atl1e_hw.c 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
/*
 * Copyright(c) 2007 Atheros Corporation. All rights reserved.
 *
 * Derived from Intel e1000 driver
 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 */
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/mii.h>
#include <linux/crc32.h>

#include "atl1e.h"

/*
 * check_eeprom_exist
 * return 0 if eeprom exist
 */
int atl1e_check_eeprom_exist(struct atl1e_hw *hw)
{
	u32 value;

	value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL);
	if (value & SPI_FLASH_CTRL_EN_VPD) {
		value &= ~SPI_FLASH_CTRL_EN_VPD;
		AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
	}
	value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST);
	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
}

void atl1e_hw_set_mac_addr(struct atl1e_hw *hw)
{
	u32 value;
	/*
	 * 00-0B-6A-F6-00-DC
	 * 0:  6AF600DC 1: 000B
	 * low dword
	 */
	value = (((u32)hw->mac_addr[2]) << 24) |
		(((u32)hw->mac_addr[3]) << 16) |
		(((u32)hw->mac_addr[4]) << 8)  |
		(((u32)hw->mac_addr[5])) ;
	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
	/* hight dword */
	value = (((u32)hw->mac_addr[0]) << 8) |
		(((u32)hw->mac_addr[1])) ;
	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
}

/*
 * atl1e_get_permanent_address
 * return 0 if get valid mac address,
 */
static int atl1e_get_permanent_address(struct atl1e_hw *hw)
{
	u32 addr[2];
	u32 i;
	u32 twsi_ctrl_data;
	u8  eth_addr[ETH_ALEN];

	if (is_valid_ether_addr(hw->perm_mac_addr))
		return 0;

	/* init */
	addr[0] = addr[1] = 0;

	if (!atl1e_check_eeprom_exist(hw)) {
		/* eeprom exist */
		twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
		twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
		AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
		for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
			msleep(10);
			twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
			if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
				break;
		}
		if (i >= AT_TWSI_EEPROM_TIMEOUT)
			return AT_ERR_TIMEOUT;
	}

	/* maybe MAC-address is from BIOS */
	addr[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR);
	addr[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4);
	*(u32 *) &eth_addr[2] = swab32(addr[0]);
	*(u16 *) &eth_addr[0] = swab16(*(u16 *)&addr[1]);

	if (is_valid_ether_addr(eth_addr)) {
		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
		return 0;
	}

	return AT_ERR_EEPROM;
}

bool atl1e_write_eeprom(struct atl1e_hw *hw, u32 offset, u32 value)
{
	return true;
}

bool atl1e_read_eeprom(struct atl1e_hw *hw, u32 offset, u32 *p_value)
{
	int i;
	u32 control;

	if (offset & 3)
		return false; /* address do not align */

	AT_WRITE_REG(hw, REG_VPD_DATA, 0);
	control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
	AT_WRITE_REG(hw, REG_VPD_CAP, control);

	for (i = 0; i < 10; i++) {
		msleep(2);
		control = AT_READ_REG(hw, REG_VPD_CAP);
		if (control & VPD_CAP_VPD_FLAG)
			break;
	}
	if (control & VPD_CAP_VPD_FLAG) {
		*p_value = AT_READ_REG(hw, REG_VPD_DATA);
		return true;
	}
	return false; /* timeout */
}

void atl1e_force_ps(struct atl1e_hw *hw)
{
	AT_WRITE_REGW(hw, REG_GPHY_CTRL,
			GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
}

/*
 * Reads the adapter's MAC address from the EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 */
int atl1e_read_mac_addr(struct atl1e_hw *hw)
{
	int err = 0;

	err = atl1e_get_permanent_address(hw);
	if (err)
		return AT_ERR_EEPROM;
	memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
	return 0;
}

/*
 * atl1e_hash_mc_addr
 *  purpose
 *      set hash value for a multicast address
 */
u32 atl1e_hash_mc_addr(struct atl1e_hw *hw, u8 *mc_addr)
{
	u32 crc32;
	u32 value = 0;
	int i;

	crc32 = ether_crc_le(6, mc_addr);
	for (i = 0; i < 32; i++)
		value |= (((crc32 >> i) & 1) << (31 - i));

	return value;
}

/*
 * Sets the bit in the multicast table corresponding to the hash value.
 * hw - Struct containing variables accessed by shared code
 * hash_value - Multicast address hash value
 */
void atl1e_hash_set(struct atl1e_hw *hw, u32 hash_value)
{
	u32 hash_bit, hash_reg;
	u32 mta;

	/*
	 * The HASH Table  is a register array of 2 32-bit registers.
	 * It is treated like an array of 64 bits.  We want to set
	 * bit BitArray[hash_value]. So we figure out what register
	 * the bit is in, read it, OR in the new bit, then write
	 * back the new value.  The register is determined by the
	 * upper 7 bits of the hash value and the bit within that
	 * register are determined by the lower 5 bits of the value.
	 */
	hash_reg = (hash_value >> 31) & 0x1;
	hash_bit = (hash_value >> 26) & 0x1F;

	mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);

	mta |= (1 << hash_bit);

	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
}
/*
 * Reads the value from a PHY register
 * hw - Struct containing variables accessed by shared code
 * reg_addr - address of the PHY register to read
 */
int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data)
{
	u32 val;
	int i;

	val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;

	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);

	wmb();

	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
		udelay(2);
		val = AT_READ_REG(hw, REG_MDIO_CTRL);
		if (!(val & (MDIO_START | MDIO_BUSY)))
			break;
		wmb();
	}
	if (!(val & (MDIO_START | MDIO_BUSY))) {
		*phy_data = (u16)val;
		return 0;
	}

	return AT_ERR_PHY;
}

/*
 * Writes a value to a PHY register
 * hw - Struct containing variables accessed by shared code
 * reg_addr - address of the PHY register to write
 * data - data to write to the PHY
 */
int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data)
{
	int i;
	u32 val;

	val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
	       (reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
	       MDIO_SUP_PREAMBLE |
	       MDIO_START |
	       MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;

	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
	wmb();

	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
		udelay(2);
		val = AT_READ_REG(hw, REG_MDIO_CTRL);
		if (!(val & (MDIO_START | MDIO_BUSY)))
			break;
		wmb();
	}

	if (!(val & (MDIO_START | MDIO_BUSY)))
		return 0;

	return AT_ERR_PHY;
}

/*
 * atl1e_init_pcie - init PCIE module
 */
static void atl1e_init_pcie(struct atl1e_hw *hw)
{
	u32 value;
	/* comment 2lines below to save more power when sususpend
	   value = LTSSM_TEST_MODE_DEF;
	   AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
	 */

	/* pcie flow control mode change */
	value = AT_READ_REG(hw, 0x1008);
	value |= 0x8000;
	AT_WRITE_REG(hw, 0x1008, value);
}
/*
 * Configures PHY autoneg and flow control advertisement settings
 *
 * hw - Struct containing variables accessed by shared code
 */
static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw)
{
	s32 ret_val;
	u16 mii_autoneg_adv_reg;
	u16 mii_1000t_ctrl_reg;

	if (0 != hw->mii_autoneg_adv_reg)
		return 0;
	/* Read the MII Auto-Neg Advertisement Register (Address 4/9). */
	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
	mii_1000t_ctrl_reg  = MII_AT001_CR_1000T_DEFAULT_CAP_MASK;

	/*
	 * Need to parse autoneg_advertised  and set up
	 * the appropriate PHY registers.  First we will parse for
	 * autoneg_advertised software override.  Since we can advertise
	 * a plethora of combinations, we need to check each bit
	 * individually.
	 */

	/*
	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
	 * the  1000Base-T control Register (Address 9).
	 */
	mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
	mii_1000t_ctrl_reg  &= ~MII_AT001_CR_1000T_SPEED_MASK;

	/*
	 * Need to parse MediaType and setup the
	 * appropriate PHY registers.
	 */
	switch (hw->media_type) {
	case MEDIA_TYPE_AUTO_SENSOR:
		mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS   |
					MII_AR_10T_FD_CAPS   |
					MII_AR_100TX_HD_CAPS |
					MII_AR_100TX_FD_CAPS);
		hw->autoneg_advertised = ADVERTISE_10_HALF  |
					 ADVERTISE_10_FULL  |
					 ADVERTISE_100_HALF |
					 ADVERTISE_100_FULL;
		if (hw->nic_type == athr_l1e) {
			mii_1000t_ctrl_reg |=
				MII_AT001_CR_1000T_FD_CAPS;
			hw->autoneg_advertised |= ADVERTISE_1000_FULL;
		}
		break;

	case MEDIA_TYPE_100M_FULL:
		mii_autoneg_adv_reg   |= MII_AR_100TX_FD_CAPS;
		hw->autoneg_advertised = ADVERTISE_100_FULL;
		break;

	case MEDIA_TYPE_100M_HALF:
		mii_autoneg_adv_reg   |= MII_AR_100TX_HD_CAPS;
		hw->autoneg_advertised = ADVERTISE_100_HALF;
		break;

	case MEDIA_TYPE_10M_FULL:
		mii_autoneg_adv_reg   |= MII_AR_10T_FD_CAPS;
		hw->autoneg_advertised = ADVERTISE_10_FULL;
		break;

	default:
		mii_autoneg_adv_reg   |= MII_AR_10T_HD_CAPS;
		hw->autoneg_advertised = ADVERTISE_10_HALF;
		break;
	}

	/* flow control fixed to enable all */
	mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);

	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
	hw->mii_1000t_ctrl_reg  = mii_1000t_ctrl_reg;

	ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
	if (ret_val)
		return ret_val;

	if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
		ret_val = atl1e_write_phy_reg(hw, MII_AT001_CR,
					   mii_1000t_ctrl_reg);
		if (ret_val)
			return ret_val;
	}

	return 0;
}


/*
 * Resets the PHY and make all config validate
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Sets bit 15 and 12 of the MII control regiser (for F001 bug)
 */
int atl1e_phy_commit(struct atl1e_hw *hw)
{
396
	struct atl1e_adapter *adapter = hw->adapter;
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
	struct pci_dev *pdev = adapter->pdev;
	int ret_val;
	u16 phy_data;

	phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;

	ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data);
	if (ret_val) {
		u32 val;
		int i;
		/**************************************
		 * pcie serdes link may be down !
		 **************************************/
		for (i = 0; i < 25; i++) {
			msleep(1);
			val = AT_READ_REG(hw, REG_MDIO_CTRL);
			if (!(val & (MDIO_START | MDIO_BUSY)))
				break;
		}

		if (0 != (val & (MDIO_START | MDIO_BUSY))) {
			dev_err(&pdev->dev,
				"pcie linkdown at least for 25ms\n");
			return ret_val;
		}

		dev_err(&pdev->dev, "pcie linkup after %d ms\n", i);
	}
	return 0;
}

int atl1e_phy_init(struct atl1e_hw *hw)
{
430
	struct atl1e_adapter *adapter = hw->adapter;
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	struct pci_dev *pdev = adapter->pdev;
	s32 ret_val;
	u16 phy_val;

	if (hw->phy_configured) {
		if (hw->re_autoneg) {
			hw->re_autoneg = false;
			return atl1e_restart_autoneg(hw);
		}
		return 0;
	}

	/* RESET GPHY Core */
	AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT);
	msleep(2);
	AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT |
		      GPHY_CTRL_EXT_RESET);
	msleep(2);

	/* patches */
	/* p1. eable hibernation mode */
	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB);
	if (ret_val)
		return ret_val;
	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00);
	if (ret_val)
		return ret_val;
	/* p2. set Class A/B for all modes */
	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0);
	if (ret_val)
		return ret_val;
	phy_val = 0x02ef;
	/* remove Class AB */
	/* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */
	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val);
	if (ret_val)
		return ret_val;
	/* p3. 10B ??? */
	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12);
	if (ret_val)
		return ret_val;
	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04);
	if (ret_val)
		return ret_val;
	/* p4. 1000T power */
	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4);
	if (ret_val)
		return ret_val;
	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB);
	if (ret_val)
		return ret_val;

	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5);
	if (ret_val)
		return ret_val;
	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46);
	if (ret_val)
		return ret_val;

	msleep(1);

	/*Enable PHY LinkChange Interrupt */
	ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00);
	if (ret_val) {
		dev_err(&pdev->dev, "Error enable PHY linkChange Interrupt\n");
		return ret_val;
	}
	/* setup AutoNeg parameters */
	ret_val = atl1e_phy_setup_autoneg_adv(hw);
	if (ret_val) {
		dev_err(&pdev->dev, "Error Setting up Auto-Negotiation\n");
		return ret_val;
	}
	/* SW.Reset & En-Auto-Neg to restart Auto-Neg*/
	dev_dbg(&pdev->dev, "Restarting Auto-Neg");
	ret_val = atl1e_phy_commit(hw);
	if (ret_val) {
		dev_err(&pdev->dev, "Error Resetting the phy");
		return ret_val;
	}

	hw->phy_configured = true;

	return 0;
}

/*
 * Reset the transmit and receive units; mask and clear all interrupts.
 * hw - Struct containing variables accessed by shared code
 * return : 0  or  idle status (if error)
 */
int atl1e_reset_hw(struct atl1e_hw *hw)
{
524
	struct atl1e_adapter *adapter = hw->adapter;
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	struct pci_dev *pdev = adapter->pdev;

	u32 idle_status_data = 0;
	u16 pci_cfg_cmd_word = 0;
	int timeout = 0;

	/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
	pci_read_config_word(pdev, PCI_REG_COMMAND, &pci_cfg_cmd_word);
	if ((pci_cfg_cmd_word & (CMD_IO_SPACE |
				CMD_MEMORY_SPACE | CMD_BUS_MASTER))
			!= (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) {
		pci_cfg_cmd_word |= (CMD_IO_SPACE |
				     CMD_MEMORY_SPACE | CMD_BUS_MASTER);
		pci_write_config_word(pdev, PCI_REG_COMMAND, pci_cfg_cmd_word);
	}

	/*
	 * Issue Soft Reset to the MAC.  This will reset the chip's
	 * transmit, receive, DMA.  It will not effect
	 * the current PCI configuration.  The global reset bit is self-
	 * clearing, and should clear within a microsecond.
	 */
	AT_WRITE_REG(hw, REG_MASTER_CTRL,
			MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST);
	wmb();
	msleep(1);

	/* Wait at least 10ms for All module to be Idle */
	for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) {
		idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS);
		if (idle_status_data == 0)
			break;
		msleep(1);
		cpu_relax();
	}

	if (timeout >= AT_HW_MAX_IDLE_DELAY) {
		dev_err(&pdev->dev,
			"MAC state machine cann't be idle since"
			" disabled for 10ms second\n");
		return AT_ERR_TIMEOUT;
	}

	return 0;
}


/*
 * Performs basic configuration of the adapter.
 *
 * hw - Struct containing variables accessed by shared code
 * Assumes that the controller has previously been reset and is in a
 * post-reset uninitialized state. Initializes multicast table,
 * and  Calls routines to setup link
 * Leaves the transmit and receive units disabled and uninitialized.
 */
int atl1e_init_hw(struct atl1e_hw *hw)
{
	s32 ret_val = 0;

	atl1e_init_pcie(hw);

	/* Zero out the Multicast HASH table */
	/* clear the old settings from the multicast hash table */
	AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);

	ret_val = atl1e_phy_init(hw);

	return ret_val;
}

/*
 * Detects the current speed and duplex settings of the hardware.
 *
 * hw - Struct containing variables accessed by shared code
 * speed - Speed of the connection
 * duplex - Duplex setting of the connection
 */
int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex)
{
	int err;
	u16 phy_data;

	/* Read   PHY Specific Status Register (17) */
	err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data);
	if (err)
		return err;

	if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED))
		return AT_ERR_PHY_RES;

	switch (phy_data & MII_AT001_PSSR_SPEED) {
	case MII_AT001_PSSR_1000MBS:
		*speed = SPEED_1000;
		break;
	case MII_AT001_PSSR_100MBS:
		*speed = SPEED_100;
		break;
	case MII_AT001_PSSR_10MBS:
		*speed = SPEED_10;
		break;
	default:
		return AT_ERR_PHY_SPEED;
		break;
	}

	if (phy_data & MII_AT001_PSSR_DPLX)
		*duplex = FULL_DUPLEX;
	else
		*duplex = HALF_DUPLEX;

	return 0;
}

int atl1e_restart_autoneg(struct atl1e_hw *hw)
{
	int err = 0;

	err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
	if (err)
		return err;

	if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
		err = atl1e_write_phy_reg(hw, MII_AT001_CR,
				       hw->mii_1000t_ctrl_reg);
		if (err)
			return err;
	}

	err = atl1e_write_phy_reg(hw, MII_BMCR,
			MII_CR_RESET | MII_CR_AUTO_NEG_EN |
			MII_CR_RESTART_AUTO_NEG);
	return err;
}