.channel	= VPE_CHAN_MV_OUT,
	},
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	[VPE_PORT_LUMA_OUT] = {
		.channel	= VPE_CHAN_LUMA_OUT,
		.vb_part	= VPE_LUMA,
	},
	[VPE_PORT_CHROMA_OUT] = {
		.channel	= VPE_CHAN_CHROMA_OUT,
		.vb_part	= VPE_CHROMA,
	},
	[VPE_PORT_RGB_OUT] = {
		.channel	= VPE_CHAN_RGB_OUT,
		.vb_part	= VPE_LUMA,
	},
};


/* driver info for each of the supported video formats */
struct vpe_fmt {
	char	*name;			/* human-readable name */
	u32	fourcc;			/* standard format identifier */
	u8	types;			/* CAPTURE and/or OUTPUT */
	u8	coplanar;		/* set for unpacked Luma and Chroma */
	/* vpdma format info for each plane */
	struct vpdma_data_format const *vpdma_fmt[VPE_MAX_PLANES];
};

static struct vpe_fmt vpe_formats[] = {
	{
		.name		= "YUV 422 co-planar",
		.fourcc		= V4L2_PIX_FMT_NV16,
		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
		.coplanar	= 1,
		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y444],
				    &vpdma_yuv_fmts[VPDMA_DATA_FMT_C444],
				  },
	},
	{
		.name		= "YUV 420 co-planar",
		.fourcc		= V4L2_PIX_FMT_NV12,
		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
		.coplanar	= 1,
		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y420],
				    &vpdma_yuv_fmts[VPDMA_DATA_FMT_C420],
				  },
	},
	{
		.name		= "YUYV 422 packed",
		.fourcc		= V4L2_PIX_FMT_YUYV,
		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
		.coplanar	= 0,
		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_YC422],
				  },
	},
	{
		.name		= "UYVY 422 packed",
		.fourcc		= V4L2_PIX_FMT_UYVY,
		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
		.coplanar	= 0,
		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_CY422],
				  },
	},
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	{
		.name		= "RGB888 packed",
		.fourcc		= V4L2_PIX_FMT_RGB24,
		.types		= VPE_FMT_TYPE_CAPTURE,
		.coplanar	= 0,
		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB24],
				  },
	},
	{
		.name		= "ARGB32",
		.fourcc		= V4L2_PIX_FMT_RGB32,
		.types		= VPE_FMT_TYPE_CAPTURE,
		.coplanar	= 0,
		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ARGB32],
				  },
	},
	{
		.name		= "BGR888 packed",
		.fourcc		= V4L2_PIX_FMT_BGR24,
		.types		= VPE_FMT_TYPE_CAPTURE,
		.coplanar	= 0,
		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_BGR24],
				  },
	},
	{
		.name		= "ABGR32",
		.fourcc		= V4L2_PIX_FMT_BGR32,
		.types		= VPE_FMT_TYPE_CAPTURE,
		.coplanar	= 0,
		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ABGR32],
				  },
	},
302 303 304 305 306 307 308 309 310 311 312
};

/*
 * per-queue, driver-specific private data.
 * there is one source queue and one destination queue for each m2m context.
 */
struct vpe_q_data {
	unsigned int		width;				/* frame width */
	unsigned int		height;				/* frame height */
	unsigned int		bytesperline[VPE_MAX_PLANES];	/* bytes per line in memory */
	enum v4l2_colorspace	colorspace;
313
	enum v4l2_field		field;				/* supported field value */
314 315 316 317 318 319 320 321 322
	unsigned int		flags;
	unsigned int		sizeimage[VPE_MAX_PLANES];	/* image size in memory */
	struct v4l2_rect	c_rect;				/* crop/compose rectangle */
	struct vpe_fmt		*fmt;				/* format info */
};

/* vpe_q_data flag bits */
#define	Q_DATA_FRAME_1D		(1 << 0)
#define	Q_DATA_MODE_TILED	(1 << 1)
323
#define	Q_DATA_INTERLACED	(1 << 2)
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

enum {
	Q_DATA_SRC = 0,
	Q_DATA_DST = 1,
};

/* find our format description corresponding to the passed v4l2_format */
static struct vpe_fmt *find_format(struct v4l2_format *f)
{
	struct vpe_fmt *fmt;
	unsigned int k;

	for (k = 0; k < ARRAY_SIZE(vpe_formats); k++) {
		fmt = &vpe_formats[k];
		if (fmt->fourcc == f->fmt.pix.pixelformat)
			return fmt;
	}

	return NULL;
}

/*
 * there is one vpe_dev structure in the driver, it is shared by
 * all instances.
 */
struct vpe_dev {
	struct v4l2_device	v4l2_dev;
	struct video_device	vfd;
	struct v4l2_m2m_dev	*m2m_dev;

	atomic_t		num_instances;	/* count of driver instances */
	dma_addr_t		loaded_mmrs;	/* shadow mmrs in device */
	struct mutex		dev_mutex;
	spinlock_t		lock;

	int			irq;
	void __iomem		*base;
361
	struct resource		*res;
362 363 364

	struct vb2_alloc_ctx	*alloc_ctx;
	struct vpdma_data	*vpdma;		/* vpdma data handle */
365
	struct sc_data		*sc;		/* scaler data handle */
366
	struct csc_data		*csc;		/* csc data handle */
367 368 369 370 371 372 373 374 375 376 377
};

/*
 * There is one vpe_ctx structure for each m2m context.
 */
struct vpe_ctx {
	struct v4l2_fh		fh;
	struct vpe_dev		*dev;
	struct v4l2_m2m_ctx	*m2m_ctx;
	struct v4l2_ctrl_handler hdl;

378
	unsigned int		field;			/* current field */
379 380 381 382 383 384 385
	unsigned int		sequence;		/* current frame/field seq */
	unsigned int		aborting;		/* abort after next irq */

	unsigned int		bufs_per_job;		/* input buffers per batch */
	unsigned int		bufs_completed;		/* bufs done in this batch */

	struct vpe_q_data	q_data[2];		/* src & dst queue data */
386
	struct vb2_buffer	*src_vbs[VPE_MAX_SRC_BUFS];
387 388
	struct vb2_buffer	*dst_vb;

389 390 391
	dma_addr_t		mv_buf_dma[2];		/* dma addrs of motion vector in/out bufs */
	void			*mv_buf[2];		/* virtual addrs of motion vector bufs */
	size_t			mv_buf_size;		/* current motion vector buffer size */
392
	struct vpdma_buf	mmr_adb;		/* shadow reg addr/data block */
393 394
	struct vpdma_buf	sc_coeff_h;		/* h coeff buffer */
	struct vpdma_buf	sc_coeff_v;		/* v coeff buffer */
395 396
	struct vpdma_desc_list	desc_list;		/* DMA descriptor list */

397
	bool			deinterlacing;		/* using de-interlacer */
398
	bool			load_mmrs;		/* have new shadow reg values */
399 400

	unsigned int		src_mv_buf_selector;
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
};


/*
 * M2M devices get 2 queues.
 * Return the queue given the type.
 */
static struct vpe_q_data *get_q_data(struct vpe_ctx *ctx,
				     enum v4l2_buf_type type)
{
	switch (type) {
	case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
		return &ctx->q_data[Q_DATA_SRC];
	case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
		return &ctx->q_data[Q_DATA_DST];
	default:
		BUG();
	}
	return NULL;
}

static u32 read_reg(struct vpe_dev *dev, int offset)
{
	return ioread32(dev->base + offset);
}

static void write_reg(struct vpe_dev *dev, int offset, u32 value)
{
	iowrite32(value, dev->base + offset);
}

/* register field read/write helpers */
static int get_field(u32 value, u32 mask, int shift)
{
	return (value & (mask << shift)) >> shift;
}

static int read_field_reg(struct vpe_dev *dev, int offset, u32 mask, int shift)
{
	return get_field(read_reg(dev, offset), mask, shift);
}

static void write_field(u32 *valp, u32 field, u32 mask, int shift)
{
	u32 val = *valp;

	val &= ~(mask << shift);
	val |= (field & mask) << shift;
	*valp = val;
}

static void write_field_reg(struct vpe_dev *dev, int offset, u32 field,
		u32 mask, int shift)
{
	u32 val = read_reg(dev, offset);

	write_field(&val, field, mask, shift);

	write_reg(dev, offset, val);
}

/*
 * DMA address/data block for the shadow registers
 */
struct vpe_mmr_adb {
	struct vpdma_adb_hdr	out_fmt_hdr;
	u32			out_fmt_reg[1];
	u32			out_fmt_pad[3];
	struct vpdma_adb_hdr	us1_hdr;
	u32			us1_regs[8];
	struct vpdma_adb_hdr	us2_hdr;
	u32			us2_regs[8];
	struct vpdma_adb_hdr	us3_hdr;
	u32			us3_regs[8];
	struct vpdma_adb_hdr	dei_hdr;
476
	u32			dei_regs[8];
477 478 479 480 481 482 483 484 485
	struct vpdma_adb_hdr	sc_hdr0;
	u32			sc_regs0[7];
	u32			sc_pad0[1];
	struct vpdma_adb_hdr	sc_hdr8;
	u32			sc_regs8[6];
	u32			sc_pad8[2];
	struct vpdma_adb_hdr	sc_hdr17;
	u32			sc_regs17[9];
	u32			sc_pad17[3];
486 487 488 489 490
	struct vpdma_adb_hdr	csc_hdr;
	u32			csc_regs[6];
	u32			csc_pad[2];
};

491 492 493
#define GET_OFFSET_TOP(ctx, obj, reg)	\
	((obj)->res->start - ctx->dev->res->start + reg)

494 495 496 497 498 499 500 501 502 503 504 505
#define VPE_SET_MMR_ADB_HDR(ctx, hdr, regs, offset_a)	\
	VPDMA_SET_MMR_ADB_HDR(ctx->mmr_adb, vpe_mmr_adb, hdr, regs, offset_a)
/*
 * Set the headers for all of the address/data block structures.
 */
static void init_adb_hdrs(struct vpe_ctx *ctx)
{
	VPE_SET_MMR_ADB_HDR(ctx, out_fmt_hdr, out_fmt_reg, VPE_CLK_FORMAT_SELECT);
	VPE_SET_MMR_ADB_HDR(ctx, us1_hdr, us1_regs, VPE_US1_R0);
	VPE_SET_MMR_ADB_HDR(ctx, us2_hdr, us2_regs, VPE_US2_R0);
	VPE_SET_MMR_ADB_HDR(ctx, us3_hdr, us3_regs, VPE_US3_R0);
	VPE_SET_MMR_ADB_HDR(ctx, dei_hdr, dei_regs, VPE_DEI_FRAME_SIZE);
506
	VPE_SET_MMR_ADB_HDR(ctx, sc_hdr0, sc_regs0,
507
		GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC0));
508 509 510 511
	VPE_SET_MMR_ADB_HDR(ctx, sc_hdr8, sc_regs8,
		GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC8));
	VPE_SET_MMR_ADB_HDR(ctx, sc_hdr17, sc_regs17,
		GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC17));
512 513
	VPE_SET_MMR_ADB_HDR(ctx, csc_hdr, csc_regs,
		GET_OFFSET_TOP(ctx, ctx->dev->csc, CSC_CSC00));
514 515
};

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
/*
 * Allocate or re-allocate the motion vector DMA buffers
 * There are two buffers, one for input and one for output.
 * However, the roles are reversed after each field is processed.
 * In other words, after each field is processed, the previous
 * output (dst) MV buffer becomes the new input (src) MV buffer.
 */
static int realloc_mv_buffers(struct vpe_ctx *ctx, size_t size)
{
	struct device *dev = ctx->dev->v4l2_dev.dev;

	if (ctx->mv_buf_size == size)
		return 0;

	if (ctx->mv_buf[0])
		dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[0],
			ctx->mv_buf_dma[0]);

	if (ctx->mv_buf[1])
		dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[1],
			ctx->mv_buf_dma[1]);

	if (size == 0)
		return 0;

	ctx->mv_buf[0] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[0],
				GFP_KERNEL);
	if (!ctx->mv_buf[0]) {
		vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
		return -ENOMEM;
	}

	ctx->mv_buf[1] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[1],
				GFP_KERNEL);
	if (!ctx->mv_buf[1]) {
		vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
		dma_free_coherent(dev, size, ctx->mv_buf[0],
			ctx->mv_buf_dma[0]);

		return -ENOMEM;
	}

	ctx->mv_buf_size = size;
	ctx->src_mv_buf_selector = 0;

	return 0;
}

static void free_mv_buffers(struct vpe_ctx *ctx)
{
	realloc_mv_buffers(ctx, 0);
}

/*
 * While de-interlacing, we keep the two most recent input buffers
 * around.  This function frees those two buffers when we have
 * finished processing the current stream.
 */
static void free_vbs(struct vpe_ctx *ctx)
{
	struct vpe_dev *dev = ctx->dev;
	unsigned long flags;

	if (ctx->src_vbs[2] == NULL)
		return;

	spin_lock_irqsave(&dev->lock, flags);
	if (ctx->src_vbs[2]) {
		v4l2_m2m_buf_done(ctx->src_vbs[2], VB2_BUF_STATE_DONE);
		v4l2_m2m_buf_done(ctx->src_vbs[1], VB2_BUF_STATE_DONE);
	}
	spin_unlock_irqrestore(&dev->lock, flags);
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
/*
 * Enable or disable the VPE clocks
 */
static void vpe_set_clock_enable(struct vpe_dev *dev, bool on)
{
	u32 val = 0;

	if (on)
		val = VPE_DATA_PATH_CLK_ENABLE | VPE_VPEDMA_CLK_ENABLE;
	write_reg(dev, VPE_CLK_ENABLE, val);
}

static void vpe_top_reset(struct vpe_dev *dev)
{

	write_field_reg(dev, VPE_CLK_RESET, 1, VPE_DATA_PATH_CLK_RESET_MASK,
		VPE_DATA_PATH_CLK_RESET_SHIFT);

	usleep_range(100, 150);

	write_field_reg(dev, VPE_CLK_RESET, 0, VPE_DATA_PATH_CLK_RESET_MASK,
		VPE_DATA_PATH_CLK_RESET_SHIFT);
}

static void vpe_top_vpdma_reset(struct vpe_dev *dev)
{
	write_field_reg(dev, VPE_CLK_RESET, 1, VPE_VPDMA_CLK_RESET_MASK,
		VPE_VPDMA_CLK_RESET_SHIFT);

	usleep_range(100, 150);

	write_field_reg(dev, VPE_CLK_RESET, 0, VPE_VPDMA_CLK_RESET_MASK,
		VPE_VPDMA_CLK_RESET_SHIFT);
}

/*
 * Load the correct of upsampler coefficients into the shadow MMRs
 */
static void set_us_coefficients(struct vpe_ctx *ctx)
{
	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
631
	struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
632 633 634 635 636 637 638
	u32 *us1_reg = &mmr_adb->us1_regs[0];
	u32 *us2_reg = &mmr_adb->us2_regs[0];
	u32 *us3_reg = &mmr_adb->us3_regs[0];
	const unsigned short *cp, *end_cp;

	cp = &us_coeffs[0].anchor_fid0_c0;

639 640 641
	if (s_q_data->flags & Q_DATA_INTERLACED)	/* interlaced */
		cp += sizeof(us_coeffs[0]) / sizeof(*cp);

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
	end_cp = cp + sizeof(us_coeffs[0]) / sizeof(*cp);

	while (cp < end_cp) {
		write_field(us1_reg, *cp++, VPE_US_C0_MASK, VPE_US_C0_SHIFT);
		write_field(us1_reg, *cp++, VPE_US_C1_MASK, VPE_US_C1_SHIFT);
		*us2_reg++ = *us1_reg;
		*us3_reg++ = *us1_reg++;
	}
	ctx->load_mmrs = true;
}

/*
 * Set the upsampler config mode and the VPDMA line mode in the shadow MMRs.
 */
static void set_cfg_and_line_modes(struct vpe_ctx *ctx)
{
	struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
	u32 *us1_reg0 = &mmr_adb->us1_regs[0];
	u32 *us2_reg0 = &mmr_adb->us2_regs[0];
	u32 *us3_reg0 = &mmr_adb->us3_regs[0];
	int line_mode = 1;
	int cfg_mode = 1;

	/*
	 * Cfg Mode 0: YUV420 source, enable upsampler, DEI is de-interlacing.
	 * Cfg Mode 1: YUV422 source, disable upsampler, DEI is de-interlacing.
	 */

	if (fmt->fourcc == V4L2_PIX_FMT_NV12) {
		cfg_mode = 0;
		line_mode = 0;		/* double lines to line buffer */
	}

	write_field(us1_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
	write_field(us2_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
	write_field(us3_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);

	/* regs for now */
	vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA1_IN);
682 683
	vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA2_IN);
	vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA3_IN);
684 685 686 687

	/* frame start for input luma */
	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
		VPE_CHAN_LUMA1_IN);
688 689 690 691
	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
		VPE_CHAN_LUMA2_IN);
	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
		VPE_CHAN_LUMA3_IN);
692 693 694 695

	/* frame start for input chroma */
	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
		VPE_CHAN_CHROMA1_IN);
696 697 698 699 700 701 702 703
	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
		VPE_CHAN_CHROMA2_IN);
	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
		VPE_CHAN_CHROMA3_IN);

	/* frame start for MV in client */
	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
		VPE_CHAN_MV_IN);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723

	ctx->load_mmrs = true;
}

/*
 * Set the shadow registers that are modified when the source
 * format changes.
 */
static void set_src_registers(struct vpe_ctx *ctx)
{
	set_us_coefficients(ctx);
}

/*
 * Set the shadow registers that are modified when the destination
 * format changes.
 */
static void set_dst_registers(struct vpe_ctx *ctx)
{
	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
724
	enum v4l2_colorspace clrspc = ctx->q_data[Q_DATA_DST].colorspace;
725 726 727
	struct vpe_fmt *fmt = ctx->q_data[Q_DATA_DST].fmt;
	u32 val = 0;

728 729
	if (clrspc == V4L2_COLORSPACE_SRGB)
		val |= VPE_RGB_OUT_SELECT;
730 731 732
	else if (fmt->fourcc == V4L2_PIX_FMT_NV16)
		val |= VPE_COLOR_SEPARATE_422;

733 734 735 736 737
	/*
	 * the source of CHR_DS and CSC is always the scaler, irrespective of
	 * whether it's used or not
	 */
	val |= VPE_DS_SRC_DEI_SCALER | VPE_CSC_SRC_DEI_SCALER;
738 739 740 741 742 743 744 745 746 747 748 749

	if (fmt->fourcc != V4L2_PIX_FMT_NV12)
		val |= VPE_DS_BYPASS;

	mmr_adb->out_fmt_reg[0] = val;

	ctx->load_mmrs = true;
}

/*
 * Set the de-interlacer shadow register values
 */
750
static void set_dei_regs(struct vpe_ctx *ctx)
751 752 753 754 755 756
{
	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
	struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
	unsigned int src_h = s_q_data->c_rect.height;
	unsigned int src_w = s_q_data->c_rect.width;
	u32 *dei_mmr0 = &mmr_adb->dei_regs[0];
757
	bool deinterlace = true;
758 759 760 761 762 763 764 765
	u32 val = 0;

	/*
	 * according to TRM, we should set DEI in progressive bypass mode when
	 * the input content is progressive, however, DEI is bypassed correctly
	 * for both progressive and interlace content in interlace bypass mode.
	 * It has been recommended not to use progressive bypass mode.
	 */
766 767 768 769 770 771 772
	if ((!ctx->deinterlacing && (s_q_data->flags & Q_DATA_INTERLACED)) ||
			!(s_q_data->flags & Q_DATA_INTERLACED)) {
		deinterlace = false;
		val = VPE_DEI_INTERLACE_BYPASS;
	}

	src_h = deinterlace ? src_h * 2 : src_h;
773 774 775 776 777 778 779 780 781 782

	val |= (src_h << VPE_DEI_HEIGHT_SHIFT) |
		(src_w << VPE_DEI_WIDTH_SHIFT) |
		VPE_DEI_FIELD_FLUSH;

	*dei_mmr0 = val;

	ctx->load_mmrs = true;
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
static void set_dei_shadow_registers(struct vpe_ctx *ctx)
{
	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
	u32 *dei_mmr = &mmr_adb->dei_regs[0];
	const struct vpe_dei_regs *cur = &dei_regs;

	dei_mmr[2]  = cur->mdt_spacial_freq_thr_reg;
	dei_mmr[3]  = cur->edi_config_reg;
	dei_mmr[4]  = cur->edi_lut_reg0;
	dei_mmr[5]  = cur->edi_lut_reg1;
	dei_mmr[6]  = cur->edi_lut_reg2;
	dei_mmr[7]  = cur->edi_lut_reg3;

	ctx->load_mmrs = true;
}

799 800 801 802 803 804
/*
 * Set the shadow registers whose values are modified when either the
 * source or destination format is changed.
 */
static int set_srcdst_params(struct vpe_ctx *ctx)
{
805 806
	struct vpe_q_data *s_q_data =  &ctx->q_data[Q_DATA_SRC];
	struct vpe_q_data *d_q_data =  &ctx->q_data[Q_DATA_DST];
807
	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
808 809 810 811
	unsigned int src_w = s_q_data->c_rect.width;
	unsigned int src_h = s_q_data->c_rect.height;
	unsigned int dst_w = d_q_data->c_rect.width;
	unsigned int dst_h = d_q_data->c_rect.height;
812 813 814
	size_t mv_buf_size;
	int ret;

815
	ctx->sequence = 0;
816 817 818 819
	ctx->field = V4L2_FIELD_TOP;

	if ((s_q_data->flags & Q_DATA_INTERLACED) &&
			!(d_q_data->flags & Q_DATA_INTERLACED)) {
820
		int bytes_per_line;
821 822 823
		const struct vpdma_data_format *mv =
			&vpdma_misc_fmts[VPDMA_DATA_FMT_MV];

824 825 826 827 828 829 830 831 832 833
		/*
		 * we make sure that the source image has a 16 byte aligned
		 * stride, we need to do the same for the motion vector buffer
		 * by aligning it's stride to the next 16 byte boundry. this
		 * extra space will not be used by the de-interlacer, but will
		 * ensure that vpdma operates correctly
		 */
		bytes_per_line = ALIGN((s_q_data->width * mv->depth) >> 3,
					VPDMA_STRIDE_ALIGN);
		mv_buf_size = bytes_per_line * s_q_data->height;
834 835 836

		ctx->deinterlacing = 1;
		src_h <<= 1;
837 838 839 840 841 842 843 844 845 846
	} else {
		ctx->deinterlacing = 0;
		mv_buf_size = 0;
	}

	free_vbs(ctx);

	ret = realloc_mv_buffers(ctx, mv_buf_size);
	if (ret)
		return ret;
847 848

	set_cfg_and_line_modes(ctx);
849
	set_dei_regs(ctx);
850

851 852
	csc_set_coeff(ctx->dev->csc, &mmr_adb->csc_regs[0],
		s_q_data->colorspace, d_q_data->colorspace);
853

854 855
	sc_set_hs_coeffs(ctx->dev->sc, ctx->sc_coeff_h.addr, src_w, dst_w);
	sc_set_vs_coeffs(ctx->dev->sc, ctx->sc_coeff_v.addr, src_h, dst_h);
856 857 858 859

	sc_config_scaler(ctx->dev->sc, &mmr_adb->sc_regs0[0],
		&mmr_adb->sc_regs8[0], &mmr_adb->sc_regs17[0],
		src_w, src_h, dst_w, dst_h);
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

	return 0;
}

/*
 * Return the vpe_ctx structure for a given struct file
 */
static struct vpe_ctx *file2ctx(struct file *file)
{
	return container_of(file->private_data, struct vpe_ctx, fh);
}

/*
 * mem2mem callbacks
 */

/**
 * job_ready() - check whether an instance is ready to be scheduled to run
 */
static int job_ready(void *priv)
{
	struct vpe_ctx *ctx = priv;
	int needed = ctx->bufs_per_job;

884 885 886
	if (ctx->deinterlacing && ctx->src_vbs[2] == NULL)
		needed += 2;	/* need additional two most recent fields */

887 888 889
	if (v4l2_m2m_num_src_bufs_ready(ctx->m2m_ctx) < needed)
		return 0;

890 891 892
	if (v4l2_m2m_num_dst_bufs_ready(ctx->m2m_ctx) < needed)
		return 0;

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	return 1;
}

static void job_abort(void *priv)
{
	struct vpe_ctx *ctx = priv;

	/* Will cancel the transaction in the next interrupt handler */
	ctx->aborting = 1;
}

/*
 * Lock access to the device
 */
static void vpe_lock(void *priv)
{
	struct vpe_ctx *ctx = priv;
	struct vpe_dev *dev = ctx->dev;
	mutex_lock(&dev->dev_mutex);
}

static void vpe_unlock(void *priv)
{
	struct vpe_ctx *ctx = priv;
	struct vpe_dev *dev = ctx->dev;
	mutex_unlock(&dev->dev_mutex);
}

static void vpe_dump_regs(struct vpe_dev *dev)
{
#define DUMPREG(r) vpe_dbg(dev, "%-35s %08x\n", #r, read_reg(dev, VPE_##r))

	vpe_dbg(dev, "VPE Registers:\n");

	DUMPREG(PID);
	DUMPREG(SYSCONFIG);
	DUMPREG(INT0_STATUS0_RAW);
	DUMPREG(INT0_STATUS0);
	DUMPREG(INT0_ENABLE0);
	DUMPREG(INT0_STATUS1_RAW);
	DUMPREG(INT0_STATUS1);
	DUMPREG(INT0_ENABLE1);
	DUMPREG(CLK_ENABLE);
	DUMPREG(CLK_RESET);
	DUMPREG(CLK_FORMAT_SELECT);
	DUMPREG(CLK_RANGE_MAP);
	DUMPREG(US1_R0);
	DUMPREG(US1_R1);
	DUMPREG(US1_R2);
	DUMPREG(US1_R3);
	DUMPREG(US1_R4);
	DUMPREG(US1_R5);
	DUMPREG(US1_R6);
	DUMPREG(US1_R7);
	DUMPREG(US2_R0);
	DUMPREG(US2_R1);
	DUMPREG(US2_R2);
	DUMPREG(US2_R3);
	DUMPREG(US2_R4);
	DUMPREG(US2_R5);
	DUMPREG(US2_R6);
	DUMPREG(US2_R7);
	DUMPREG(US3_R0);
	DUMPREG(US3_R1);
	DUMPREG(US3_R2);
	DUMPREG(US3_R3);
	DUMPREG(US3_R4);
	DUMPREG(US3_R5);
	DUMPREG(US3_R6);
	DUMPREG(US3_R7);
	DUMPREG(DEI_FRAME_SIZE);
	DUMPREG(MDT_BYPASS);
	DUMPREG(MDT_SF_THRESHOLD);
	DUMPREG(EDI_CONFIG);
	DUMPREG(DEI_EDI_LUT_R0);
	DUMPREG(DEI_EDI_LUT_R1);
	DUMPREG(DEI_EDI_LUT_R2);
	DUMPREG(DEI_EDI_LUT_R3);
	DUMPREG(DEI_FMD_WINDOW_R0);
	DUMPREG(DEI_FMD_WINDOW_R1);
	DUMPREG(DEI_FMD_CONTROL_R0);
	DUMPREG(DEI_FMD_CONTROL_R1);
	DUMPREG(DEI_FMD_STATUS_R0);
	DUMPREG(DEI_FMD_STATUS_R1);
	DUMPREG(DEI_FMD_STATUS_R2);
#undef DUMPREG
979 980

	sc_dump_regs(dev->sc);
981
	csc_dump_regs(dev->csc);
982 983 984 985 986 987 988 989 990 991
}

static void add_out_dtd(struct vpe_ctx *ctx, int port)
{
	struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_DST];
	const struct vpe_port_data *p_data = &port_data[port];
	struct vb2_buffer *vb = ctx->dst_vb;
	struct v4l2_rect *c_rect = &q_data->c_rect;
	struct vpe_fmt *fmt = q_data->fmt;
	const struct vpdma_data_format *vpdma_fmt;
992
	int mv_buf_selector = !ctx->src_mv_buf_selector;
993 994 995
	dma_addr_t dma_addr;
	u32 flags = 0;

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	if (port == VPE_PORT_MV_OUT) {
		vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
		dma_addr = ctx->mv_buf_dma[mv_buf_selector];
	} else {
		/* to incorporate interleaved formats */
		int plane = fmt->coplanar ? p_data->vb_part : 0;

		vpdma_fmt = fmt->vpdma_fmt[plane];
		dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
		if (!dma_addr) {
			vpe_err(ctx->dev,
				"acquiring output buffer(%d) dma_addr failed\n",
				port);
			return;
		}
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	}

	if (q_data->flags & Q_DATA_FRAME_1D)
		flags |= VPDMA_DATA_FRAME_1D;
	if (q_data->flags & Q_DATA_MODE_TILED)
		flags |= VPDMA_DATA_MODE_TILED;

	vpdma_add_out_dtd(&ctx->desc_list, c_rect, vpdma_fmt, dma_addr,
		p_data->channel, flags);
}

static void add_in_dtd(struct vpe_ctx *ctx, int port)
{
	struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_SRC];
	const struct vpe_port_data *p_data = &port_data[port];
1026
	struct vb2_buffer *vb = ctx->src_vbs[p_data->vb_index];
1027 1028 1029
	struct v4l2_rect *c_rect = &q_data->c_rect;
	struct vpe_fmt *fmt = q_data->fmt;
	const struct vpdma_data_format *vpdma_fmt;
1030 1031
	int mv_buf_selector = ctx->src_mv_buf_selector;
	int field = vb->v4l2_buf.field == V4L2_FIELD_BOTTOM;
1032 1033 1034
	dma_addr_t dma_addr;
	u32 flags = 0;

1035 1036 1037 1038 1039 1040
	if (port == VPE_PORT_MV_IN) {
		vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
		dma_addr = ctx->mv_buf_dma[mv_buf_selector];
	} else {
		/* to incorporate interleaved formats */
		int plane = fmt->coplanar ? p_data->vb_part : 0;
1041

1042 1043 1044 1045 1046 1047 1048 1049 1050
		vpdma_fmt = fmt->vpdma_fmt[plane];

		dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
		if (!dma_addr) {
			vpe_err(ctx->dev,
				"acquiring input buffer(%d) dma_addr failed\n",
				port);
			return;
		}
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	}

	if (q_data->flags & Q_DATA_FRAME_1D)
		flags |= VPDMA_DATA_FRAME_1D;
	if (q_data->flags & Q_DATA_MODE_TILED)
		flags |= VPDMA_DATA_MODE_TILED;

	vpdma_add_in_dtd(&ctx->desc_list, q_data->width, q_data->height,
		c_rect, vpdma_fmt, dma_addr, p_data->channel, field, flags);
}

/*
 * Enable the expected IRQ sources
 */
static void enable_irqs(struct vpe_ctx *ctx)
{
	write_reg(ctx->dev, VPE_INT0_ENABLE0_SET, VPE_INT0_LIST0_COMPLETE);
1068 1069
	write_reg(ctx->dev, VPE_INT0_ENABLE1_SET, VPE_DEI_ERROR_INT |
				VPE_DS1_UV_ERROR_INT);
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

	vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, true);
}

static void disable_irqs(struct vpe_ctx *ctx)
{
	write_reg(ctx->dev, VPE_INT0_ENABLE0_CLR, 0xffffffff);
	write_reg(ctx->dev, VPE_INT0_ENABLE1_CLR, 0xffffffff);

	vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, false);
}

/* device_run() - prepares and starts the device
 *
 * This function is only called when both the source and destination
 * buffers are in place.
 */
static void device_run(void *priv)
{
	struct vpe_ctx *ctx = priv;
1090
	struct sc_data *sc = ctx->dev->sc;
1091 1092
	struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];

1093 1094 1095 1096 1097 1098 1099 1100 1101
	if (ctx->deinterlacing && ctx->src_vbs[2] == NULL) {
		ctx->src_vbs[2] = v4l2_m2m_src_buf_remove(ctx->m2m_ctx);
		WARN_ON(ctx->src_vbs[2] == NULL);
		ctx->src_vbs[1] = v4l2_m2m_src_buf_remove(ctx->m2m_ctx);
		WARN_ON(ctx->src_vbs[1] == NULL);
	}

	ctx->src_vbs[0] = v4l2_m2m_src_buf_remove(ctx->m2m_ctx);
	WARN_ON(ctx->src_vbs[0] == NULL);
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	ctx->dst_vb = v4l2_m2m_dst_buf_remove(ctx->m2m_ctx);
	WARN_ON(ctx->dst_vb == NULL);

	/* config descriptors */
	if (ctx->dev->loaded_mmrs != ctx->mmr_adb.dma_addr || ctx->load_mmrs) {
		vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->mmr_adb);
		vpdma_add_cfd_adb(&ctx->desc_list, CFD_MMR_CLIENT, &ctx->mmr_adb);
		ctx->dev->loaded_mmrs = ctx->mmr_adb.dma_addr;
		ctx->load_mmrs = false;
	}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	if (sc->loaded_coeff_h != ctx->sc_coeff_h.dma_addr ||
			sc->load_coeff_h) {
		vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_h);
		vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
			&ctx->sc_coeff_h, 0);

		sc->loaded_coeff_h = ctx->sc_coeff_h.dma_addr;
		sc->load_coeff_h = false;
	}

	if (sc->loaded_coeff_v != ctx->sc_coeff_v.dma_addr ||
			sc->load_coeff_v) {
		vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_v);
		vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
			&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE >> 4);

		sc->loaded_coeff_v = ctx->sc_coeff_v.dma_addr;
		sc->load_coeff_v = false;
	}

1133 1134 1135 1136
	/* output data descriptors */
	if (ctx->deinterlacing)
		add_out_dtd(ctx, VPE_PORT_MV_OUT);

1137 1138 1139 1140 1141 1142 1143
	if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) {
		add_out_dtd(ctx, VPE_PORT_RGB_OUT);
	} else {
		add_out_dtd(ctx, VPE_PORT_LUMA_OUT);
		if (d_q_data->fmt->coplanar)
			add_out_dtd(ctx, VPE_PORT_CHROMA_OUT);
	}
1144

1145 1146 1147 1148 1149 1150 1151 1152 1153
	/* input data descriptors */
	if (ctx->deinterlacing) {
		add_in_dtd(ctx, VPE_PORT_LUMA3_IN);
		add_in_dtd(ctx, VPE_PORT_CHROMA3_IN);

		add_in_dtd(ctx, VPE_PORT_LUMA2_IN);
		add_in_dtd(ctx, VPE_PORT_CHROMA2_IN);
	}

1154 1155 1156
	add_in_dtd(ctx, VPE_PORT_LUMA1_IN);
	add_in_dtd(ctx, VPE_PORT_CHROMA1_IN);

1157 1158 1159
	if (ctx->deinterlacing)
		add_in_dtd(ctx, VPE_PORT_MV_IN);

1160 1161 1162 1163
	/* sync on channel control descriptors for input ports */
	vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_LUMA1_IN);
	vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_CHROMA1_IN);

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	if (ctx->deinterlacing) {
		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
			VPE_CHAN_LUMA2_IN);
		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
			VPE_CHAN_CHROMA2_IN);

		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
			VPE_CHAN_LUMA3_IN);
		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
			VPE_CHAN_CHROMA3_IN);

		vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_IN);
	}

1178
	/* sync on channel control descriptors for output ports */
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) {
		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
			VPE_CHAN_RGB_OUT);
	} else {
		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
			VPE_CHAN_LUMA_OUT);
		if (d_q_data->fmt->coplanar)
			vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
				VPE_CHAN_CHROMA_OUT);
	}
1189

1190 1191 1192
	if (ctx->deinterlacing)
		vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_OUT);

1193 1194 1195 1196 1197 1198
	enable_irqs(ctx);

	vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->desc_list.buf);
	vpdma_submit_descs(ctx->dev->vpdma, &ctx->desc_list);
}

1199 1200 1201 1202 1203 1204
static void dei_error(struct vpe_ctx *ctx)
{
	dev_warn(ctx->dev->v4l2_dev.dev,
		"received DEI error interrupt\n");
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
static void ds1_uv_error(struct vpe_ctx *ctx)
{
	dev_warn(ctx->dev->v4l2_dev.dev,
		"received downsampler error interrupt\n");
}

static irqreturn_t vpe_irq(int irq_vpe, void *data)
{
	struct vpe_dev *dev = (struct vpe_dev *)data;
	struct vpe_ctx *ctx;
1215
	struct vpe_q_data *d_q_data;
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	struct vb2_buffer *s_vb, *d_vb;
	struct v4l2_buffer *s_buf, *d_buf;
	unsigned long flags;
	u32 irqst0, irqst1;

	irqst0 = read_reg(dev, VPE_INT0_STATUS0);
	if (irqst0) {
		write_reg(dev, VPE_INT0_STATUS0_CLR, irqst0);
		vpe_dbg(dev, "INT0_STATUS0 = 0x%08x\n", irqst0);
	}

	irqst1 = read_reg(dev, VPE_INT0_STATUS1);
	if (irqst1) {
		write_reg(dev, VPE_INT0_STATUS1_CLR, irqst1);
		vpe_dbg(dev, "INT0_STATUS1 = 0x%08x\n", irqst1);
	}

	ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev);
	if (!ctx) {
		vpe_err(dev, "instance released before end of transaction\n");
		goto handled;
	}

1239 1240 1241 1242 1243 1244 1245 1246 1247
	if (irqst1) {
		if (irqst1 & VPE_DEI_ERROR_INT) {
			irqst1 &= ~VPE_DEI_ERROR_INT;
			dei_error(ctx);
		}
		if (irqst1 & VPE_DS1_UV_ERROR_INT) {
			irqst1 &= ~VPE_DS1_UV_ERROR_INT;
			ds1_uv_error(ctx);
		}
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	}

	if (irqst0) {
		if (irqst0 & VPE_INT0_LIST0_COMPLETE)
			vpdma_clear_list_stat(ctx->dev->vpdma);

		irqst0 &= ~(VPE_INT0_LIST0_COMPLETE);
	}

	if (irqst0 | irqst1) {
		dev_warn(dev->v4l2_dev.dev, "Unexpected interrupt: "
			"INT0_STATUS0 = 0x%08x, INT0_STATUS1 = 0x%08x\n",
			irqst0, irqst1);
	}

	disable_irqs(ctx);

	vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf);
	vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb);
1267 1268
	vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h);
	vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v);
1269 1270 1271

	vpdma_reset_desc_list(&ctx->desc_list);

1272 1273 1274
	 /* the previous dst mv buffer becomes the next src mv buffer */
	ctx->src_mv_buf_selector = !ctx->src_mv_buf_selector;

1275 1276 1277
	if (ctx->aborting)
		goto finished;

1278
	s_vb = ctx->src_vbs[0];
1279 1280 1281 1282
	d_vb = ctx->dst_vb;
	s_buf = &s_vb->v4l2_buf;
	d_buf = &d_vb->v4l2_buf;

1283 1284
	d_buf->flags = s_buf->flags;

1285
	d_buf->timestamp = s_buf->timestamp;
1286
	if (s_buf->flags & V4L2_BUF_FLAG_TIMECODE)
1287
		d_buf->timecode = s_buf->timecode;
1288

1289
	d_buf->sequence = ctx->sequence;
1290 1291 1292

	d_q_data = &ctx->q_data[Q_DATA_DST];
	if (d_q_data->flags & Q_DATA_INTERLACED) {
1293
		d_buf->field = ctx->field;
1294 1295 1296 1297 1298 1299 1300 1301
		if (ctx->field == V4L2_FIELD_BOTTOM) {
			ctx->sequence++;
			ctx->field = V4L2_FIELD_TOP;
		} else {
			WARN_ON(ctx->field != V4L2_FIELD_TOP);
			ctx->field = V4L2_FIELD_BOTTOM;
		}
	} else {
1302
		d_buf->field = V4L2_FIELD_NONE;
1303 1304
		ctx->sequence++;
	}
1305

1306 1307
	if (ctx->deinterlacing)
		s_vb = ctx->src_vbs[2];
1308 1309 1310 1311 1312 1313

	spin_lock_irqsave(&dev->lock, flags);
	v4l2_m2m_buf_done(s_vb, VB2_BUF_STATE_DONE);
	v4l2_m2m_buf_done(d_vb, VB2_BUF_STATE_DONE);
	spin_unlock_irqrestore(&dev->lock, flags);

1314 1315 1316 1317 1318
	if (ctx->deinterlacing) {
		ctx->src_vbs[2] = ctx->src_vbs[1];
		ctx->src_vbs[1] = ctx->src_vbs[0];
	}

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	ctx->bufs_completed++;
	if (ctx->bufs_completed < ctx->bufs_per_job) {
		device_run(ctx);
		goto handled;
	}

finished:
	vpe_dbg(ctx->dev, "finishing transaction\n");
	ctx->bufs_completed = 0;
	v4l2_m2m_job_finish(dev->m2m_dev, ctx->m2m_ctx);
handled:
	return IRQ_HANDLED;
}

/*
 * video ioctls
 */
static int vpe_querycap(struct file *file, void *priv,
			struct v4l2_capability *cap)
{
	strncpy(cap->driver, VPE_MODULE_NAME, sizeof(cap->driver) - 1);
	strncpy(cap->card, VPE_MODULE_NAME, sizeof(cap->card) - 1);
1341 1342
	snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
		VPE_MODULE_NAME);
1343
	cap->device_caps  = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
	return 0;
}

static int __enum_fmt(struct v4l2_fmtdesc *f, u32 type)
{
	int i, index;
	struct vpe_fmt *fmt = NULL;

	index = 0;
	for (i = 0; i < ARRAY_SIZE(vpe_formats); ++i) {
		if (vpe_formats[i].types & type) {
			if (index == f->index) {
				fmt = &vpe_formats[i];
				break;
			}
			index++;
		}
	}

	if (!fmt)
		return -EINVAL;

	strncpy(f->description, fmt->name, sizeof(f->description) - 1);
	f->pixelformat = fmt->fourcc;
	return 0;
}

static int vpe_enum_fmt(struct file *file, void *priv,
				struct v4l2_fmtdesc *f)
{
	if (V4L2_TYPE_IS_OUTPUT(f->type))
		return __enum_fmt(f, VPE_FMT_TYPE_OUTPUT);

	return __enum_fmt(f, VPE_FMT_TYPE_CAPTURE);
}

static int vpe_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
{
	struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
	struct vpe_ctx *ctx = file2ctx(file);
	struct vb2_queue *vq;
	struct vpe_q_data *q_data;
	int i;

	vq = v4l2_m2m_get_vq(ctx->m2m_ctx, f->type);
	if (!vq)
		return -EINVAL;

	q_data = get_q_data(ctx, f->type);

	pix->width = q_data->width;
	pix->height = q_data->height;
	pix->pixelformat = q_data->fmt->fourcc;
1398
	pix->field = q_data->field;
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425

	if (V4L2_TYPE_IS_OUTPUT(f->type)) {
		pix->colorspace = q_data->colorspace;
	} else {
		struct vpe_q_data *s_q_data;

		/* get colorspace from the source queue */
		s_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);

		pix->colorspace = s_q_data->colorspace;
	}

	pix->num_planes = q_data->fmt->coplanar ? 2 : 1;

	for (i = 0; i < pix->num_planes; i++) {
		pix->plane_fmt[i].bytesperline = q_data->bytesperline[i];
		pix->plane_fmt[i].sizeimage = q_data->sizeimage[i];
	}

	return 0;
}

static int __vpe_try_fmt(struct vpe_ctx *ctx, struct v4l2_format *f,
		       struct vpe_fmt *fmt, int type)
{
	struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
	struct v4l2_plane_pix_format *plane_fmt;
1426 1427
	unsigned int w_align;
	int i, depth, depth_bytes;
1428 1429 1430 1431 1432 1433 1434

	if (!fmt || !(fmt->types & type)) {
		vpe_err(ctx->dev, "Fourcc format (0x%08x) invalid.\n",
			pix->pixelformat);
		return -EINVAL;
	}

1435 1436
	if (pix->field != V4L2_FIELD_NONE && pix->field != V4L2_FIELD_ALTERNATE)
		pix->field = V4L2_FIELD_NONE;
1437

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	depth = fmt->vpdma_fmt[VPE_LUMA]->depth;

	/*
	 * the line stride should 16 byte aligned for VPDMA to work, based on
	 * the bytes per pixel, figure out how much the width should be aligned
	 * to make sure line stride is 16 byte aligned
	 */
	depth_bytes = depth >> 3;

	if (depth_bytes == 3)
		/*
		 * if bpp is 3(as in some RGB formats), the pixel width doesn't
		 * really help in ensuring line stride is 16 byte aligned
		 */
		w_align = 4;
	else
		/*
		 * for the remainder bpp(4, 2 and 1), the pixel width alignment
		 * can ensure a line stride alignment of 16 bytes. For example,
		 * if bpp is 2, then the line stride can be 16 byte aligned if
		 * the width is 8 byte aligned
		 */
		w_align = order_base_2(VPDMA_DESC_ALIGN / depth_bytes);

	v4l_bound_align_image(&pix->width, MIN_W, MAX_W, w_align,
1463 1464 1465 1466 1467 1468
			      &pix->height, MIN_H, MAX_H, H_ALIGN,
			      S_ALIGN);

	pix->num_planes = fmt->coplanar ? 2 : 1;
	pix->pixelformat = fmt->fourcc;

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	if (!pix->colorspace) {
		if (fmt->fourcc == V4L2_PIX_FMT_RGB24 ||
				fmt->fourcc == V4L2_PIX_FMT_BGR24 ||
				fmt->fourcc == V4L2_PIX_FMT_RGB32 ||
				fmt->fourcc == V4L2_PIX_FMT_BGR32) {
			pix->colorspace = V4L2_COLORSPACE_SRGB;
		} else {
			if (pix->height > 1280)	/* HD */
				pix->colorspace = V4L2_COLORSPACE_REC709;
			else			/* SD */
				pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
		}
1481 1482
	}

1483
	memset(pix->reserved, 0, sizeof(pix->reserved));
1484 1485 1486 1487 1488
	for (i = 0; i < pix->num_planes; i++) {
		plane_fmt = &pix->plane_fmt[i];
		depth = fmt->vpdma_fmt[i]->depth;

		if (i == VPE_LUMA)
1489
			plane_fmt->bytesperline = (pix->width * depth) >> 3;
1490 1491 1492 1493 1494
		else
			plane_fmt->bytesperline = pix->width;

		plane_fmt->sizeimage =
				(pix->height * pix->width * depth) >> 3;
1495 1496

		memset(plane_fmt->reserved, 0, sizeof(plane_fmt->reserved));
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	}

	return 0;
}

static int vpe_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
{
	struct vpe_ctx *ctx = file2ctx(file);
	struct vpe_fmt *fmt = find_format(f);

	if (V4L2_TYPE_IS_OUTPUT(f->type))
		return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_OUTPUT);
	else
		return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_CAPTURE);
}

static int __vpe_s_fmt(struct vpe_ctx *ctx, struct v4l2_format *f)
{
	struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
	struct v4l2_plane_pix_format *plane_fmt;
	struct vpe_q_data *q_data;
	struct vb2_queue *vq;
	int i;

	vq = v4l2_m2m_get_vq(ctx->m2m_ctx, f->type);
	if (!vq)
		return -EINVAL;

	if (vb2_is_busy(vq)) {
		vpe_err(ctx->dev, "queue busy\n");
		return -EBUSY;
	}

	q_data = get_q_data(ctx, f->type);
	if (!q_data)
		return -EINVAL;

	q_data->fmt		= find_format(f);
	q_data->width		= pix->width;
	q_data->height		= pix->height;
	q_data->colorspace	= pix->colorspace;
1538
	q_data->field		= pix->field;
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

	for (i = 0; i < pix->num_planes; i++) {
		plane_fmt = &pix->plane_fmt[i];

		q_data->bytesperline[i]	= plane_fmt->bytesperline;
		q_data->sizeimage[i]	= plane_fmt->sizeimage;
	}

	q_data->c_rect.left	= 0;
	q_data->c_rect.top	= 0;
	q_data->c_rect.width	= q_data->width;
	q_data->c_rect.height	= q_data->height;

1552 1553 1554 1555 1556
	if (q_data->field == V4L2_FIELD_ALTERNATE)
		q_data->flags |= Q_DATA_INTERLACED;
	else
		q_data->flags &= ~Q_DATA_INTERLACED;

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	vpe_dbg(ctx->dev, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d",
		f->type, q_data->width, q_data->height, q_data->fmt->fourcc,
		q_data->bytesperline[VPE_LUMA]);
	if (q_data->fmt->coplanar)
		vpe_dbg(ctx->dev, " bpl_uv %d\n",
			q_data->bytesperline[VPE_CHROMA]);

	return 0;
}

static int vpe_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
{
	int ret;
	struct vpe_ctx *ctx = file2ctx(file);

	ret = vpe_try_fmt(file, priv, f);
	if (ret)
		return ret;

	ret = __vpe_s_fmt(ctx, f);
	if (ret)
		return ret;

	if (V4L2_TYPE_IS_OUTPUT(f->type))
		set_src_registers(ctx);
	else
		set_dst_registers(ctx);

	return set_srcdst_params(ctx);
}

static int vpe_reqbufs(struct file *file, void *priv,
		       struct v4l2_requestbuffers *reqbufs)
{
	struct vpe_ctx *ctx = file2ctx(file);

	return v4l2_m2m_reqbufs(file, ctx->m2m_ctx, reqbufs);
}

static int vpe_querybuf(struct file *file, void *priv, struct v4l2_buffer *buf)
{
	struct vpe_ctx *ctx = file2ctx(file);

	return v4l2_m2m_querybuf(file, ctx->m2m_ctx, buf);
}

static int vpe_qbuf(struct file *file, void *priv, struct v4l2_buffer *buf)
{
	struct vpe_ctx *ctx = file2ctx(file);

	return v4l2_m2m_qbuf(file, ctx->m2m_ctx, buf);
}

static int vpe_dqbuf(struct file *file, void *priv, struct v4l2_buffer *buf)
{
	struct vpe_ctx *ctx = file2ctx(file);

	return v4l2_m2m_dqbuf(file, ctx->m2m_ctx, buf);
}

static int vpe_streamon(struct file *file, void *priv, enum v4l2_buf_type type)
{
	struct vpe_ctx *ctx = file2ctx(file);

	return v4l2_m2m_streamon(file, ctx->m2m_ctx, type);
}

static int vpe_streamoff(struct file *file, void *priv, enum v4l2_buf_type type)
{
	struct vpe_ctx *ctx = file2ctx(file);

	vpe_dump_regs(ctx->dev);
	vpdma_dump_regs(ctx->dev->vpdma);

	return v4l2_m2m_streamoff(file, ctx->m2m_ctx, type);
}

/*
 * defines number of buffers/frames a context can process with VPE before
 * switching to a different context. default value is 1 buffer per context
 */
#define V4L2_CID_VPE_BUFS_PER_JOB		(V4L2_CID_USER_TI_VPE_BASE + 0)

static int vpe_s_ctrl(struct v4l2_ctrl *ctrl)
{
	struct vpe_ctx *ctx =
		container_of(ctrl->handler, struct vpe_ctx, hdl);

	switch (ctrl->id) {
	case V4L2_CID_VPE_BUFS_PER_JOB:
		ctx->bufs_per_job = ctrl->val;
		break;

	default:
		vpe_err(ctx->dev, "Invalid control\n");
		return -EINVAL;
	}

	return 0;
}

static const struct v4l2_ctrl_ops vpe_ctrl_ops = {
	.s_ctrl = vpe_s_ctrl,
};

static const struct v4l2_ioctl_ops vpe_ioctl_ops = {
	.vidioc_querycap	= vpe_querycap,

	.vidioc_enum_fmt_vid_cap_mplane = vpe_enum_fmt,
	.vidioc_g_fmt_vid_cap_mplane	= vpe_g_fmt,
	.vidioc_try_fmt_vid_cap_mplane	= vpe_try_fmt,
	.vidioc_s_fmt_vid_cap_mplane	= vpe_s_fmt,

	.vidioc_enum_fmt_vid_out_mplane = vpe_enum_fmt,
	.vidioc_g_fmt_vid_out_mplane	= vpe_g_fmt,
	.vidioc_try_fmt_vid_out_mplane	= vpe_try_fmt,
	.vidioc_s_fmt_vid_out_mplane	= vpe_s_fmt,

	.vidioc_reqbufs		= vpe_reqbufs,
	.vidioc_querybuf	= vpe_querybuf,

	.vidioc_qbuf		= vpe_qbuf,
	.vidioc_dqbuf		= vpe_dqbuf,

	.vidioc_streamon	= vpe_streamon,
	.vidioc_streamoff	= vpe_streamoff,
	.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
	.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};

/*
 * Queue operations
 */
static int vpe_queue_setup(struct vb2_queue *vq,
			   const struct v4l2_format *fmt,
			   unsigned int *nbuffers, unsigned int *nplanes,
			   unsigned int sizes[], void *alloc_ctxs[])
{
	int i;
	struct vpe_ctx *ctx = vb2_get_drv_priv(vq);
	struct vpe_q_data *q_data;

	q_data = get_q_data(ctx, vq->type);

	*nplanes = q_data->fmt->coplanar ? 2 : 1;

	for (i = 0; i < *nplanes; i++) {
		sizes[i] = q_data->sizeimage[i];
		alloc_ctxs[i] = ctx->dev->alloc_ctx;
	}

	vpe_dbg(ctx->dev, "get %d buffer(s) of size %d", *nbuffers,
		sizes[VPE_LUMA]);
	if (q_data->fmt->coplanar)
		vpe_dbg(ctx->dev, " and %d\n", sizes[VPE_CHROMA]);

	return 0;
}

static int vpe_buf_prepare(struct vb2_buffer *vb)
{
	struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
	struct vpe_q_data *q_data;
	int i, num_planes;

	vpe_dbg(ctx->dev, "type: %d\n", vb->vb2_queue->type);

	q_data = get_q_data(ctx, vb->vb2_queue->type);
	num_planes = q_data->fmt->coplanar ? 2 : 1;

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	if (vb->vb2_queue->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
		if (!(q_data->flags & Q_DATA_INTERLACED)) {
			vb->v4l2_buf.field = V4L2_FIELD_NONE;
		} else {
			if (vb->v4l2_buf.field != V4L2_FIELD_TOP &&
					vb->v4l2_buf.field != V4L2_FIELD_BOTTOM)
				return -EINVAL;
		}
	}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
	for (i = 0; i < num_planes; i++) {
		if (vb2_plane_size(vb, i) < q_data->sizeimage[i]) {
			vpe_err(ctx->dev,
				"data will not fit into plane (%lu < %lu)\n",
				vb2_plane_size(vb, i),
				(long) q_data->sizeimage[i]);
			return -EINVAL;
		}
	}

	for (i = 0; i < num_planes; i++)
		vb2_set_plane_payload(vb, i, q_data->sizeimage[i]);

	return 0;
}

static void vpe_buf_queue(struct vb2_buffer *vb)
{
	struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
	v4l2_m2m_buf_queue(ctx->m2m_ctx, vb);
}

static void vpe_wait_prepare(struct vb2_queue *q)
{
	struct vpe_ctx *ctx = vb2_get_drv_priv(q);
	vpe_unlock(ctx);
}

static void vpe_wait_finish(struct vb2_queue *q)
{
	struct vpe_ctx *ctx = vb2_get_drv_priv(q);
	vpe_lock(ctx);
}

static struct vb2_ops vpe_qops = {
	.queue_setup	 = vpe_queue_setup,
	.buf_prepare	 = vpe_buf_prepare,
	.buf_queue	 = vpe_buf_queue,
	.wait_prepare	 = vpe_wait_prepare,
	.wait_finish	 = vpe_wait_finish,
};

static int queue_init(void *priv, struct vb2_queue *src_vq,
		      struct vb2_queue *dst_vq)
{
	struct vpe_ctx *ctx = priv;
	int ret;

	memset(src_vq, 0, sizeof(*src_vq));
	src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
	src_vq->io_modes = VB2_MMAP;
	src_vq->drv_priv = ctx;
	src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
	src_vq->ops = &vpe_qops;
	src_vq->mem_ops = &vb2_dma_contig_memops;
1792
	src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804

	ret = vb2_queue_init(src_vq);
	if (ret)
		return ret;

	memset(dst_vq, 0, sizeof(*dst_vq));
	dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
	dst_vq->io_modes = VB2_MMAP;
	dst_vq->drv_priv = ctx;
	dst_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
	dst_vq->ops = &vpe_qops;
	dst_vq->mem_ops = &vb2_dma_contig_memops;
1805
	dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858

	return vb2_queue_init(dst_vq);
}

static const struct v4l2_ctrl_config vpe_bufs_per_job = {
	.ops = &vpe_ctrl_ops,
	.id = V4L2_CID_VPE_BUFS_PER_JOB,
	.name = "Buffers Per Transaction",
	.type = V4L2_CTRL_TYPE_INTEGER,
	.def = VPE_DEF_BUFS_PER_JOB,
	.min = 1,
	.max = VIDEO_MAX_FRAME,
	.step = 1,
};

/*
 * File operations
 */
static int vpe_open(struct file *file)
{
	struct vpe_dev *dev = video_drvdata(file);
	struct vpe_ctx *ctx = NULL;
	struct vpe_q_data *s_q_data;
	struct v4l2_ctrl_handler *hdl;
	int ret;

	vpe_dbg(dev, "vpe_open\n");

	if (!dev->vpdma->ready) {
		vpe_err(dev, "vpdma firmware not loaded\n");
		return -ENODEV;
	}

	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
	if (!ctx)
		return -ENOMEM;

	ctx->dev = dev;

	if (mutex_lock_interruptible(&dev->dev_mutex)) {
		ret = -ERESTARTSYS;
		goto free_ctx;
	}

	ret = vpdma_create_desc_list(&ctx->desc_list, VPE_DESC_LIST_SIZE,
			VPDMA_LIST_TYPE_NORMAL);
	if (ret != 0)
		goto unlock;

	ret = vpdma_alloc_desc_buf(&ctx->mmr_adb, sizeof(struct vpe_mmr_adb));
	if (ret != 0)
		goto free_desc_list;

1859 1860 1861 1862 1863 1864 1865 1866
	ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_h, SC_COEF_SRAM_SIZE);
	if (ret != 0)
		goto free_mmr_adb;

	ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE);
	if (ret != 0)
		goto free_sc_h;

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	init_adb_hdrs(ctx);

	v4l2_fh_init(&ctx->fh, video_devdata(file));
	file->private_data = &ctx->fh;

	hdl = &ctx->hdl;
	v4l2_ctrl_handler_init(hdl, 1);
	v4l2_ctrl_new_custom(hdl, &vpe_bufs_per_job, NULL);
	if (hdl->error) {
		ret = hdl->error;
		goto exit_fh;
	}
	ctx->fh.ctrl_handler = hdl;
	v4l2_ctrl_handler_setup(hdl);

	s_q_data = &ctx->q_data[Q_DATA_SRC];
	s_q_data->fmt = &vpe_formats[2];
	s_q_data->width = 1920;
	s_q_data->height = 1080;
1886
	s_q_data->bytesperline[VPE_LUMA] = (s_q_data->width *
1887
			s_q_data->fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
1888 1889 1890
	s_q_data->sizeimage[VPE_LUMA] = (s_q_data->bytesperline[VPE_LUMA] *
			s_q_data->height);
	s_q_data->colorspace = V4L2_COLORSPACE_REC709;
1891
	s_q_data->field = V4L2_FIELD_NONE;
1892 1893 1894 1895 1896 1897 1898 1899
	s_q_data->c_rect.left = 0;
	s_q_data->c_rect.top = 0;
	s_q_data->c_rect.width = s_q_data->width;
	s_q_data->c_rect.height = s_q_data->height;
	s_q_data->flags = 0;

	ctx->q_data[Q_DATA_DST] = *s_q_data;

1900
	set_dei_shadow_registers(ctx);
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	set_src_registers(ctx);
	set_dst_registers(ctx);
	ret = set_srcdst_params(ctx);
	if (ret)
		goto exit_fh;

	ctx->m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx, &queue_init);

	if (IS_ERR(ctx->m2m_ctx)) {
		ret = PTR_ERR(ctx->m2m_ctx);
		goto exit_fh;
	}

	v4l2_fh_add(&ctx->fh);

	/*
	 * for now, just report the creation of the first instance, we can later
	 * optimize the driver to enable or disable clocks when the first
	 * instance is created or the last instance released
	 */
	if (atomic_inc_return(&dev->num_instances) == 1)
		vpe_dbg(dev, "first instance created\n");

	ctx->bufs_per_job = VPE_DEF_BUFS_PER_JOB;

	ctx->load_mmrs = true;

	vpe_dbg(dev, "created instance %p, m2m_ctx: %p\n",
		ctx, ctx->m2m_ctx);

	mutex_unlock(&dev->dev_mutex);

	return 0;
exit_fh:
	v4l2_ctrl_handler_free(hdl);
	v4l2_fh_exit(&ctx->fh);
1937 1938 1939 1940
	vpdma_free_desc_buf(&ctx->sc_coeff_v);
free_sc_h:
	vpdma_free_desc_buf(&ctx->sc_coeff_h);
free_mmr_adb:
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	vpdma_free_desc_buf(&ctx->mmr_adb);
free_desc_list:
	vpdma_free_desc_list(&ctx->desc_list);
unlock:
	mutex_unlock(&dev->dev_mutex);
free_ctx:
	kfree(ctx);
	return ret;
}

static int vpe_release(struct file *file)
{
	struct vpe_dev *dev = video_drvdata(file);
	struct vpe_ctx *ctx = file2ctx(file);

	vpe_dbg(dev, "releasing instance %p\n", ctx);

	mutex_lock(&dev->dev_mutex);
1959 1960
	free_vbs(ctx);
	free_mv_buffers(ctx);
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	vpdma_free_desc_list(&ctx->desc_list);
	vpdma_free_desc_buf(&ctx->mmr_adb);

	v4l2_fh_del(&ctx->fh);
	v4l2_fh_exit(&ctx->fh);
	v4l2_ctrl_handler_free(&ctx->hdl);
	v4l2_m2m_ctx_release(ctx->m2m_ctx);

	kfree(ctx);

	/*
	 * for now, just report the release of the last instance, we can later
	 * optimize the driver to enable or disable clocks when the first
	 * instance is created or the last instance released
	 */
	if (atomic_dec_return(&dev->num_instances) == 0)
		vpe_dbg(dev, "last instance released\n");

	mutex_unlock(&dev->dev_mutex);

	return 0;
}

static unsigned int vpe_poll(struct file *file,
			     struct poll_table_struct *wait)
{
	struct vpe_ctx *ctx = file2ctx(file);
	struct vpe_dev *dev = ctx->dev;
	int ret;

	mutex_lock(&dev->dev_mutex);
	ret = v4l2_m2m_poll(file, ctx->m2m_ctx, wait);
	mutex_unlock(&dev->dev_mutex);
	return ret;
}

static int vpe_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct vpe_ctx *ctx = file2ctx(file);
	struct vpe_dev *dev = ctx->dev;
	int ret;

	if (mutex_lock_interruptible(&dev->dev_mutex))
		return -ERESTARTSYS;
	ret = v4l2_m2m_mmap(file, ctx->m2m_ctx, vma);
	mutex_unlock(&dev->dev_mutex);
	return ret;
}

static const struct v4l2_file_operations vpe_fops = {
	.owner		= THIS_MODULE,
	.open		= vpe_open,
	.release	= vpe_release,
	.poll		= vpe_poll,
	.unlocked_ioctl	= video_ioctl2,
	.mmap		= vpe_mmap,
};

static struct video_device vpe_videodev = {
	.name		= VPE_MODULE_NAME,
	.fops		= &vpe_fops,
	.ioctl_ops	= &vpe_ioctl_ops,
	.minor		= -1,
2024
	.release	= video_device_release_empty,
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	.vfl_dir	= VFL_DIR_M2M,
};

static struct v4l2_m2m_ops m2m_ops = {
	.device_run	= device_run,
	.job_ready	= job_ready,
	.job_abort	= job_abort,
	.lock		= vpe_lock,
	.unlock		= vpe_unlock,
};

static int vpe_runtime_get(struct platform_device *pdev)
{
	int r;

	dev_dbg(&pdev->dev, "vpe_runtime_get\n");

	r = pm_runtime_get_sync(&pdev->dev);
	WARN_ON(r < 0);
	return r < 0 ? r : 0;
}

static void vpe_runtime_put(struct platform_device *pdev)
{

	int r;

	dev_dbg(&pdev->dev, "vpe_runtime_put\n");

	r = pm_runtime_put_sync(&pdev->dev);
	WARN_ON(r < 0 && r != -ENOSYS);
}

static int vpe_probe(struct platform_device *pdev)
{
	struct vpe_dev *dev;
	struct video_device *vfd;
	int ret, irq, func;

	dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
2065 2066
	if (!dev)
		return -ENOMEM;
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076

	spin_lock_init(&dev->lock);

	ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
	if (ret)
		return ret;

	atomic_set(&dev->num_instances, 0);
	mutex_init(&dev->dev_mutex);

2077 2078
	dev->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
			"vpe_top");
2079 2080 2081 2082 2083 2084
	/*
	 * HACK: we get resource info from device tree in the form of a list of
	 * VPE sub blocks, the driver currently uses only the base of vpe_top
	 * for register access, the driver should be changed later to access
	 * registers based on the sub block base addresses
	 */
2085
	dev->base = devm_ioremap(&pdev->dev, dev->res->start, SZ_32K);
2086 2087
	if (!dev->base) {
		ret = -ENOMEM;
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
		goto v4l2_dev_unreg;
	}

	irq = platform_get_irq(pdev, 0);
	ret = devm_request_irq(&pdev->dev, irq, vpe_irq, 0, VPE_MODULE_NAME,
			dev);
	if (ret)
		goto v4l2_dev_unreg;

	platform_set_drvdata(pdev, dev);

	dev->alloc_ctx = vb2_dma_contig_init_ctx(&pdev->dev);
	if (IS_ERR(dev->alloc_ctx)) {
		vpe_err(dev, "Failed to alloc vb2 context\n");
		ret = PTR_ERR(dev->alloc_ctx);
		goto v4l2_dev_unreg;
	}

	dev->m2m_dev = v4l2_m2m_init(&m2m_ops);
	if (IS_ERR(dev->m2m_dev)) {
		vpe_err(dev, "Failed to init mem2mem device\n");
		ret = PTR_ERR(dev->m2m_dev);
		goto rel_ctx;
	}

	pm_runtime_enable(&pdev->dev);

	ret = vpe_runtime_get(pdev);
	if (ret)
		goto rel_m2m;

	/* Perform clk enable followed by reset */
	vpe_set_clock_enable(dev, 1);

	vpe_top_reset(dev);

	func = read_field_reg(dev, VPE_PID, VPE_PID_FUNC_MASK,
		VPE_PID_FUNC_SHIFT);
	vpe_dbg(dev, "VPE PID function %x\n", func);

	vpe_top_vpdma_reset(dev);

2130 2131 2132 2133 2134 2135
	dev->sc = sc_create(pdev);
	if (IS_ERR(dev->sc)) {
		ret = PTR_ERR(dev->sc);
		goto runtime_put;
	}

2136 2137 2138 2139 2140 2141
	dev->csc = csc_create(pdev);
	if (IS_ERR(dev->csc)) {
		ret = PTR_ERR(dev->csc);
		goto runtime_put;
	}

2142
	dev->vpdma = vpdma_create(pdev);
2143 2144
	if (IS_ERR(dev->vpdma)) {
		ret = PTR_ERR(dev->vpdma);
2145
		goto runtime_put;
2146
	}
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218

	vfd = &dev->vfd;
	*vfd = vpe_videodev;
	vfd->lock = &dev->dev_mutex;
	vfd->v4l2_dev = &dev->v4l2_dev;

	ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
	if (ret) {
		vpe_err(dev, "Failed to register video device\n");
		goto runtime_put;
	}

	video_set_drvdata(vfd, dev);
	snprintf(vfd->name, sizeof(vfd->name), "%s", vpe_videodev.name);
	dev_info(dev->v4l2_dev.dev, "Device registered as /dev/video%d\n",
		vfd->num);

	return 0;

runtime_put:
	vpe_runtime_put(pdev);
rel_m2m:
	pm_runtime_disable(&pdev->dev);
	v4l2_m2m_release(dev->m2m_dev);
rel_ctx:
	vb2_dma_contig_cleanup_ctx(dev->alloc_ctx);
v4l2_dev_unreg:
	v4l2_device_unregister(&dev->v4l2_dev);

	return ret;
}

static int vpe_remove(struct platform_device *pdev)
{
	struct vpe_dev *dev =
		(struct vpe_dev *) platform_get_drvdata(pdev);

	v4l2_info(&dev->v4l2_dev, "Removing " VPE_MODULE_NAME);

	v4l2_m2m_release(dev->m2m_dev);
	video_unregister_device(&dev->vfd);
	v4l2_device_unregister(&dev->v4l2_dev);
	vb2_dma_contig_cleanup_ctx(dev->alloc_ctx);

	vpe_set_clock_enable(dev, 0);
	vpe_runtime_put(pdev);
	pm_runtime_disable(&pdev->dev);

	return 0;
}

#if defined(CONFIG_OF)
static const struct of_device_id vpe_of_match[] = {
	{
		.compatible = "ti,vpe",
	},
	{},
};
#else
#define vpe_of_match NULL
#endif

static struct platform_driver vpe_pdrv = {
	.probe		= vpe_probe,
	.remove		= vpe_remove,
	.driver		= {
		.name	= VPE_MODULE_NAME,
		.owner	= THIS_MODULE,
		.of_match_table = vpe_of_match,
	},
};

2219
module_platform_driver(vpe_pdrv);
2220 2221 2222 2223

MODULE_DESCRIPTION("TI VPE driver");
MODULE_AUTHOR("Dale Farnsworth, <dale@farnsworth.org>");
MODULE_LICENSE("GPL");