perf_counter.c 109.7 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3
/*
 * Performance counter core code
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22 23 24
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
25 26 27
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
28
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
29 30
#include <linux/perf_counter.h>

31 32
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
33 34 35 36 37
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

38
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
39 40 41
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

42
static atomic_t nr_counters __read_mostly;
P
Peter Zijlstra 已提交
43 44
static atomic_t nr_mmap_counters __read_mostly;
static atomic_t nr_comm_counters __read_mostly;
P
Peter Zijlstra 已提交
45
static atomic_t nr_task_counters __read_mostly;
46

47
/*
48 49 50 51
 * perf counter paranoia level:
 *  0 - not paranoid
 *  1 - disallow cpu counters to unpriv
 *  2 - disallow kernel profiling to unpriv
52
 */
53
int sysctl_perf_counter_paranoid __read_mostly;
54 55 56 57 58 59 60 61 62 63 64

static inline bool perf_paranoid_cpu(void)
{
	return sysctl_perf_counter_paranoid > 0;
}

static inline bool perf_paranoid_kernel(void)
{
	return sysctl_perf_counter_paranoid > 1;
}

65
int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
66 67 68 69 70

/*
 * max perf counter sample rate
 */
int sysctl_perf_counter_sample_rate __read_mostly = 100000;
71

72 73
static atomic64_t perf_counter_id;

T
Thomas Gleixner 已提交
74
/*
75
 * Lock for (sysadmin-configurable) counter reservations:
T
Thomas Gleixner 已提交
76
 */
77
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
78 79 80 81

/*
 * Architecture provided APIs - weak aliases:
 */
82
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
83
{
84
	return NULL;
T
Thomas Gleixner 已提交
85 86
}

87 88 89
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

90
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
91 92 93

int __weak
hw_perf_group_sched_in(struct perf_counter *group_leader,
94 95 96 97 98
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
99

100 101
void __weak perf_counter_print_debug(void)	{ }

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
static DEFINE_PER_CPU(int, disable_count);

void __perf_disable(void)
{
	__get_cpu_var(disable_count)++;
}

bool __perf_enable(void)
{
	return !--__get_cpu_var(disable_count);
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

126 127
static void get_ctx(struct perf_counter_context *ctx)
{
128
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
129 130
}

131 132 133 134 135 136 137 138
static void free_ctx(struct rcu_head *head)
{
	struct perf_counter_context *ctx;

	ctx = container_of(head, struct perf_counter_context, rcu_head);
	kfree(ctx);
}

139 140
static void put_ctx(struct perf_counter_context *ctx)
{
141 142 143
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
144 145 146
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
147
	}
148 149
}

150 151 152 153 154 155 156 157
static void unclone_ctx(struct perf_counter_context *ctx)
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171
/*
 * If we inherit counters we want to return the parent counter id
 * to userspace.
 */
static u64 primary_counter_id(struct perf_counter *counter)
{
	u64 id = counter->id;

	if (counter->parent)
		id = counter->parent->id;

	return id;
}

172 173 174 175 176
/*
 * Get the perf_counter_context for a task and lock it.
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
177 178
static struct perf_counter_context *
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
{
	struct perf_counter_context *ctx;

	rcu_read_lock();
 retry:
	ctx = rcu_dereference(task->perf_counter_ctxp);
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
		 * perf_counter_task_sched_out, though the
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
		if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
201 202 203 204 205

		if (!atomic_inc_not_zero(&ctx->refcount)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			ctx = NULL;
		}
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
{
	struct perf_counter_context *ctx;
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

static void perf_unpin_context(struct perf_counter_context *ctx)
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

239 240 241 242
/*
 * Add a counter from the lists for its context.
 * Must be called with ctx->mutex and ctx->lock held.
 */
243 244 245 246 247 248 249 250 251 252
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
P
Peter Zijlstra 已提交
253
	if (group_leader == counter)
254
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
255
	else {
256
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
257 258
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
259 260

	list_add_rcu(&counter->event_entry, &ctx->event_list);
261
	ctx->nr_counters++;
262 263
	if (counter->attr.inherit_stat)
		ctx->nr_stat++;
264 265
}

266 267
/*
 * Remove a counter from the lists for its context.
268
 * Must be called with ctx->mutex and ctx->lock held.
269
 */
270 271 272 273 274
static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

275 276
	if (list_empty(&counter->list_entry))
		return;
277
	ctx->nr_counters--;
278 279
	if (counter->attr.inherit_stat)
		ctx->nr_stat--;
280

281
	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
282
	list_del_rcu(&counter->event_entry);
283

P
Peter Zijlstra 已提交
284 285 286
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

287 288 289 290 291 292 293 294
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

295
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
296 297 298 299
		sibling->group_leader = sibling;
	}
}

300 301 302 303 304 305 306 307 308
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
309
	counter->tstamp_stopped = ctx->time;
310
	counter->pmu->disable(counter);
311 312 313 314 315
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
316
	if (counter->attr.exclusive || !cpuctx->active_oncpu)
317 318 319
		cpuctx->exclusive = 0;
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

338
	if (group_counter->attr.exclusive)
339 340 341
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
342 343 344 345 346 347
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
348
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
349 350 351 352 353 354 355 356 357 358
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
359
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
360 361
		return;

362
	spin_lock(&ctx->lock);
363 364 365 366 367
	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level.
	 */
	perf_disable();
T
Thomas Gleixner 已提交
368

369 370
	counter_sched_out(counter, cpuctx, ctx);

371
	list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
372 373 374 375 376 377 378 379 380 381 382

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

383
	perf_enable();
384
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
385 386 387 388 389 390
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
391
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
392 393 394
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
395 396 397 398 399 400 401
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
 * When called from perf_counter_exit_task, it's OK because the
 * context has been detached from its task.
T
Thomas Gleixner 已提交
402
 */
403
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
404 405 406 407 408 409 410 411 412 413
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
414
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
415 416 417 418 419
					 counter, 1);
		return;
	}

retry:
420
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
421 422 423 424 425 426
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
427
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
428 429 430 431 432 433
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
434
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
435 436
	 * succeed.
	 */
437 438
	if (!list_empty(&counter->list_entry)) {
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
439 440 441 442
	}
	spin_unlock_irq(&ctx->lock);
}

443
static inline u64 perf_clock(void)
444
{
445
	return cpu_clock(smp_processor_id());
446 447 448 449 450
}

/*
 * Update the record of the current time in a context.
 */
451
static void update_context_time(struct perf_counter_context *ctx)
452
{
453 454 455 456
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
457 458 459 460 461 462 463 464 465 466
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

467 468 469 470 471 472 473 474 475 476 477
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
478 479 480 481 482 483 484 485 486 487 488 489 490 491
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

492 493 494 495 496 497 498 499 500 501 502 503 504
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
505
	if (ctx->task && cpuctx->task_ctx != ctx)
506 507
		return;

508
	spin_lock(&ctx->lock);
509 510 511 512 513 514

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
515
		update_context_time(ctx);
516
		update_counter_times(counter);
517 518 519 520 521 522 523
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

524
	spin_unlock(&ctx->lock);
525 526 527 528
}

/*
 * Disable a counter.
529 530 531 532 533 534 535 536 537 538
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisifed when called through
 * perf_counter_for_each_child or perf_counter_for_each because they
 * hold the top-level counter's child_mutex, so any descendant that
 * goes to exit will block in sync_child_counter.
 * When called from perf_pending_counter it's OK because counter->ctx
 * is the current context on this CPU and preemption is disabled,
 * hence we can't get into perf_counter_task_sched_out for this context.
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
570 571
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
572
		counter->state = PERF_COUNTER_STATE_OFF;
573
	}
574 575 576 577

	spin_unlock_irq(&ctx->lock);
}

578 579 580 581 582 583
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
584
	if (counter->state <= PERF_COUNTER_STATE_OFF)
585 586 587 588 589 590 591 592 593
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

594
	if (counter->pmu->enable(counter)) {
595 596 597 598 599
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

600
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
601

602 603
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
604 605
	ctx->nr_active++;

606
	if (counter->attr.exclusive)
607 608
		cpuctx->exclusive = 1;

609 610 611
	return 0;
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
static int
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
	struct perf_counter *counter, *partial_group;
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;

	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
	}
	counter_sched_out(group_counter, cpuctx, ctx);

	return -EAGAIN;
}

658 659 660 661 662 663 664 665 666 667
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
668

669 670 671
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
698
	if (counter->attr.exclusive && cpuctx->active_oncpu)
699 700 701 702 703 704 705 706
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

707 708 709 710
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
711 712 713
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
714 715
}

T
Thomas Gleixner 已提交
716
/*
717
 * Cross CPU call to install and enable a performance counter
718 719
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
720 721 722 723 724 725
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
726
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
727
	int cpu = smp_processor_id();
728
	int err;
T
Thomas Gleixner 已提交
729 730 731 732 733

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
734 735
	 * Or possibly this is the right context but it isn't
	 * on this cpu because it had no counters.
T
Thomas Gleixner 已提交
736
	 */
737
	if (ctx->task && cpuctx->task_ctx != ctx) {
738
		if (cpuctx->task_ctx || ctx->task != current)
739 740 741
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
742

743
	spin_lock(&ctx->lock);
744
	ctx->is_active = 1;
745
	update_context_time(ctx);
T
Thomas Gleixner 已提交
746 747 748 749 750

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
751
	perf_disable();
T
Thomas Gleixner 已提交
752

753
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
754

755 756 757 758 759 760 761 762
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

763 764 765 766 767
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
768
	if (!group_can_go_on(counter, cpuctx, 1))
769 770 771 772
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

773 774 775 776 777 778 779 780
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
781
		if (leader->attr.pinned) {
782
			update_group_times(leader);
783
			leader->state = PERF_COUNTER_STATE_ERROR;
784
		}
785
	}
T
Thomas Gleixner 已提交
786

787
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
788 789
		cpuctx->max_pertask--;

790
 unlock:
791
	perf_enable();
792

793
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
794 795 796 797 798 799 800 801 802 803 804
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
805 806
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
833
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
834 835 836 837 838 839 840 841 842
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
843 844
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
845 846 847
	spin_unlock_irq(&ctx->lock);
}

848 849 850 851
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
852
{
853 854 855 856 857
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	int err;
858

859 860 861 862
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
863
	if (ctx->task && cpuctx->task_ctx != ctx) {
864
		if (cpuctx->task_ctx || ctx->task != current)
865 866 867
			return;
		cpuctx->task_ctx = ctx;
	}
868

869
	spin_lock(&ctx->lock);
870
	ctx->is_active = 1;
871
	update_context_time(ctx);
872 873 874 875

	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
876
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
877 878

	/*
879 880
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
881
	 */
882 883
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
884

885
	if (!group_can_go_on(counter, cpuctx, 1)) {
886
		err = -EEXIST;
887
	} else {
888
		perf_disable();
889 890 891 892 893 894
		if (counter == leader)
			err = group_sched_in(counter, cpuctx, ctx,
					     smp_processor_id());
		else
			err = counter_sched_in(counter, cpuctx, ctx,
					       smp_processor_id());
895
		perf_enable();
896
	}
897 898 899 900 901 902 903 904

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
905
		if (leader->attr.pinned) {
906
			update_group_times(leader);
907
			leader->state = PERF_COUNTER_STATE_ERROR;
908
		}
909 910 911
	}

 unlock:
912
	spin_unlock(&ctx->lock);
913 914 915 916
}

/*
 * Enable a counter.
917 918 919 920 921 922
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisfied when called through
 * perf_counter_for_each_child or perf_counter_for_each as described
 * for perf_counter_disable.
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
969
	if (counter->state == PERF_COUNTER_STATE_OFF) {
970
		counter->state = PERF_COUNTER_STATE_INACTIVE;
971 972
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
973
	}
974 975 976 977
 out:
	spin_unlock_irq(&ctx->lock);
}

978
static int perf_counter_refresh(struct perf_counter *counter, int refresh)
979
{
980 981 982
	/*
	 * not supported on inherited counters
	 */
983
	if (counter->attr.inherit)
984 985
		return -EINVAL;

986 987
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
988 989

	return 0;
990 991
}

992 993 994 995 996
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;

997 998
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
999
	if (likely(!ctx->nr_counters))
1000
		goto out;
1001
	update_context_time(ctx);
1002

1003
	perf_disable();
1004
	if (ctx->nr_active) {
1005 1006 1007 1008 1009 1010
		list_for_each_entry(counter, &ctx->counter_list, list_entry) {
			if (counter != counter->group_leader)
				counter_sched_out(counter, cpuctx, ctx);
			else
				group_sched_out(counter, cpuctx, ctx);
		}
1011
	}
1012
	perf_enable();
1013
 out:
1014 1015 1016
	spin_unlock(&ctx->lock);
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
 * and they both have the same number of enabled counters.
 * If the number of enabled counters is the same, then the set
 * of enabled counters should be the same, because these are both
 * inherited contexts, therefore we can't access individual counters
 * in them directly with an fd; we can only enable/disable all
 * counters via prctl, or enable/disable all counters in a family
 * via ioctl, which will have the same effect on both contexts.
 */
static int context_equiv(struct perf_counter_context *ctx1,
			 struct perf_counter_context *ctx2)
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1032
		&& ctx1->parent_gen == ctx2->parent_gen
1033
		&& !ctx1->pin_count && !ctx2->pin_count;
1034 1035
}

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
static void __perf_counter_read(void *counter);

static void __perf_counter_sync_stat(struct perf_counter *counter,
				     struct perf_counter *next_counter)
{
	u64 value;

	if (!counter->attr.inherit_stat)
		return;

	/*
	 * Update the counter value, we cannot use perf_counter_read()
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
	 * we know the counter must be on the current CPU, therefore we
	 * don't need to use it.
	 */
	switch (counter->state) {
	case PERF_COUNTER_STATE_ACTIVE:
		__perf_counter_read(counter);
		break;

	case PERF_COUNTER_STATE_INACTIVE:
		update_counter_times(counter);
		break;

	default:
		break;
	}

	/*
	 * In order to keep per-task stats reliable we need to flip the counter
	 * values when we flip the contexts.
	 */
	value = atomic64_read(&next_counter->count);
	value = atomic64_xchg(&counter->count, value);
	atomic64_set(&next_counter->count, value);

1074 1075 1076
	swap(counter->total_time_enabled, next_counter->total_time_enabled);
	swap(counter->total_time_running, next_counter->total_time_running);

1077
	/*
1078
	 * Since we swizzled the values, update the user visible data too.
1079
	 */
1080 1081
	perf_counter_update_userpage(counter);
	perf_counter_update_userpage(next_counter);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

static void perf_counter_sync_stat(struct perf_counter_context *ctx,
				   struct perf_counter_context *next_ctx)
{
	struct perf_counter *counter, *next_counter;

	if (!ctx->nr_stat)
		return;

	counter = list_first_entry(&ctx->event_list,
				   struct perf_counter, event_entry);

	next_counter = list_first_entry(&next_ctx->event_list,
					struct perf_counter, event_entry);

	while (&counter->event_entry != &ctx->event_list &&
	       &next_counter->event_entry != &next_ctx->event_list) {

		__perf_counter_sync_stat(counter, next_counter);

		counter = list_next_entry(counter, event_entry);
1107
		next_counter = list_next_entry(next_counter, event_entry);
1108 1109 1110
	}
}

T
Thomas Gleixner 已提交
1111 1112 1113 1114 1115 1116
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
1117
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
1118 1119 1120 1121
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
1122 1123
void perf_counter_task_sched_out(struct task_struct *task,
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
1124 1125
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1126
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1127
	struct perf_counter_context *next_ctx;
1128
	struct perf_counter_context *parent;
1129
	struct pt_regs *regs;
1130
	int do_switch = 1;
T
Thomas Gleixner 已提交
1131

1132
	regs = task_pt_regs(task);
1133
	perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1134

1135
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1136 1137
		return;

1138
	update_context_time(ctx);
1139 1140 1141

	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1142
	next_ctx = next->perf_counter_ctxp;
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1157 1158 1159 1160
			/*
			 * XXX do we need a memory barrier of sorts
			 * wrt to rcu_dereference() of perf_counter_ctxp
			 */
1161 1162 1163 1164 1165
			task->perf_counter_ctxp = next_ctx;
			next->perf_counter_ctxp = ctx;
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1166 1167

			perf_counter_sync_stat(ctx, next_ctx);
1168 1169 1170
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1171
	}
1172
	rcu_read_unlock();
1173

1174 1175 1176 1177
	if (do_switch) {
		__perf_counter_sched_out(ctx, cpuctx);
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1178 1179
}

1180 1181 1182
/*
 * Called with IRQs disabled
 */
1183 1184 1185 1186
static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1187 1188
	if (!cpuctx->task_ctx)
		return;
1189 1190 1191 1192

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1193 1194 1195 1196
	__perf_counter_sched_out(ctx, cpuctx);
	cpuctx->task_ctx = NULL;
}

1197 1198 1199
/*
 * Called with IRQs disabled
 */
1200
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1201
{
1202
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1203 1204
}

1205 1206 1207
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1208 1209
{
	struct perf_counter *counter;
1210
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1211

1212 1213
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
1214
	if (likely(!ctx->nr_counters))
1215
		goto out;
T
Thomas Gleixner 已提交
1216

1217
	ctx->timestamp = perf_clock();
1218

1219
	perf_disable();
1220 1221 1222 1223 1224 1225 1226

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
1227
		    !counter->attr.pinned)
1228 1229 1230 1231
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1232 1233 1234 1235 1236 1237
		if (counter != counter->group_leader)
			counter_sched_in(counter, cpuctx, ctx, cpu);
		else {
			if (group_can_go_on(counter, cpuctx, 1))
				group_sched_in(counter, cpuctx, ctx, cpu);
		}
1238 1239 1240 1241 1242

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1243 1244
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
1245
			counter->state = PERF_COUNTER_STATE_ERROR;
1246
		}
1247 1248
	}

1249
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1250 1251 1252 1253 1254
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
1255
		    counter->attr.pinned)
1256 1257
			continue;

1258 1259 1260 1261
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
1262 1263 1264
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1265 1266
		if (counter != counter->group_leader) {
			if (counter_sched_in(counter, cpuctx, ctx, cpu))
1267
				can_add_hw = 0;
1268 1269 1270 1271 1272
		} else {
			if (group_can_go_on(counter, cpuctx, can_add_hw)) {
				if (group_sched_in(counter, cpuctx, ctx, cpu))
					can_add_hw = 0;
			}
1273
		}
T
Thomas Gleixner 已提交
1274
	}
1275
	perf_enable();
1276
 out:
T
Thomas Gleixner 已提交
1277
	spin_unlock(&ctx->lock);
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1294
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1295

1296 1297
	if (likely(!ctx))
		return;
1298 1299
	if (cpuctx->task_ctx == ctx)
		return;
1300
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1301 1302 1303
	cpuctx->task_ctx = ctx;
}

1304 1305 1306 1307 1308 1309 1310
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

1311 1312 1313
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_counter *counter, int enable);
1314

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
static void perf_adjust_period(struct perf_counter *counter, u64 events)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
	period = div64_u64(events, counter->attr.sample_freq);

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
}

static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1336 1337
{
	struct perf_counter *counter;
1338
	struct hw_perf_counter *hwc;
1339
	u64 interrupts, freq;
1340 1341 1342 1343 1344 1345

	spin_lock(&ctx->lock);
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ACTIVE)
			continue;

1346 1347 1348 1349
		hwc = &counter->hw;

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1350

1351 1352 1353
		/*
		 * unthrottle counters on the tick
		 */
1354 1355 1356
		if (interrupts == MAX_INTERRUPTS) {
			perf_log_throttle(counter, 1);
			counter->pmu->unthrottle(counter);
1357
			interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1358 1359
		}

1360
		if (!counter->attr.freq || !counter->attr.sample_freq)
1361 1362
			continue;

1363 1364 1365
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
		if (counter->attr.sample_freq < HZ) {
			freq = counter->attr.sample_freq;

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1381
		perf_adjust_period(counter, freq * interrupts);
1382

1383 1384 1385 1386 1387 1388 1389 1390
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
			counter->pmu->disable(counter);
1391
			atomic64_set(&hwc->period_left, 0);
1392 1393 1394
			counter->pmu->enable(counter);
			perf_enable();
		}
1395 1396 1397 1398
	}
	spin_unlock(&ctx->lock);
}

1399 1400 1401 1402
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1403 1404 1405
{
	struct perf_counter *counter;

1406
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1407 1408 1409 1410
		return;

	spin_lock(&ctx->lock);
	/*
1411
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1412
	 */
1413
	perf_disable();
1414
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1415
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1416 1417
		break;
	}
1418
	perf_enable();
T
Thomas Gleixner 已提交
1419 1420

	spin_unlock(&ctx->lock);
1421 1422 1423 1424
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
1425 1426 1427 1428 1429 1430 1431
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	if (!atomic_read(&nr_counters))
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1432
	ctx = curr->perf_counter_ctxp;
1433

1434
	perf_ctx_adjust_freq(&cpuctx->ctx);
1435
	if (ctx)
1436
		perf_ctx_adjust_freq(ctx);
1437

1438
	perf_counter_cpu_sched_out(cpuctx);
1439 1440
	if (ctx)
		__perf_counter_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1441

1442
	rotate_ctx(&cpuctx->ctx);
1443 1444
	if (ctx)
		rotate_ctx(ctx);
1445

1446
	perf_counter_cpu_sched_in(cpuctx, cpu);
1447 1448
	if (ctx)
		perf_counter_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1449 1450
}

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
/*
 * Enable all of a task's counters that have been marked enable-on-exec.
 * This expects task == current.
 */
static void perf_counter_enable_on_exec(struct task_struct *task)
{
	struct perf_counter_context *ctx;
	struct perf_counter *counter;
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
	ctx = task->perf_counter_ctxp;
	if (!ctx || !ctx->nr_counters)
		goto out;

	__perf_counter_task_sched_out(ctx);

	spin_lock(&ctx->lock);

	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (!counter->attr.enable_on_exec)
			continue;
		counter->attr.enable_on_exec = 0;
		if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
			continue;
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
		enabled = 1;
	}

	/*
	 * Unclone this context if we enabled any counter.
	 */
1486 1487
	if (enabled)
		unclone_ctx(ctx);
1488 1489 1490 1491 1492 1493 1494 1495

	spin_unlock(&ctx->lock);

	perf_counter_task_sched_in(task, smp_processor_id());
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1496 1497 1498
/*
 * Cross CPU call to read the hardware counter
 */
1499
static void __perf_counter_read(void *info)
T
Thomas Gleixner 已提交
1500
{
I
Ingo Molnar 已提交
1501
	struct perf_counter *counter = info;
1502
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1503
	unsigned long flags;
I
Ingo Molnar 已提交
1504

1505
	local_irq_save(flags);
1506
	if (ctx->is_active)
1507
		update_context_time(ctx);
1508
	counter->pmu->read(counter);
1509
	update_counter_times(counter);
1510
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1511 1512
}

1513
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1514 1515 1516 1517 1518
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1519
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1520
		smp_call_function_single(counter->oncpu,
1521
					 __perf_counter_read, counter, 1);
1522 1523
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1524 1525
	}

1526
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1527 1528
}

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
	INIT_LIST_HEAD(&ctx->counter_list);
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

T
Thomas Gleixner 已提交
1545 1546
static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
1547 1548
	struct perf_counter_context *ctx;
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1549
	struct task_struct *task;
1550
	unsigned long flags;
1551
	int err;
T
Thomas Gleixner 已提交
1552 1553 1554 1555 1556 1557

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1558
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1574
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1591 1592 1593 1594 1595 1596 1597
	/*
	 * Can't attach counters to a dying task.
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1598
	/* Reuse ptrace permission checks for now. */
1599 1600 1601 1602 1603
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1604
	ctx = perf_lock_task_context(task, &flags);
1605
	if (ctx) {
1606
		unclone_ctx(ctx);
1607
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1608 1609
	}

1610 1611
	if (!ctx) {
		ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1612 1613 1614
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1615
		__perf_counter_init_context(ctx, task);
1616 1617
		get_ctx(ctx);
		if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1618 1619 1620 1621 1622
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1623
			goto retry;
1624
		}
1625
		get_task_struct(task);
1626 1627
	}

1628
	put_task_struct(task);
T
Thomas Gleixner 已提交
1629
	return ctx;
1630 1631 1632 1633

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1634 1635
}

P
Peter Zijlstra 已提交
1636 1637 1638 1639 1640
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
1641 1642
	if (counter->ns)
		put_pid_ns(counter->ns);
P
Peter Zijlstra 已提交
1643 1644 1645
	kfree(counter);
}

1646 1647
static void perf_pending_sync(struct perf_counter *counter);

1648 1649
static void free_counter(struct perf_counter *counter)
{
1650 1651
	perf_pending_sync(counter);

1652 1653 1654 1655 1656 1657
	if (!counter->parent) {
		atomic_dec(&nr_counters);
		if (counter->attr.mmap)
			atomic_dec(&nr_mmap_counters);
		if (counter->attr.comm)
			atomic_dec(&nr_comm_counters);
P
Peter Zijlstra 已提交
1658 1659
		if (counter->attr.task)
			atomic_dec(&nr_task_counters);
1660
	}
1661

1662 1663 1664
	if (counter->destroy)
		counter->destroy(counter);

1665
	put_ctx(counter->ctx);
1666 1667 1668
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1679
	WARN_ON_ONCE(ctx->parent_ctx);
1680
	mutex_lock(&ctx->mutex);
1681
	perf_counter_remove_from_context(counter);
1682
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1683

1684 1685 1686 1687 1688
	mutex_lock(&counter->owner->perf_counter_mutex);
	list_del_init(&counter->owner_entry);
	mutex_unlock(&counter->owner->perf_counter_mutex);
	put_task_struct(counter->owner);

1689
	free_counter(counter);
T
Thomas Gleixner 已提交
1690 1691 1692 1693

	return 0;
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
static u64 perf_counter_read_tree(struct perf_counter *counter)
{
	struct perf_counter *child;
	u64 total = 0;

	total += perf_counter_read(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		total += perf_counter_read(child);

	return total;
}

T
Thomas Gleixner 已提交
1706 1707 1708 1709 1710 1711
/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1712
	u64 values[4];
1713
	int n;
T
Thomas Gleixner 已提交
1714

1715 1716 1717 1718 1719 1720 1721 1722
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

1723
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1724
	mutex_lock(&counter->child_mutex);
1725
	values[0] = perf_counter_read_tree(counter);
1726
	n = 1;
1727
	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1728 1729
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
1730
	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1731 1732
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
1733
	if (counter->attr.read_format & PERF_FORMAT_ID)
1734
		values[n++] = primary_counter_id(counter);
1735
	mutex_unlock(&counter->child_mutex);
T
Thomas Gleixner 已提交
1736

1737 1738 1739 1740 1741 1742 1743 1744
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1745 1746 1747 1748 1749 1750 1751
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1752
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1753 1754 1755 1756 1757
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1758
	struct perf_mmap_data *data;
1759
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1760 1761 1762 1763

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
1764
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1765
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1766 1767 1768 1769 1770 1771

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1772 1773
static void perf_counter_reset(struct perf_counter *counter)
{
P
Peter Zijlstra 已提交
1774
	(void)perf_counter_read(counter);
1775
	atomic64_set(&counter->count, 0);
P
Peter Zijlstra 已提交
1776 1777 1778
	perf_counter_update_userpage(counter);
}

1779 1780 1781 1782 1783 1784
/*
 * Holding the top-level counter's child_mutex means that any
 * descendant process that has inherited this counter will block
 * in sync_child_counter if it goes to exit, thus satisfying the
 * task existence requirements of perf_counter_enable/disable.
 */
P
Peter Zijlstra 已提交
1785 1786 1787 1788 1789
static void perf_counter_for_each_child(struct perf_counter *counter,
					void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1790
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1791
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1792 1793 1794
	func(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		func(child);
1795
	mutex_unlock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1796 1797 1798 1799 1800
}

static void perf_counter_for_each(struct perf_counter *counter,
				  void (*func)(struct perf_counter *))
{
1801 1802
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *sibling;
P
Peter Zijlstra 已提交
1803

1804 1805 1806 1807 1808 1809 1810 1811 1812
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	counter = counter->group_leader;

	perf_counter_for_each_child(counter, func);
	func(counter);
	list_for_each_entry(sibling, &counter->sibling_list, list_entry)
		perf_counter_for_each_child(counter, func);
	mutex_unlock(&ctx->mutex);
1813 1814
}

1815 1816 1817 1818 1819 1820 1821
static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
{
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long size;
	int ret = 0;
	u64 value;

1822
	if (!counter->attr.sample_period)
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	spin_lock_irq(&ctx->lock);
1833
	if (counter->attr.freq) {
1834
		if (value > sysctl_perf_counter_sample_rate) {
1835 1836 1837 1838
			ret = -EINVAL;
			goto unlock;
		}

1839
		counter->attr.sample_freq = value;
1840
	} else {
1841
		counter->attr.sample_period = value;
1842 1843 1844 1845 1846 1847 1848 1849
		counter->hw.sample_period = value;
	}
unlock:
	spin_unlock_irq(&ctx->lock);

	return ret;
}

1850 1851 1852
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1853 1854
	void (*func)(struct perf_counter *);
	u32 flags = arg;
1855 1856 1857

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
P
Peter Zijlstra 已提交
1858
		func = perf_counter_enable;
1859 1860
		break;
	case PERF_COUNTER_IOC_DISABLE:
P
Peter Zijlstra 已提交
1861
		func = perf_counter_disable;
1862
		break;
1863
	case PERF_COUNTER_IOC_RESET:
P
Peter Zijlstra 已提交
1864
		func = perf_counter_reset;
1865
		break;
P
Peter Zijlstra 已提交
1866 1867 1868

	case PERF_COUNTER_IOC_REFRESH:
		return perf_counter_refresh(counter, arg);
1869 1870 1871 1872

	case PERF_COUNTER_IOC_PERIOD:
		return perf_counter_period(counter, (u64 __user *)arg);

1873
	default:
P
Peter Zijlstra 已提交
1874
		return -ENOTTY;
1875
	}
P
Peter Zijlstra 已提交
1876 1877 1878 1879 1880 1881 1882

	if (flags & PERF_IOC_FLAG_GROUP)
		perf_counter_for_each(counter, func);
	else
		perf_counter_for_each_child(counter, func);

	return 0;
1883 1884
}

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
int perf_counter_task_enable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_enable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

int perf_counter_task_disable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_disable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

1909 1910 1911 1912 1913 1914 1915 1916
static int perf_counter_index(struct perf_counter *counter)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return 0;

	return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
}

1917 1918 1919 1920 1921 1922
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1923
{
1924
	struct perf_counter_mmap_page *userpg;
1925
	struct perf_mmap_data *data;
1926 1927 1928 1929 1930 1931 1932

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1933

1934 1935 1936 1937 1938
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1939
	++userpg->lock;
1940
	barrier();
1941
	userpg->index = perf_counter_index(counter);
1942 1943 1944
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1945

1946 1947 1948 1949 1950 1951
	userpg->time_enabled = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);

	userpg->time_running = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);

1952
	barrier();
1953
	++userpg->lock;
1954
	preempt_enable();
1955
unlock:
1956
	rcu_read_unlock();
1957 1958 1959 1960 1961
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1962 1963 1964
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

1965 1966 1967 1968 1969 1970
	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

1971 1972 1973 1974 1975 1976 1977 1978 1979
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1980

1981 1982
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1983

1984 1985 1986
		if (vmf->flags & FAULT_FLAG_WRITE)
			goto unlock;

1987 1988
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1989

1990
	get_page(vmf->page);
1991 1992 1993
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;
2027
	atomic_set(&data->lock, -1);
2028 2029 2030

	rcu_assign_pointer(counter->data, data);

2031
	return 0;
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

2046 2047
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2048
	struct page *page = virt_to_page((void *)addr);
2049 2050 2051 2052 2053

	page->mapping = NULL;
	__free_page(page);
}

2054 2055
static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
2056
	struct perf_mmap_data *data;
2057 2058
	int i;

2059 2060
	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);

2061
	perf_mmap_free_page((unsigned long)data->user_page);
2062
	for (i = 0; i < data->nr_pages; i++)
2063 2064
		perf_mmap_free_page((unsigned long)data->data_pages[i]);

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

2089
	WARN_ON_ONCE(counter->ctx->parent_ctx);
2090
	if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2091 2092 2093
		struct user_struct *user = current_user();

		atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2094
		vma->vm_mm->locked_vm -= counter->data->nr_locked;
2095 2096 2097
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
2098 2099 2100
}

static struct vm_operations_struct perf_mmap_vmops = {
2101 2102 2103 2104
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2105 2106 2107 2108 2109
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
2110
	unsigned long user_locked, user_lock_limit;
2111
	struct user_struct *user = current_user();
2112
	unsigned long locked, lock_limit;
2113 2114
	unsigned long vma_size;
	unsigned long nr_pages;
2115
	long user_extra, extra;
2116
	int ret = 0;
2117

2118
	if (!(vma->vm_flags & VM_SHARED))
2119
		return -EINVAL;
2120 2121 2122 2123

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2124 2125 2126 2127 2128
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2129 2130
		return -EINVAL;

2131
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2132 2133
		return -EINVAL;

2134 2135
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2136

2137
	WARN_ON_ONCE(counter->ctx->parent_ctx);
2138 2139 2140 2141 2142 2143 2144
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

2145 2146
	user_extra = nr_pages + 1;
	user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2147 2148 2149 2150 2151 2152

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2153
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2154

2155 2156 2157
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2158 2159 2160

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2161
	locked = vma->vm_mm->locked_vm + extra;
2162

2163 2164 2165 2166
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
2167 2168 2169

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
2170 2171 2172 2173
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
2174
	atomic_long_add(user_extra, &user->locked_vm);
2175 2176
	vma->vm_mm->locked_vm += extra;
	counter->data->nr_locked = extra;
2177 2178 2179
	if (vma->vm_flags & VM_WRITE)
		counter->data->writable = 1;

2180
unlock:
2181
	mutex_unlock(&counter->mmap_mutex);
2182 2183 2184

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2185 2186

	return ret;
2187 2188
}

P
Peter Zijlstra 已提交
2189 2190 2191
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2192
	struct perf_counter *counter = filp->private_data;
P
Peter Zijlstra 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2205 2206 2207 2208
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2209 2210
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2211
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2212
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2213 2214
};

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	wake_up_all(&counter->waitq);
2225 2226 2227 2228 2229

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

2257
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2258

2259
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2260 2261 2262
	PENDING_TAIL,
};

2263 2264
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2265
{
2266
	struct perf_pending_entry **head;
2267

2268
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2269 2270
		return;

2271 2272 2273
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2274 2275

	do {
2276 2277
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2278 2279 2280

	set_perf_counter_pending();

2281
	put_cpu_var(perf_pending_head);
2282 2283 2284 2285
}

static int __perf_pending_run(void)
{
2286
	struct perf_pending_entry *list;
2287 2288
	int nr = 0;

2289
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2290
	while (list != PENDING_TAIL) {
2291 2292
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2293 2294 2295

		list = list->next;

2296 2297
		func = entry->func;
		entry->next = NULL;
2298 2299 2300 2301 2302 2303 2304
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2305
		func(entry);
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2327
	return counter->pending.next == NULL;
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

2340 2341 2342 2343
/*
 * Callchain support -- arch specific
 */

2344
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2345 2346 2347 2348
{
	return NULL;
}

2349 2350 2351 2352
/*
 * Output
 */

2353 2354 2355
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
2356 2357
	unsigned long		head;
	unsigned long		offset;
2358
	int			nmi;
2359
	int			sample;
2360 2361
	int			locked;
	unsigned long		flags;
2362 2363
};

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
static bool perf_output_space(struct perf_mmap_data *data,
			      unsigned int offset, unsigned int head)
{
	unsigned long tail;
	unsigned long mask;

	if (!data->writable)
		return true;

	mask = (data->nr_pages << PAGE_SHIFT) - 1;
	/*
	 * Userspace could choose to issue a mb() before updating the tail
	 * pointer. So that all reads will be completed before the write is
	 * issued.
	 */
	tail = ACCESS_ONCE(data->user_page->data_tail);
	smp_rmb();

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2391
static void perf_output_wakeup(struct perf_output_handle *handle)
2392
{
2393 2394
	atomic_set(&handle->data->poll, POLL_IN);

2395
	if (handle->nmi) {
2396
		handle->counter->pending_wakeup = 1;
2397
		perf_pending_queue(&handle->counter->pending,
2398
				   perf_pending_counter);
2399
	} else
2400 2401 2402
		perf_counter_wakeup(handle->counter);
}

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
/*
 * Curious locking construct.
 *
 * We need to ensure a later event doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

2429
	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2430 2431 2432 2433 2434 2435 2436 2437
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2438 2439
	unsigned long head;
	int cpu;
2440

2441
	data->done_head = data->head;
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2452
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2453 2454 2455
		data->user_page->data_head = head;

	/*
2456
	 * NMI can happen here, which means we can miss a done_head update.
2457 2458
	 */

2459
	cpu = atomic_xchg(&data->lock, -1);
2460 2461 2462 2463 2464
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2465
	if (unlikely(atomic_long_read(&data->done_head))) {
2466 2467 2468
		/*
		 * Since we had it locked, we can lock it again.
		 */
2469
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2470 2471 2472 2473 2474
			cpu_relax();

		goto again;
	}

2475
	if (atomic_xchg(&data->wakeup, 0))
2476 2477 2478 2479 2480
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
static void perf_output_copy(struct perf_output_handle *handle,
			     const void *buf, unsigned int len)
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

2520
static int perf_output_begin(struct perf_output_handle *handle,
2521
			     struct perf_counter *counter, unsigned int size,
2522
			     int nmi, int sample)
2523
{
2524
	struct perf_mmap_data *data;
2525
	unsigned int offset, head;
2526 2527 2528 2529 2530 2531
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2532

2533 2534 2535 2536 2537 2538
	/*
	 * For inherited counters we send all the output towards the parent.
	 */
	if (counter->parent)
		counter = counter->parent;

2539 2540 2541 2542 2543
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

2544 2545 2546 2547
	handle->data	= data;
	handle->counter	= counter;
	handle->nmi	= nmi;
	handle->sample	= sample;
2548

2549
	if (!data->nr_pages)
2550
		goto fail;
2551

2552 2553 2554 2555
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2556 2557
	perf_output_lock(handle);

2558
	do {
2559
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2560
		head += size;
2561 2562
		if (unlikely(!perf_output_space(data, offset, head)))
			goto fail;
2563
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2564

2565
	handle->offset	= offset;
2566
	handle->head	= head;
2567 2568 2569

	if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
		atomic_set(&data->wakeup, 1);
2570

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
	if (have_lost) {
		lost_event.header.type = PERF_EVENT_LOST;
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
		lost_event.id          = counter->id;
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2581
	return 0;
2582

2583
fail:
2584 2585
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2586 2587
out:
	rcu_read_unlock();
2588

2589 2590
	return -ENOSPC;
}
2591

2592
static void perf_output_end(struct perf_output_handle *handle)
2593
{
2594 2595 2596
	struct perf_counter *counter = handle->counter;
	struct perf_mmap_data *data = handle->data;

2597
	int wakeup_events = counter->attr.wakeup_events;
P
Peter Zijlstra 已提交
2598

2599
	if (handle->sample && wakeup_events) {
2600
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2601
		if (events >= wakeup_events) {
2602
			atomic_sub(wakeup_events, &data->events);
2603
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2604
		}
2605 2606 2607
	}

	perf_output_unlock(handle);
2608
	rcu_read_unlock();
2609 2610
}

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
{
	/*
	 * only top level counters have the pid namespace they were created in
	 */
	if (counter->parent)
		counter = counter->parent;

	return task_tgid_nr_ns(p, counter->ns);
}

static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
{
	/*
	 * only top level counters have the pid namespace they were created in
	 */
	if (counter->parent)
		counter = counter->parent;

	return task_pid_nr_ns(p, counter->ns);
}

2633 2634
static void perf_counter_output(struct perf_counter *counter, int nmi,
				struct perf_sample_data *data)
2635
{
2636
	int ret;
2637
	u64 sample_type = counter->attr.sample_type;
2638 2639 2640
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
2641
	struct {
2642
		u32 pid, tid;
2643
	} tid_entry;
2644
	struct {
2645
		u64 id;
2646 2647
		u64 counter;
	} group_entry;
2648 2649
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
2650
	u64 time;
2651 2652 2653
	struct {
		u32 cpu, reserved;
	} cpu_entry;
2654

2655
	header.type = PERF_EVENT_SAMPLE;
2656
	header.size = sizeof(header);
2657

2658
	header.misc = 0;
2659
	header.misc |= perf_misc_flags(data->regs);
2660

2661
	if (sample_type & PERF_SAMPLE_IP) {
2662
		ip = perf_instruction_pointer(data->regs);
2663 2664
		header.size += sizeof(ip);
	}
2665

2666
	if (sample_type & PERF_SAMPLE_TID) {
2667
		/* namespace issues */
2668 2669
		tid_entry.pid = perf_counter_pid(counter, current);
		tid_entry.tid = perf_counter_tid(counter, current);
2670 2671 2672 2673

		header.size += sizeof(tid_entry);
	}

2674
	if (sample_type & PERF_SAMPLE_TIME) {
2675 2676 2677 2678 2679 2680 2681 2682
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

		header.size += sizeof(u64);
	}

2683
	if (sample_type & PERF_SAMPLE_ADDR)
2684 2685
		header.size += sizeof(u64);

2686
	if (sample_type & PERF_SAMPLE_ID)
2687 2688
		header.size += sizeof(u64);

2689 2690 2691
	if (sample_type & PERF_SAMPLE_STREAM_ID)
		header.size += sizeof(u64);

2692
	if (sample_type & PERF_SAMPLE_CPU) {
2693 2694 2695
		header.size += sizeof(cpu_entry);

		cpu_entry.cpu = raw_smp_processor_id();
A
Arjan van de Ven 已提交
2696
		cpu_entry.reserved = 0;
2697 2698
	}

2699
	if (sample_type & PERF_SAMPLE_PERIOD)
2700 2701
		header.size += sizeof(u64);

2702
	if (sample_type & PERF_SAMPLE_GROUP) {
2703 2704 2705 2706
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

2707
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2708
		callchain = perf_callchain(data->regs);
2709 2710

		if (callchain) {
2711
			callchain_size = (1 + callchain->nr) * sizeof(u64);
2712
			header.size += callchain_size;
2713 2714
		} else
			header.size += sizeof(u64);
2715 2716
	}

2717
	if (sample_type & PERF_SAMPLE_RAW) {
2718 2719 2720 2721 2722 2723 2724 2725 2726
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
		header.size += size;
2727 2728
	}

2729
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2730 2731
	if (ret)
		return;
2732

2733
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
2734

2735
	if (sample_type & PERF_SAMPLE_IP)
2736
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
2737

2738
	if (sample_type & PERF_SAMPLE_TID)
2739
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
2740

2741
	if (sample_type & PERF_SAMPLE_TIME)
2742 2743
		perf_output_put(&handle, time);

2744
	if (sample_type & PERF_SAMPLE_ADDR)
2745
		perf_output_put(&handle, data->addr);
2746

2747 2748 2749 2750 2751 2752 2753
	if (sample_type & PERF_SAMPLE_ID) {
		u64 id = primary_counter_id(counter);

		perf_output_put(&handle, id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID)
2754
		perf_output_put(&handle, counter->id);
2755

2756
	if (sample_type & PERF_SAMPLE_CPU)
2757 2758
		perf_output_put(&handle, cpu_entry);

2759
	if (sample_type & PERF_SAMPLE_PERIOD)
2760
		perf_output_put(&handle, data->period);
2761

2762
	/*
2763
	 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2764
	 */
2765
	if (sample_type & PERF_SAMPLE_GROUP) {
2766 2767
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
2768

2769
		perf_output_put(&handle, nr);
2770

2771 2772 2773
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
2774
				sub->pmu->read(sub);
2775

2776
			group_entry.id = primary_counter_id(sub);
2777
			group_entry.counter = atomic64_read(&sub->count);
2778

2779 2780
			perf_output_put(&handle, group_entry);
		}
2781
	}
P
Peter Zijlstra 已提交
2782

2783 2784 2785 2786 2787 2788 2789 2790
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (callchain)
			perf_output_copy(&handle, callchain, callchain_size);
		else {
			u64 nr = 0;
			perf_output_put(&handle, nr);
		}
	}
2791

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(&handle, data->raw->size);
			perf_output_copy(&handle, data->raw->data, data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(&handle, raw);
		}
	}
2807

2808
	perf_output_end(&handle);
2809 2810
}

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
/*
 * read event
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
	u64				value;
	u64				format[3];
};

static void
perf_counter_read_event(struct perf_counter *counter,
			struct task_struct *task)
{
	struct perf_output_handle handle;
	struct perf_read_event event = {
		.header = {
			.type = PERF_EVENT_READ,
			.misc = 0,
			.size = sizeof(event) - sizeof(event.format),
		},
		.pid = perf_counter_pid(counter, task),
		.tid = perf_counter_tid(counter, task),
		.value = atomic64_read(&counter->count),
	};
	int ret, i = 0;

	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		event.header.size += sizeof(u64);
		event.format[i++] = counter->total_time_enabled;
	}

	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		event.header.size += sizeof(u64);
		event.format[i++] = counter->total_time_running;
	}

	if (counter->attr.read_format & PERF_FORMAT_ID) {
		event.header.size += sizeof(u64);
2853
		event.format[i++] = primary_counter_id(counter);
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
	}

	ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
	if (ret)
		return;

	perf_output_copy(&handle, &event, event.header.size);
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
2864
/*
P
Peter Zijlstra 已提交
2865 2866 2867
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
2868 2869
 */

P
Peter Zijlstra 已提交
2870
struct perf_task_event {
2871 2872
	struct task_struct		*task;
	struct perf_counter_context	*task_ctx;
P
Peter Zijlstra 已提交
2873 2874 2875 2876 2877 2878

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
2879 2880
		u32				tid;
		u32				ptid;
P
Peter Zijlstra 已提交
2881 2882 2883
	} event;
};

P
Peter Zijlstra 已提交
2884 2885
static void perf_counter_task_output(struct perf_counter *counter,
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
2886 2887
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
2888 2889
	int size = task_event->event.header.size;
	struct task_struct *task = task_event->task;
P
Peter Zijlstra 已提交
2890 2891 2892 2893 2894
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

P
Peter Zijlstra 已提交
2895 2896
	task_event->event.pid = perf_counter_pid(counter, task);
	task_event->event.ppid = perf_counter_pid(counter, task->real_parent);
P
Peter Zijlstra 已提交
2897

P
Peter Zijlstra 已提交
2898 2899 2900 2901
	task_event->event.tid = perf_counter_tid(counter, task);
	task_event->event.ptid = perf_counter_tid(counter, task->real_parent);

	perf_output_put(&handle, task_event->event);
P
Peter Zijlstra 已提交
2902 2903 2904
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
2905
static int perf_counter_task_match(struct perf_counter *counter)
P
Peter Zijlstra 已提交
2906
{
P
Peter Zijlstra 已提交
2907
	if (counter->attr.comm || counter->attr.mmap || counter->attr.task)
P
Peter Zijlstra 已提交
2908 2909 2910 2911 2912
		return 1;

	return 0;
}

P
Peter Zijlstra 已提交
2913 2914
static void perf_counter_task_ctx(struct perf_counter_context *ctx,
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
2915 2916 2917 2918 2919 2920 2921 2922
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
P
Peter Zijlstra 已提交
2923 2924
		if (perf_counter_task_match(counter))
			perf_counter_task_output(counter, task_event);
P
Peter Zijlstra 已提交
2925 2926 2927 2928
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
2929
static void perf_counter_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
2930 2931
{
	struct perf_cpu_context *cpuctx;
2932
	struct perf_counter_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
2933 2934

	cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
2935
	perf_counter_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
2936 2937 2938
	put_cpu_var(perf_cpu_context);

	rcu_read_lock();
2939 2940
	if (!ctx)
		ctx = rcu_dereference(task_event->task->perf_counter_ctxp);
P
Peter Zijlstra 已提交
2941
	if (ctx)
P
Peter Zijlstra 已提交
2942
		perf_counter_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
2943 2944 2945
	rcu_read_unlock();
}

2946 2947 2948
static void perf_counter_task(struct task_struct *task,
			      struct perf_counter_context *task_ctx,
			      int new)
P
Peter Zijlstra 已提交
2949
{
P
Peter Zijlstra 已提交
2950
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
2951 2952

	if (!atomic_read(&nr_comm_counters) &&
P
Peter Zijlstra 已提交
2953 2954
	    !atomic_read(&nr_mmap_counters) &&
	    !atomic_read(&nr_task_counters))
P
Peter Zijlstra 已提交
2955 2956
		return;

P
Peter Zijlstra 已提交
2957
	task_event = (struct perf_task_event){
2958 2959 2960
		.task	  = task,
		.task_ctx = task_ctx,
		.event    = {
P
Peter Zijlstra 已提交
2961
			.header = {
P
Peter Zijlstra 已提交
2962
				.type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT,
2963
				.misc = 0,
P
Peter Zijlstra 已提交
2964
				.size = sizeof(task_event.event),
P
Peter Zijlstra 已提交
2965
			},
2966 2967
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
2968 2969
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
2970 2971 2972
		},
	};

P
Peter Zijlstra 已提交
2973 2974 2975 2976 2977
	perf_counter_task_event(&task_event);
}

void perf_counter_fork(struct task_struct *task)
{
2978
	perf_counter_task(task, NULL, 1);
P
Peter Zijlstra 已提交
2979 2980
}

2981 2982 2983 2984 2985
/*
 * comm tracking
 */

struct perf_comm_event {
2986 2987
	struct task_struct	*task;
	char			*comm;
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

3008 3009 3010
	comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
	comm_event->event.tid = perf_counter_tid(counter, comm_event->task);

3011 3012 3013 3014 3015 3016
	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3017
static int perf_counter_comm_match(struct perf_counter *counter)
3018
{
P
Peter Zijlstra 已提交
3019
	if (counter->attr.comm)
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
P
Peter Zijlstra 已提交
3035
		if (perf_counter_comm_match(counter))
3036 3037 3038 3039 3040 3041 3042 3043
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
3044
	struct perf_counter_context *ctx;
3045
	unsigned int size;
3046
	char comm[TASK_COMM_LEN];
3047

3048 3049
	memset(comm, 0, sizeof(comm));
	strncpy(comm, comm_event->task->comm, sizeof(comm));
3050
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3051 3052 3053 3054 3055 3056 3057 3058 3059

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069

	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_comm_ctx(ctx, comm_event);
	rcu_read_unlock();
3070 3071 3072 3073
}

void perf_counter_comm(struct task_struct *task)
{
3074 3075
	struct perf_comm_event comm_event;

3076 3077 3078
	if (task->perf_counter_ctxp)
		perf_counter_enable_on_exec(task);

P
Peter Zijlstra 已提交
3079
	if (!atomic_read(&nr_comm_counters))
3080
		return;
3081

3082
	comm_event = (struct perf_comm_event){
3083
		.task	= task,
3084 3085
		/* .comm      */
		/* .comm_size */
3086
		.event  = {
3087 3088 3089 3090 3091 3092 3093
			.header = {
				.type = PERF_EVENT_COMM,
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3094 3095 3096 3097 3098 3099
		},
	};

	perf_counter_comm_event(&comm_event);
}

3100 3101 3102 3103 3104
/*
 * mmap tracking
 */

struct perf_mmap_event {
3105 3106 3107 3108
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
3126
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
3127 3128 3129 3130

	if (ret)
		return;

3131 3132 3133
	mmap_event->event.pid = perf_counter_pid(counter, current);
	mmap_event->event.tid = perf_counter_tid(counter, current);

3134 3135 3136
	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3137
	perf_output_end(&handle);
3138 3139 3140 3141 3142
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
3143
	if (counter->attr.mmap)
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
3168
	struct perf_counter_context *ctx;
3169 3170
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3171 3172 3173
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3174
	const char *name;
3175

3176 3177
	memset(tmp, 0, sizeof(tmp));

3178
	if (file) {
3179 3180 3181 3182 3183 3184
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3185 3186 3187 3188
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3189
		name = d_path(&file->f_path, buf, PATH_MAX);
3190 3191 3192 3193 3194
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3195 3196 3197
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3198
			goto got_name;
3199
		}
3200 3201 3202 3203 3204 3205

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3206 3207 3208 3209 3210
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3211
	size = ALIGN(strlen(name)+1, sizeof(u64));
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_mmap_ctx(ctx, mmap_event);
	rcu_read_unlock();

3232 3233 3234
	kfree(buf);
}

3235
void __perf_counter_mmap(struct vm_area_struct *vma)
3236
{
3237 3238
	struct perf_mmap_event mmap_event;

P
Peter Zijlstra 已提交
3239
	if (!atomic_read(&nr_mmap_counters))
3240 3241 3242
		return;

	mmap_event = (struct perf_mmap_event){
3243
		.vma	= vma,
3244 3245
		/* .file_name */
		/* .file_size */
3246
		.event  = {
3247 3248 3249 3250 3251 3252 3253
			.header = {
				.type = PERF_EVENT_MMAP,
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3254 3255 3256
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3257 3258 3259 3260 3261 3262
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
/*
 * IRQ throttle logging
 */

static void perf_log_throttle(struct perf_counter *counter, int enable)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3275
		u64				id;
3276
		u64				stream_id;
3277 3278
	} throttle_event = {
		.header = {
3279
			.type = PERF_EVENT_THROTTLE,
3280 3281 3282
			.misc = 0,
			.size = sizeof(throttle_event),
		},
3283 3284 3285
		.time		= sched_clock(),
		.id		= primary_counter_id(counter),
		.stream_id	= counter->id,
3286 3287
	};

3288 3289 3290
	if (enable)
		throttle_event.header.type = PERF_EVENT_UNTHROTTLE;

I
Ingo Molnar 已提交
3291
	ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3292 3293 3294 3295 3296 3297 3298
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3299
/*
3300
 * Generic counter overflow handling, sampling.
3301 3302
 */

3303 3304
int perf_counter_overflow(struct perf_counter *counter, int nmi,
			  struct perf_sample_data *data)
3305
{
3306
	int events = atomic_read(&counter->event_limit);
3307
	int throttle = counter->pmu->unthrottle != NULL;
3308
	struct hw_perf_counter *hwc = &counter->hw;
3309 3310
	int ret = 0;

3311
	if (!throttle) {
3312
		hwc->interrupts++;
3313
	} else {
3314 3315
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3316 3317
			if (HZ * hwc->interrupts >
					(u64)sysctl_perf_counter_sample_rate) {
3318
				hwc->interrupts = MAX_INTERRUPTS;
3319 3320 3321 3322 3323 3324 3325 3326 3327
				perf_log_throttle(counter, 0);
				ret = 1;
			}
		} else {
			/*
			 * Keep re-disabling counters even though on the previous
			 * pass we disabled it - just in case we raced with a
			 * sched-in and the counter got enabled again:
			 */
3328 3329 3330
			ret = 1;
		}
	}
3331

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
	if (counter->attr.freq) {
		u64 now = sched_clock();
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
			perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
	}

3342 3343 3344 3345 3346
	/*
	 * XXX event_limit might not quite work as expected on inherited
	 * counters
	 */

3347
	counter->pending_kill = POLL_IN;
3348 3349
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
3350
		counter->pending_kill = POLL_HUP;
3351 3352 3353 3354 3355 3356 3357 3358
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

3359
	perf_counter_output(counter, nmi, data);
3360
	return ret;
3361 3362
}

3363 3364 3365 3366
/*
 * Generic software counter infrastructure
 */

3367 3368 3369 3370 3371 3372 3373 3374
/*
 * We directly increment counter->count and keep a second value in
 * counter->hw.period_left to count intervals. This period counter
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

static u64 perf_swcounter_set_period(struct perf_counter *counter)
3375 3376
{
	struct hw_perf_counter *hwc = &counter->hw;
3377 3378 3379 3380 3381
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3382 3383

again:
3384 3385 3386
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3387

3388 3389 3390 3391 3392
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3393

3394
	return nr;
3395 3396
}

3397 3398
static void perf_swcounter_overflow(struct perf_counter *counter,
				    int nmi, struct perf_sample_data *data)
3399 3400
{
	struct hw_perf_counter *hwc = &counter->hw;
3401
	u64 overflow;
3402

3403 3404
	data->period = counter->hw.last_period;
	overflow = perf_swcounter_set_period(counter);
3405

3406 3407
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3408

3409 3410 3411 3412 3413 3414 3415 3416 3417
	for (; overflow; overflow--) {
		if (perf_counter_overflow(counter, nmi, data)) {
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
	}
3418 3419
}

3420
static void perf_swcounter_unthrottle(struct perf_counter *counter)
3421 3422
{
	/*
3423
	 * Nothing to do, we already reset hwc->interrupts.
3424
	 */
3425
}
3426

3427 3428 3429 3430
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
			       int nmi, struct perf_sample_data *data)
{
	struct hw_perf_counter *hwc = &counter->hw;
3431

3432
	atomic64_add(nr, &counter->count);
3433

3434 3435
	if (!hwc->sample_period)
		return;
3436

3437 3438
	if (!data->regs)
		return;
3439

3440 3441
	if (!atomic64_add_negative(nr, &hwc->period_left))
		perf_swcounter_overflow(counter, nmi, data);
3442 3443
}

3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
static int perf_swcounter_is_counting(struct perf_counter *counter)
{
	struct perf_counter_context *ctx;
	unsigned long flags;
	int count;

	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		return 1;

	if (counter->state != PERF_COUNTER_STATE_INACTIVE)
		return 0;

	/*
	 * If the counter is inactive, it could be just because
	 * its task is scheduled out, or because it's in a group
	 * which could not go on the PMU.  We want to count in
	 * the first case but not the second.  If the context is
	 * currently active then an inactive software counter must
	 * be the second case.  If it's not currently active then
	 * we need to know whether the counter was active when the
	 * context was last active, which we can determine by
	 * comparing counter->tstamp_stopped with ctx->time.
	 *
	 * We are within an RCU read-side critical section,
	 * which protects the existence of *ctx.
	 */
	ctx = counter->ctx;
	spin_lock_irqsave(&ctx->lock, flags);
	count = 1;
	/* Re-check state now we have the lock */
	if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
	    counter->ctx->is_active ||
	    counter->tstamp_stopped < ctx->time)
		count = 0;
	spin_unlock_irqrestore(&ctx->lock, flags);
	return count;
}

3482
static int perf_swcounter_match(struct perf_counter *counter,
P
Peter Zijlstra 已提交
3483
				enum perf_type_id type,
3484
				u32 event, struct pt_regs *regs)
3485
{
3486
	if (!perf_swcounter_is_counting(counter))
3487 3488
		return 0;

3489 3490 3491
	if (counter->attr.type != type)
		return 0;
	if (counter->attr.config != event)
3492 3493
		return 0;

3494
	if (regs) {
3495
		if (counter->attr.exclude_user && user_mode(regs))
3496
			return 0;
3497

3498
		if (counter->attr.exclude_kernel && !user_mode(regs))
3499 3500
			return 0;
	}
3501 3502 3503 3504 3505

	return 1;
}

static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3506 3507 3508
				     enum perf_type_id type,
				     u32 event, u64 nr, int nmi,
				     struct perf_sample_data *data)
3509 3510 3511
{
	struct perf_counter *counter;

3512
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3513 3514
		return;

P
Peter Zijlstra 已提交
3515 3516
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3517 3518
		if (perf_swcounter_match(counter, type, event, data->regs))
			perf_swcounter_add(counter, nr, nmi, data);
3519
	}
P
Peter Zijlstra 已提交
3520
	rcu_read_unlock();
3521 3522
}

P
Peter Zijlstra 已提交
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

3537 3538 3539
static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
				    u64 nr, int nmi,
				    struct perf_sample_data *data)
3540 3541
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3542
	int *recursion = perf_swcounter_recursion_context(cpuctx);
3543
	struct perf_counter_context *ctx;
P
Peter Zijlstra 已提交
3544 3545 3546 3547 3548 3549

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
3550

3551
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3552
				 nr, nmi, data);
3553 3554 3555 3556 3557 3558 3559
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
3560
		perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3561
	rcu_read_unlock();
3562

P
Peter Zijlstra 已提交
3563 3564 3565 3566
	barrier();
	(*recursion)--;

out:
3567 3568 3569
	put_cpu_var(perf_cpu_context);
}

3570 3571
void __perf_swcounter_event(u32 event, u64 nr, int nmi,
			    struct pt_regs *regs, u64 addr)
3572
{
3573 3574 3575 3576 3577 3578
	struct perf_sample_data data = {
		.regs = regs,
		.addr = addr,
	};

	do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3579 3580
}

3581 3582 3583 3584 3585 3586
static void perf_swcounter_read(struct perf_counter *counter)
{
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
3587 3588 3589 3590 3591 3592
	struct hw_perf_counter *hwc = &counter->hw;

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
		perf_swcounter_set_period(counter);
	}
3593 3594 3595 3596 3597 3598 3599
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
}

3600
static const struct pmu perf_ops_generic = {
3601 3602 3603
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
3604
	.unthrottle	= perf_swcounter_unthrottle,
3605 3606
};

3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
/*
 * hrtimer based swcounter callback
 */

static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct perf_counter *counter;
	u64 period;

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
	counter->pmu->read(counter);

	data.addr = 0;
	data.regs = get_irq_regs();
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
	if ((counter->attr.exclude_kernel || !data.regs) &&
			!counter->attr.exclude_user)
		data.regs = task_pt_regs(current);

	if (data.regs) {
		if (perf_counter_overflow(counter, 0, &data))
			ret = HRTIMER_NORESTART;
	}

	period = max_t(u64, 10000, counter->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

3642 3643 3644 3645
/*
 * Software counter: cpu wall time clock
 */

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

3658 3659 3660 3661 3662 3663
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3664 3665
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3666 3667
	if (hwc->sample_period) {
		u64 period = max_t(u64, 10000, hwc->sample_period);
3668
		__hrtimer_start_range_ns(&hwc->hrtimer,
3669
				ns_to_ktime(period), 0,
3670 3671 3672 3673 3674 3675
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

3676 3677
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
3678
	if (counter->hw.sample_period)
3679
		hrtimer_cancel(&counter->hw.hrtimer);
3680
	cpu_clock_perf_counter_update(counter);
3681 3682 3683 3684
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
3685
	cpu_clock_perf_counter_update(counter);
3686 3687
}

3688
static const struct pmu perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
3689 3690 3691
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
3692 3693
};

3694 3695 3696 3697
/*
 * Software counter: task time clock
 */

3698
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
3699
{
3700
	u64 prev;
I
Ingo Molnar 已提交
3701 3702
	s64 delta;

3703
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
3704 3705
	delta = now - prev;
	atomic64_add(delta, &counter->count);
3706 3707
}

3708
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
3709
{
3710
	struct hw_perf_counter *hwc = &counter->hw;
3711 3712 3713
	u64 now;

	now = counter->ctx->time;
3714

3715
	atomic64_set(&hwc->prev_count, now);
3716 3717
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3718 3719
	if (hwc->sample_period) {
		u64 period = max_t(u64, 10000, hwc->sample_period);
3720
		__hrtimer_start_range_ns(&hwc->hrtimer,
3721
				ns_to_ktime(period), 0,
3722 3723
				HRTIMER_MODE_REL, 0);
	}
3724 3725

	return 0;
I
Ingo Molnar 已提交
3726 3727 3728
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
3729
{
3730
	if (counter->hw.sample_period)
3731
		hrtimer_cancel(&counter->hw.hrtimer);
3732 3733
	task_clock_perf_counter_update(counter, counter->ctx->time);

3734
}
I
Ingo Molnar 已提交
3735

3736 3737
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
3750 3751
}

3752
static const struct pmu perf_ops_task_clock = {
I
Ingo Molnar 已提交
3753 3754 3755
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
3756 3757
};

3758
#ifdef CONFIG_EVENT_PROFILE
3759 3760
void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record,
			  int entry_size)
3761
{
3762
	struct perf_raw_record raw = {
3763
		.size = entry_size,
3764
		.data = record,
3765 3766
	};

3767
	struct perf_sample_data data = {
3768
		.regs = get_irq_regs(),
3769
		.addr = addr,
3770
		.raw = &raw,
3771
	};
3772

3773 3774
	if (!data.regs)
		data.regs = task_pt_regs(current);
3775

3776
	do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, &data);
3777
}
3778
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3779 3780 3781 3782 3783 3784

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
3785
	ftrace_profile_disable(counter->attr.config);
3786 3787
}

3788
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3789
{
3790
	if (ftrace_profile_enable(counter->attr.config))
3791 3792 3793 3794 3795 3796 3797
		return NULL;

	counter->destroy = tp_perf_counter_destroy;

	return &perf_ops_generic;
}
#else
3798
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3799 3800 3801 3802 3803
{
	return NULL;
}
#endif

3804 3805 3806 3807 3808 3809
atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];

static void sw_perf_counter_destroy(struct perf_counter *counter)
{
	u64 event = counter->attr.config;

3810 3811
	WARN_ON(counter->parent);

3812 3813 3814
	atomic_dec(&perf_swcounter_enabled[event]);
}

3815
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3816
{
3817
	const struct pmu *pmu = NULL;
3818
	u64 event = counter->attr.config;
3819

3820 3821 3822 3823 3824 3825 3826
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
3827
	switch (event) {
3828
	case PERF_COUNT_SW_CPU_CLOCK:
3829
		pmu = &perf_ops_cpu_clock;
3830

3831
		break;
3832
	case PERF_COUNT_SW_TASK_CLOCK:
3833 3834 3835 3836 3837
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
3838
			pmu = &perf_ops_task_clock;
3839
		else
3840
			pmu = &perf_ops_cpu_clock;
3841

3842
		break;
3843 3844 3845 3846 3847
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
3848 3849 3850 3851
		if (!counter->parent) {
			atomic_inc(&perf_swcounter_enabled[event]);
			counter->destroy = sw_perf_counter_destroy;
		}
3852
		pmu = &perf_ops_generic;
3853
		break;
3854
	}
3855

3856
	return pmu;
3857 3858
}

T
Thomas Gleixner 已提交
3859 3860 3861 3862
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
3863
perf_counter_alloc(struct perf_counter_attr *attr,
3864
		   int cpu,
3865
		   struct perf_counter_context *ctx,
3866
		   struct perf_counter *group_leader,
3867
		   struct perf_counter *parent_counter,
3868
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
3869
{
3870
	const struct pmu *pmu;
I
Ingo Molnar 已提交
3871
	struct perf_counter *counter;
3872
	struct hw_perf_counter *hwc;
3873
	long err;
T
Thomas Gleixner 已提交
3874

3875
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
3876
	if (!counter)
3877
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
3878

3879 3880 3881 3882 3883 3884 3885
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

3886 3887 3888
	mutex_init(&counter->child_mutex);
	INIT_LIST_HEAD(&counter->child_list);

3889
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
3890
	INIT_LIST_HEAD(&counter->event_entry);
3891
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
3892 3893
	init_waitqueue_head(&counter->waitq);

3894 3895
	mutex_init(&counter->mmap_mutex);

3896
	counter->cpu		= cpu;
3897
	counter->attr		= *attr;
3898 3899 3900 3901 3902
	counter->group_leader	= group_leader;
	counter->pmu		= NULL;
	counter->ctx		= ctx;
	counter->oncpu		= -1;

3903 3904
	counter->parent		= parent_counter;

3905 3906 3907 3908
	counter->ns		= get_pid_ns(current->nsproxy->pid_ns);
	counter->id		= atomic64_inc_return(&perf_counter_id);

	counter->state		= PERF_COUNTER_STATE_INACTIVE;
3909

3910
	if (attr->disabled)
3911 3912
		counter->state = PERF_COUNTER_STATE_OFF;

3913
	pmu = NULL;
3914

3915
	hwc = &counter->hw;
3916
	hwc->sample_period = attr->sample_period;
3917
	if (attr->freq && attr->sample_freq)
3918 3919 3920
		hwc->sample_period = 1;

	atomic64_set(&hwc->period_left, hwc->sample_period);
3921

3922
	/*
3923
	 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3924
	 */
3925
	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3926 3927
		goto done;

3928
	switch (attr->type) {
3929
	case PERF_TYPE_RAW:
3930
	case PERF_TYPE_HARDWARE:
3931
	case PERF_TYPE_HW_CACHE:
3932
		pmu = hw_perf_counter_init(counter);
3933 3934 3935
		break;

	case PERF_TYPE_SOFTWARE:
3936
		pmu = sw_perf_counter_init(counter);
3937 3938 3939
		break;

	case PERF_TYPE_TRACEPOINT:
3940
		pmu = tp_perf_counter_init(counter);
3941
		break;
3942 3943 3944

	default:
		break;
3945
	}
3946 3947
done:
	err = 0;
3948
	if (!pmu)
3949
		err = -EINVAL;
3950 3951
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
3952

3953
	if (err) {
3954 3955
		if (counter->ns)
			put_pid_ns(counter->ns);
I
Ingo Molnar 已提交
3956
		kfree(counter);
3957
		return ERR_PTR(err);
I
Ingo Molnar 已提交
3958
	}
3959

3960
	counter->pmu = pmu;
T
Thomas Gleixner 已提交
3961

3962 3963 3964 3965 3966 3967
	if (!counter->parent) {
		atomic_inc(&nr_counters);
		if (counter->attr.mmap)
			atomic_inc(&nr_mmap_counters);
		if (counter->attr.comm)
			atomic_inc(&nr_comm_counters);
P
Peter Zijlstra 已提交
3968 3969
		if (counter->attr.task)
			atomic_inc(&nr_task_counters);
3970
	}
3971

T
Thomas Gleixner 已提交
3972 3973 3974
	return counter;
}

3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
static int perf_copy_attr(struct perf_counter_attr __user *uattr,
			  struct perf_counter_attr *attr)
{
	int ret;
	u32 size;

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0.
	 */
	if (size > sizeof(*attr)) {
		unsigned long val;
		unsigned long __user *addr;
		unsigned long __user *end;

		addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
				sizeof(unsigned long));
		end  = PTR_ALIGN((void __user *)uattr + size,
				sizeof(unsigned long));

		for (; addr < end; addr += sizeof(unsigned long)) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

T
Thomas Gleixner 已提交
4054
/**
4055
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
4056
 *
4057
 * @attr_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4058
 * @pid:		target pid
I
Ingo Molnar 已提交
4059 4060
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
4061
 */
4062
SYSCALL_DEFINE5(perf_counter_open,
4063
		struct perf_counter_attr __user *, attr_uptr,
4064
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4065
{
4066
	struct perf_counter *counter, *group_leader;
4067
	struct perf_counter_attr attr;
4068
	struct perf_counter_context *ctx;
4069
	struct file *counter_file = NULL;
4070 4071
	struct file *group_file = NULL;
	int fput_needed = 0;
4072
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
4073 4074
	int ret;

4075 4076 4077 4078
	/* for future expandability... */
	if (flags)
		return -EINVAL;

4079 4080 4081
	ret = perf_copy_attr(attr_uptr, &attr);
	if (ret)
		return ret;
4082

4083 4084 4085 4086 4087
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4088 4089 4090 4091 4092
	if (attr.freq) {
		if (attr.sample_freq > sysctl_perf_counter_sample_rate)
			return -EINVAL;
	}

4093
	/*
I
Ingo Molnar 已提交
4094 4095 4096 4097 4098 4099 4100 4101
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
4102 4103 4104 4105 4106 4107
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4108
			goto err_put_context;
4109
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4110
			goto err_put_context;
4111 4112 4113

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4114 4115 4116 4117 4118 4119 4120 4121
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4122
		 */
I
Ingo Molnar 已提交
4123 4124
		if (group_leader->ctx != ctx)
			goto err_put_context;
4125 4126 4127
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4128
		if (attr.exclusive || attr.pinned)
4129
			goto err_put_context;
4130 4131
	}

4132
	counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4133
				     NULL, GFP_KERNEL);
4134 4135
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
4136 4137 4138 4139
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
4140 4141 4142 4143 4144 4145 4146
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
4147
	WARN_ON_ONCE(ctx->parent_ctx);
4148
	mutex_lock(&ctx->mutex);
4149
	perf_install_in_context(ctx, counter, cpu);
4150
	++ctx->generation;
4151
	mutex_unlock(&ctx->mutex);
4152

4153 4154 4155 4156 4157 4158
	counter->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_counter_mutex);
	list_add_tail(&counter->owner_entry, &current->perf_counter_list);
	mutex_unlock(&current->perf_counter_mutex);

4159
	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
4160

4161 4162 4163
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
4164 4165
	return ret;

4166
err_free_put_context:
T
Thomas Gleixner 已提交
4167 4168 4169
	kfree(counter);

err_put_context:
4170
	put_ctx(ctx);
T
Thomas Gleixner 已提交
4171

4172
	goto out_fput;
T
Thomas Gleixner 已提交
4173 4174
}

4175 4176 4177
/*
 * inherit a counter from parent task to child task:
 */
4178
static struct perf_counter *
4179 4180 4181 4182
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
4183
	      struct perf_counter *group_leader,
4184 4185 4186 4187
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

4188 4189 4190 4191 4192 4193 4194 4195 4196
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

4197
	child_counter = perf_counter_alloc(&parent_counter->attr,
4198
					   parent_counter->cpu, child_ctx,
4199 4200
					   group_leader, parent_counter,
					   GFP_KERNEL);
4201 4202
	if (IS_ERR(child_counter))
		return child_counter;
4203
	get_ctx(child_ctx);
4204

4205 4206
	/*
	 * Make the child state follow the state of the parent counter,
4207
	 * not its attr.disabled bit.  We hold the parent's mutex,
4208
	 * so we won't race with perf_counter_{en, dis}able_family.
4209 4210 4211 4212 4213 4214
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

4215 4216 4217
	if (parent_counter->attr.freq)
		child_counter->hw.sample_period = parent_counter->hw.sample_period;

4218 4219 4220
	/*
	 * Link it up in the child's context:
	 */
4221
	add_counter_to_ctx(child_counter, child_ctx);
4222 4223 4224 4225 4226 4227 4228 4229 4230

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

4231 4232 4233
	/*
	 * Link this into the parent counter's child list
	 */
4234
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4235
	mutex_lock(&parent_counter->child_mutex);
4236
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4237
	mutex_unlock(&parent_counter->child_mutex);
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
4250
	struct perf_counter *child_ctr;
4251 4252 4253

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
4254 4255
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4256
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4257 4258 4259 4260
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4261
	}
4262 4263 4264
	return 0;
}

4265
static void sync_child_counter(struct perf_counter *child_counter,
4266
			       struct task_struct *child)
4267
{
4268
	struct perf_counter *parent_counter = child_counter->parent;
4269
	u64 child_val;
4270

4271 4272
	if (child_counter->attr.inherit_stat)
		perf_counter_read_event(child_counter, child);
4273

4274 4275 4276 4277 4278 4279
	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
4280 4281 4282 4283
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
4284 4285 4286 4287

	/*
	 * Remove this counter from the parent's list
	 */
4288
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4289
	mutex_lock(&parent_counter->child_mutex);
4290
	list_del_init(&child_counter->child_list);
4291
	mutex_unlock(&parent_counter->child_mutex);
4292 4293 4294 4295 4296 4297 4298 4299

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

4300
static void
4301
__perf_counter_exit_task(struct perf_counter *child_counter,
4302 4303
			 struct perf_counter_context *child_ctx,
			 struct task_struct *child)
4304 4305 4306
{
	struct perf_counter *parent_counter;

4307
	update_counter_times(child_counter);
4308
	perf_counter_remove_from_context(child_counter);
4309

4310 4311 4312 4313 4314 4315
	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
4316
	if (parent_counter) {
4317
		sync_child_counter(child_counter, child);
4318
		free_counter(child_counter);
4319
	}
4320 4321 4322
}

/*
4323
 * When a child task exits, feed back counter values to parent counters.
4324 4325 4326 4327 4328
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;
4329
	unsigned long flags;
4330

P
Peter Zijlstra 已提交
4331
	if (likely(!child->perf_counter_ctxp)) {
4332
		perf_counter_task(child, NULL, 0);
4333
		return;
P
Peter Zijlstra 已提交
4334
	}
4335

4336
	local_irq_save(flags);
4337 4338 4339 4340 4341 4342 4343
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
	child_ctx = child->perf_counter_ctxp;
4344
	__perf_counter_task_sched_out(child_ctx);
4345 4346 4347 4348 4349 4350 4351

	/*
	 * Take the context lock here so that if find_get_context is
	 * reading child->perf_counter_ctxp, we wait until it has
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
4352
	child->perf_counter_ctxp = NULL;
4353 4354 4355 4356 4357 4358
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
	 * the counters from it.
	 */
	unclone_ctx(child_ctx);
P
Peter Zijlstra 已提交
4359 4360 4361 4362 4363 4364 4365
	spin_unlock_irqrestore(&child_ctx->lock, flags);

	/*
	 * Report the task dead after unscheduling the counters so that we
	 * won't get any samples after PERF_EVENT_EXIT. We can however still
	 * get a few PERF_EVENT_READ events.
	 */
4366
	perf_counter_task(child, child_ctx, 0);
4367

4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
	/*
	 * We can recurse on the same lock type through:
	 *
	 *   __perf_counter_exit_task()
	 *     sync_child_counter()
	 *       fput(parent_counter->filp)
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4380

4381
again:
4382 4383
	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
4384
		__perf_counter_exit_task(child_counter, child_ctx, child);
4385 4386 4387 4388 4389 4390 4391 4392

	/*
	 * If the last counter was a group counter, it will have appended all
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
	if (!list_empty(&child_ctx->counter_list))
		goto again;
4393 4394 4395 4396

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
4397 4398
}

4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
void perf_counter_free_task(struct task_struct *task)
{
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
	struct perf_counter *counter, *tmp;

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
		struct perf_counter *parent = counter->parent;

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
		list_del_init(&counter->child_list);
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

		list_del_counter(counter, ctx);
		free_counter(counter);
	}

	if (!list_empty(&ctx->counter_list))
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

4437 4438 4439
/*
 * Initialize the perf_counter context in task_struct
 */
4440
int perf_counter_init_task(struct task_struct *child)
4441 4442
{
	struct perf_counter_context *child_ctx, *parent_ctx;
4443
	struct perf_counter_context *cloned_ctx;
4444
	struct perf_counter *counter;
4445
	struct task_struct *parent = current;
4446
	int inherited_all = 1;
4447
	int ret = 0;
4448

4449
	child->perf_counter_ctxp = NULL;
4450

4451 4452 4453
	mutex_init(&child->perf_counter_mutex);
	INIT_LIST_HEAD(&child->perf_counter_list);

4454
	if (likely(!parent->perf_counter_ctxp))
4455 4456
		return 0;

4457 4458
	/*
	 * This is executed from the parent task context, so inherit
4459 4460
	 * counters that have been marked for cloning.
	 * First allocate and initialize a context for the child.
4461 4462
	 */

4463 4464
	child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
	if (!child_ctx)
4465
		return -ENOMEM;
4466

4467 4468
	__perf_counter_init_context(child_ctx, child);
	child->perf_counter_ctxp = child_ctx;
4469
	get_task_struct(child);
4470

4471
	/*
4472 4473
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
4474
	 */
4475 4476
	parent_ctx = perf_pin_task_context(parent);

4477 4478 4479 4480 4481 4482 4483
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

4484 4485 4486 4487
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
4488
	mutex_lock(&parent_ctx->mutex);
4489 4490 4491 4492 4493

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
4494 4495 4496 4497
	list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
		if (counter != counter->group_leader)
			continue;

4498
		if (!counter->attr.inherit) {
4499
			inherited_all = 0;
4500
			continue;
4501
		}
4502

4503 4504 4505
		ret = inherit_group(counter, parent, parent_ctx,
					     child, child_ctx);
		if (ret) {
4506
			inherited_all = 0;
4507
			break;
4508 4509 4510 4511 4512 4513 4514
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
4515 4516 4517 4518
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
		 * because the list of counters and the generation
		 * count can't have changed since we took the mutex.
4519
		 */
4520 4521 4522
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
4523
			child_ctx->parent_gen = parent_ctx->parent_gen;
4524 4525 4526 4527 4528
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
4529 4530
	}

4531
	mutex_unlock(&parent_ctx->mutex);
4532

4533
	perf_unpin_context(parent_ctx);
4534

4535
	return ret;
4536 4537
}

4538
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
4539
{
4540
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
4541

4542 4543
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
4544

4545
	spin_lock(&perf_resource_lock);
4546
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4547
	spin_unlock(&perf_resource_lock);
4548

4549
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
4550 4551 4552
}

#ifdef CONFIG_HOTPLUG_CPU
4553
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
4554 4555 4556 4557 4558
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

4559 4560
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
4561
}
4562
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
4563
{
4564 4565 4566 4567
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
4568
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4569
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
4570 4571
}
#else
4572
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4584
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
4585 4586 4587 4588
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
4589
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
4590 4591 4592 4593 4594 4595 4596 4597 4598
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

4599 4600 4601
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
4602 4603
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
4604
	.priority		= 20,
T
Thomas Gleixner 已提交
4605 4606
};

4607
void __init perf_counter_init(void)
T
Thomas Gleixner 已提交
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

4634
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4635 4636 4637 4638 4639 4640 4641 4642 4643
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
4644
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

4666
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4667
	perf_overcommit = val;
4668
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);