rsa.c 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* RSA asymmetric public-key algorithm [RFC3447]
 *
 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public Licence
 * as published by the Free Software Foundation; either version
 * 2 of the Licence, or (at your option) any later version.
 */

#define pr_fmt(fmt) "RSA: "fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
16
#include <crypto/algapi.h>
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
#include "public_key.h"

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("RSA Public Key Algorithm");

#define kenter(FMT, ...) \
	pr_devel("==> %s("FMT")\n", __func__, ##__VA_ARGS__)
#define kleave(FMT, ...) \
	pr_devel("<== %s()"FMT"\n", __func__, ##__VA_ARGS__)

/*
 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2].
 */
static const u8 RSA_digest_info_MD5[] = {
	0x30, 0x20, 0x30, 0x0C, 0x06, 0x08,
	0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x05, /* OID */
	0x05, 0x00, 0x04, 0x10
};

static const u8 RSA_digest_info_SHA1[] = {
	0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
	0x2B, 0x0E, 0x03, 0x02, 0x1A,
	0x05, 0x00, 0x04, 0x14
};

static const u8 RSA_digest_info_RIPE_MD_160[] = {
	0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
	0x2B, 0x24, 0x03, 0x02, 0x01,
	0x05, 0x00, 0x04, 0x14
};

static const u8 RSA_digest_info_SHA224[] = {
	0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09,
	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04,
	0x05, 0x00, 0x04, 0x1C
};

static const u8 RSA_digest_info_SHA256[] = {
	0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,
	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
	0x05, 0x00, 0x04, 0x20
};

static const u8 RSA_digest_info_SHA384[] = {
	0x30, 0x41, 0x30, 0x0d, 0x06, 0x09,
	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
	0x05, 0x00, 0x04, 0x30
};

static const u8 RSA_digest_info_SHA512[] = {
	0x30, 0x51, 0x30, 0x0d, 0x06, 0x09,
	0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
	0x05, 0x00, 0x04, 0x40
};

static const struct {
	const u8 *data;
	size_t size;
} RSA_ASN1_templates[PKEY_HASH__LAST] = {
#define _(X) { RSA_digest_info_##X, sizeof(RSA_digest_info_##X) }
77 78 79 80 81 82 83
	[HASH_ALGO_MD5]		= _(MD5),
	[HASH_ALGO_SHA1]	= _(SHA1),
	[HASH_ALGO_RIPE_MD_160]	= _(RIPE_MD_160),
	[HASH_ALGO_SHA256]	= _(SHA256),
	[HASH_ALGO_SHA384]	= _(SHA384),
	[HASH_ALGO_SHA512]	= _(SHA512),
	[HASH_ALGO_SHA224]	= _(SHA224),
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
#undef _
};

/*
 * RSAVP1() function [RFC3447 sec 5.2.2]
 */
static int RSAVP1(const struct public_key *key, MPI s, MPI *_m)
{
	MPI m;
	int ret;

	/* (1) Validate 0 <= s < n */
	if (mpi_cmp_ui(s, 0) < 0) {
		kleave(" = -EBADMSG [s < 0]");
		return -EBADMSG;
	}
	if (mpi_cmp(s, key->rsa.n) >= 0) {
		kleave(" = -EBADMSG [s >= n]");
		return -EBADMSG;
	}

	m = mpi_alloc(0);
	if (!m)
		return -ENOMEM;

	/* (2) m = s^e mod n */
	ret = mpi_powm(m, s, key->rsa.e, key->rsa.n);
	if (ret < 0) {
		mpi_free(m);
		return ret;
	}

	*_m = m;
	return 0;
}

/*
 * Integer to Octet String conversion [RFC3447 sec 4.1]
 */
123
static int RSA_I2OSP(MPI x, size_t xLen, u8 **pX)
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
{
	unsigned X_size, x_size;
	int X_sign;
	u8 *X;

	/* Make sure the string is the right length.  The number should begin
	 * with { 0x00, 0x01, ... } so we have to account for 15 leading zero
	 * bits not being reported by MPI.
	 */
	x_size = mpi_get_nbits(x);
	pr_devel("size(x)=%u xLen*8=%zu\n", x_size, xLen * 8);
	if (x_size != xLen * 8 - 15)
		return -ERANGE;

	X = mpi_get_buffer(x, &X_size, &X_sign);
	if (!X)
		return -ENOMEM;
	if (X_sign < 0) {
		kfree(X);
		return -EBADMSG;
	}
	if (X_size != xLen - 1) {
		kfree(X);
		return -EBADMSG;
	}

150
	*pX = X;
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
	return 0;
}

/*
 * Perform the RSA signature verification.
 * @H: Value of hash of data and metadata
 * @EM: The computed signature value
 * @k: The size of EM (EM[0] is an invalid location but should hold 0x00)
 * @hash_size: The size of H
 * @asn1_template: The DigestInfo ASN.1 template
 * @asn1_size: Size of asm1_template[]
 */
static int RSA_verify(const u8 *H, const u8 *EM, size_t k, size_t hash_size,
		      const u8 *asn1_template, size_t asn1_size)
{
	unsigned PS_end, T_offset, i;

	kenter(",,%zu,%zu,%zu", k, hash_size, asn1_size);

	if (k < 2 + 1 + asn1_size + hash_size)
		return -EBADMSG;

	/* Decode the EMSA-PKCS1-v1_5 */
	if (EM[1] != 0x01) {
		kleave(" = -EBADMSG [EM[1] == %02u]", EM[1]);
		return -EBADMSG;
	}

	T_offset = k - (asn1_size + hash_size);
	PS_end = T_offset - 1;
	if (EM[PS_end] != 0x00) {
		kleave(" = -EBADMSG [EM[T-1] == %02u]", EM[PS_end]);
		return -EBADMSG;
	}

	for (i = 2; i < PS_end; i++) {
		if (EM[i] != 0xff) {
			kleave(" = -EBADMSG [EM[PS%x] == %02u]", i - 2, EM[i]);
			return -EBADMSG;
		}
	}

193
	if (crypto_memneq(asn1_template, EM + T_offset, asn1_size) != 0) {
194 195 196 197
		kleave(" = -EBADMSG [EM[T] ASN.1 mismatch]");
		return -EBADMSG;
	}

198
	if (crypto_memneq(H, EM + T_offset + asn1_size, hash_size) != 0) {
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
		kleave(" = -EKEYREJECTED [EM[T] hash mismatch]");
		return -EKEYREJECTED;
	}

	kleave(" = 0");
	return 0;
}

/*
 * Perform the verification step [RFC3447 sec 8.2.2].
 */
static int RSA_verify_signature(const struct public_key *key,
				const struct public_key_signature *sig)
{
	size_t tsize;
	int ret;

	/* Variables as per RFC3447 sec 8.2.2 */
	const u8 *H = sig->digest;
	u8 *EM = NULL;
	MPI m = NULL;
	size_t k;

	kenter("");

	if (!RSA_ASN1_templates[sig->pkey_hash_algo].data)
		return -ENOTSUPP;

	/* (1) Check the signature size against the public key modulus size */
228 229
	k = mpi_get_nbits(key->rsa.n);
	tsize = mpi_get_nbits(sig->rsa.s);
230

231 232 233 234 235
	/* According to RFC 4880 sec 3.2, length of MPI is computed starting
	 * from most significant bit.  So the RFC 3447 sec 8.2.2 size check
	 * must be relaxed to conform with shorter signatures - so we fail here
	 * only if signature length is longer than modulus size.
	 */
236
	pr_devel("step 1: k=%zu size(S)=%zu\n", k, tsize);
237
	if (k < tsize) {
238 239 240 241
		ret = -EBADMSG;
		goto error;
	}

242 243 244
	/* Round up and convert to octets */
	k = (k + 7) / 8;

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	/* (2b) Apply the RSAVP1 verification primitive to the public key */
	ret = RSAVP1(key, sig->rsa.s, &m);
	if (ret < 0)
		goto error;

	/* (2c) Convert the message representative (m) to an encoded message
	 *      (EM) of length k octets.
	 *
	 *      NOTE!  The leading zero byte is suppressed by MPI, so we pass a
	 *      pointer to the _preceding_ byte to RSA_verify()!
	 */
	ret = RSA_I2OSP(m, k, &EM);
	if (ret < 0)
		goto error;

	ret = RSA_verify(H, EM - 1, k, sig->digest_size,
			 RSA_ASN1_templates[sig->pkey_hash_algo].data,
			 RSA_ASN1_templates[sig->pkey_hash_algo].size);

error:
	kfree(EM);
	mpi_free(m);
	kleave(" = %d", ret);
	return ret;
}

const struct public_key_algorithm RSA_public_key_algorithm = {
	.name		= "RSA",
	.n_pub_mpi	= 2,
	.n_sec_mpi	= 3,
	.n_sig_mpi	= 1,
	.verify_signature = RSA_verify_signature,
};
EXPORT_SYMBOL_GPL(RSA_public_key_algorithm);