mic_smpt.c 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
/*
 * Intel MIC Platform Software Stack (MPSS)
 *
 * Copyright(c) 2013 Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Intel MIC Host driver.
 *
 */
#include <linux/pci.h>

#include "../common/mic_device.h"
#include "mic_device.h"
#include "mic_smpt.h"

static inline u64 mic_system_page_mask(struct mic_device *mdev)
{
	return (1ULL << mdev->smpt->info.page_shift) - 1ULL;
}

static inline u8 mic_sys_addr_to_smpt(struct mic_device *mdev, dma_addr_t pa)
{
	return (pa - mdev->smpt->info.base) >> mdev->smpt->info.page_shift;
}

static inline u64 mic_smpt_to_pa(struct mic_device *mdev, u8 index)
{
	return mdev->smpt->info.base + (index * mdev->smpt->info.page_size);
}

static inline u64 mic_smpt_offset(struct mic_device *mdev, dma_addr_t pa)
{
	return pa & mic_system_page_mask(mdev);
}

static inline u64 mic_smpt_align_low(struct mic_device *mdev, dma_addr_t pa)
{
	return ALIGN(pa - mic_system_page_mask(mdev),
		mdev->smpt->info.page_size);
}

static inline u64 mic_smpt_align_high(struct mic_device *mdev, dma_addr_t pa)
{
	return ALIGN(pa, mdev->smpt->info.page_size);
}

/* Total Cumulative system memory accessible by MIC across all SMPT entries */
static inline u64 mic_max_system_memory(struct mic_device *mdev)
{
	return mdev->smpt->info.num_reg * mdev->smpt->info.page_size;
}

/* Maximum system memory address accessible by MIC */
static inline u64 mic_max_system_addr(struct mic_device *mdev)
{
	return mdev->smpt->info.base + mic_max_system_memory(mdev) - 1ULL;
}

/* Check if the DMA address is a MIC system memory address */
static inline bool
mic_is_system_addr(struct mic_device *mdev, dma_addr_t pa)
{
	return pa >= mdev->smpt->info.base && pa <= mic_max_system_addr(mdev);
}

/* Populate an SMPT entry and update the reference counts. */
static void mic_add_smpt_entry(int spt, s64 *ref, u64 addr,
		int entries, struct mic_device *mdev)
{
	struct mic_smpt_info *smpt_info = mdev->smpt;
	int i;

	for (i = spt; i < spt + entries; i++,
		addr += smpt_info->info.page_size) {
		if (!smpt_info->entry[i].ref_count &&
			(smpt_info->entry[i].dma_addr != addr)) {
			mdev->smpt_ops->set(mdev, addr, i);
			smpt_info->entry[i].dma_addr = addr;
		}
		smpt_info->entry[i].ref_count += ref[i - spt];
	}
}

/*
 * Find an available MIC address in MIC SMPT address space
 * for a given DMA address and size.
 */
static dma_addr_t mic_smpt_op(struct mic_device *mdev, u64 dma_addr,
				int entries, s64 *ref, size_t size)
{
	int spt;
	int ae = 0;
	int i;
	unsigned long flags;
	dma_addr_t mic_addr = 0;
	dma_addr_t addr = dma_addr;
	struct mic_smpt_info *smpt_info = mdev->smpt;

	spin_lock_irqsave(&smpt_info->smpt_lock, flags);

	/* find existing entries */
	for (i = 0; i < smpt_info->info.num_reg; i++) {
		if (smpt_info->entry[i].dma_addr == addr) {
			ae++;
			addr += smpt_info->info.page_size;
		} else if (ae) /* cannot find contiguous entries */
			goto not_found;

		if (ae == entries)
			goto found;
	}

	/* find free entry */
	for (ae = 0, i = 0; i < smpt_info->info.num_reg; i++) {
		ae = (smpt_info->entry[i].ref_count == 0) ? ae + 1 : 0;
		if (ae == entries)
			goto found;
	}

not_found:
	spin_unlock_irqrestore(&smpt_info->smpt_lock, flags);
	return mic_addr;

found:
	spt = i - entries + 1;
	mic_addr = mic_smpt_to_pa(mdev, spt);
	mic_add_smpt_entry(spt, ref, dma_addr, entries, mdev);
	smpt_info->map_count++;
	smpt_info->ref_count += (s64)size;
	spin_unlock_irqrestore(&smpt_info->smpt_lock, flags);
	return mic_addr;
}

/*
 * Returns number of smpt entries needed for dma_addr to dma_addr + size
 * also returns the reference count array for each of those entries
 * and the starting smpt address
 */
static int mic_get_smpt_ref_count(struct mic_device *mdev, dma_addr_t dma_addr,
				size_t size, s64 *ref,  u64 *smpt_start)
{
	u64 start =  dma_addr;
	u64 end = dma_addr + size;
	int i = 0;

	while (start < end) {
		ref[i++] = min(mic_smpt_align_high(mdev, start + 1),
			end) - start;
		start = mic_smpt_align_high(mdev, start + 1);
	}

	if (smpt_start)
		*smpt_start = mic_smpt_align_low(mdev, dma_addr);

	return i;
}

/*
 * mic_to_dma_addr - Converts a MIC address to a DMA address.
 *
 * @mdev: pointer to mic_device instance.
 * @mic_addr: MIC address.
 *
 * returns a DMA address.
 */
static dma_addr_t
mic_to_dma_addr(struct mic_device *mdev, dma_addr_t mic_addr)
{
	struct mic_smpt_info *smpt_info = mdev->smpt;
	int spt;
	dma_addr_t dma_addr;

	if (!mic_is_system_addr(mdev, mic_addr)) {
		dev_err(mdev->sdev->parent,
		"mic_addr is invalid. mic_addr = 0x%llx\n", mic_addr);
		return -EINVAL;
	}
	spt = mic_sys_addr_to_smpt(mdev, mic_addr);
	dma_addr = smpt_info->entry[spt].dma_addr +
		mic_smpt_offset(mdev, mic_addr);
	return dma_addr;
}

/**
 * mic_map - Maps a DMA address to a MIC physical address.
 *
 * @mdev: pointer to mic_device instance.
 * @dma_addr: DMA address.
 * @size: Size of the region to be mapped.
 *
 * This API converts the DMA address provided to a DMA address understood
 * by MIC. Caller should check for errors by calling mic_map_error(..).
 *
 * returns DMA address as required by MIC.
 */
dma_addr_t mic_map(struct mic_device *mdev, dma_addr_t dma_addr, size_t size)
{
	dma_addr_t mic_addr = 0;
	int num_entries;
	s64 *ref;
	u64 smpt_start;

	if (!size || size > mic_max_system_memory(mdev))
		return mic_addr;

	ref = kmalloc(mdev->smpt->info.num_reg * sizeof(s64), GFP_KERNEL);
	if (!ref)
		return mic_addr;

	num_entries = mic_get_smpt_ref_count(mdev, dma_addr, size,
		ref, &smpt_start);

	/* Set the smpt table appropriately and get 16G aligned mic address */
	mic_addr = mic_smpt_op(mdev, smpt_start, num_entries, ref, size);

	kfree(ref);

	/*
	 * If mic_addr is zero then its an error case
	 * since mic_addr can never be zero.
	 * else generate mic_addr by adding the 16G offset in dma_addr
	 */
	if (!mic_addr && MIC_FAMILY_X100 == mdev->family) {
		dev_err(mdev->sdev->parent,
			"mic_map failed dma_addr 0x%llx size 0x%lx\n",
			dma_addr, size);
		return mic_addr;
	} else {
		return mic_addr + mic_smpt_offset(mdev, dma_addr);
	}
}

/**
 * mic_unmap - Unmaps a MIC physical address.
 *
 * @mdev: pointer to mic_device instance.
 * @mic_addr: MIC physical address.
 * @size: Size of the region to be unmapped.
 *
 * This API unmaps the mappings created by mic_map(..).
 *
 * returns None.
 */
void mic_unmap(struct mic_device *mdev, dma_addr_t mic_addr, size_t size)
{
	struct mic_smpt_info *smpt_info = mdev->smpt;
	s64 *ref;
	int num_smpt;
	int spt;
	int i;
	unsigned long flags;

	if (!size)
		return;

	if (!mic_is_system_addr(mdev, mic_addr)) {
		dev_err(mdev->sdev->parent,
			"invalid address: 0x%llx\n", mic_addr);
		return;
	}

	spt = mic_sys_addr_to_smpt(mdev, mic_addr);
	ref = kmalloc(mdev->smpt->info.num_reg * sizeof(s64), GFP_KERNEL);
	if (!ref)
		return;

	/* Get number of smpt entries to be mapped, ref count array */
	num_smpt = mic_get_smpt_ref_count(mdev, mic_addr, size, ref, NULL);

	spin_lock_irqsave(&smpt_info->smpt_lock, flags);
	smpt_info->unmap_count++;
	smpt_info->ref_count -= (s64)size;

	for (i = spt; i < spt + num_smpt; i++) {
		smpt_info->entry[i].ref_count -= ref[i - spt];
		if (smpt_info->entry[i].ref_count < 0)
			dev_warn(mdev->sdev->parent,
				"ref count for entry %d is negative\n", i);
	}
	spin_unlock_irqrestore(&smpt_info->smpt_lock, flags);
	kfree(ref);
}

/**
 * mic_map_single - Maps a virtual address to a MIC physical address.
 *
 * @mdev: pointer to mic_device instance.
 * @va: Kernel direct mapped virtual address.
 * @size: Size of the region to be mapped.
 *
 * This API calls pci_map_single(..) for the direct mapped virtual address
 * and then converts the DMA address provided to a DMA address understood
 * by MIC. Caller should check for errors by calling mic_map_error(..).
 *
 * returns DMA address as required by MIC.
 */
dma_addr_t mic_map_single(struct mic_device *mdev, void *va, size_t size)
{
	dma_addr_t mic_addr = 0;
	struct pci_dev *pdev = container_of(mdev->sdev->parent,
		struct pci_dev, dev);
	dma_addr_t dma_addr =
		pci_map_single(pdev, va, size, PCI_DMA_BIDIRECTIONAL);

	if (!pci_dma_mapping_error(pdev, dma_addr)) {
		mic_addr = mic_map(mdev, dma_addr, size);
		if (!mic_addr) {
			dev_err(mdev->sdev->parent,
				"mic_map failed dma_addr 0x%llx size 0x%lx\n",
				dma_addr, size);
			pci_unmap_single(pdev, dma_addr,
				size, PCI_DMA_BIDIRECTIONAL);
		}
	}
	return mic_addr;
}

/**
 * mic_unmap_single - Unmaps a MIC physical address.
 *
 * @mdev: pointer to mic_device instance.
 * @mic_addr: MIC physical address.
 * @size: Size of the region to be unmapped.
 *
 * This API unmaps the mappings created by mic_map_single(..).
 *
 * returns None.
 */
void
mic_unmap_single(struct mic_device *mdev, dma_addr_t mic_addr, size_t size)
{
	struct pci_dev *pdev = container_of(mdev->sdev->parent,
		struct pci_dev, dev);
	dma_addr_t dma_addr = mic_to_dma_addr(mdev, mic_addr);
	mic_unmap(mdev, mic_addr, size);
	pci_unmap_single(pdev, dma_addr, size, PCI_DMA_BIDIRECTIONAL);
}

/**
 * mic_smpt_init - Initialize MIC System Memory Page Tables.
 *
 * @mdev: pointer to mic_device instance.
 *
 * returns 0 for success and -errno for error.
 */
int mic_smpt_init(struct mic_device *mdev)
{
	int i, err = 0;
	dma_addr_t dma_addr;
	struct mic_smpt_info *smpt_info;

	mdev->smpt = kmalloc(sizeof(*mdev->smpt), GFP_KERNEL);
	if (!mdev->smpt)
		return -ENOMEM;

	smpt_info = mdev->smpt;
	mdev->smpt_ops->init(mdev);
	smpt_info->entry = kmalloc(sizeof(struct mic_smpt)
			* smpt_info->info.num_reg, GFP_KERNEL);
	if (!smpt_info->entry) {
		err = -ENOMEM;
		goto free_smpt;
	}
	spin_lock_init(&smpt_info->smpt_lock);
	for (i = 0; i < smpt_info->info.num_reg; i++) {
		dma_addr = i * smpt_info->info.page_size;
		smpt_info->entry[i].dma_addr = dma_addr;
		smpt_info->entry[i].ref_count = 0;
		mdev->smpt_ops->set(mdev, dma_addr, i);
	}
	smpt_info->ref_count = 0;
	smpt_info->map_count = 0;
	smpt_info->unmap_count = 0;
	return 0;
free_smpt:
	kfree(smpt_info);
	return err;
}

/**
 * mic_smpt_uninit - UnInitialize MIC System Memory Page Tables.
 *
 * @mdev: pointer to mic_device instance.
 *
 * returns None.
 */
void mic_smpt_uninit(struct mic_device *mdev)
{
	struct mic_smpt_info *smpt_info = mdev->smpt;
	int i;

	dev_dbg(mdev->sdev->parent,
		"nodeid %d SMPT ref count %lld map %lld unmap %lld\n",
		mdev->id, smpt_info->ref_count,
		smpt_info->map_count, smpt_info->unmap_count);

	for (i = 0; i < smpt_info->info.num_reg; i++) {
		dev_dbg(mdev->sdev->parent,
			"SMPT entry[%d] dma_addr = 0x%llx ref_count = %lld\n",
			i, smpt_info->entry[i].dma_addr,
			smpt_info->entry[i].ref_count);
		if (smpt_info->entry[i].ref_count)
			dev_warn(mdev->sdev->parent,
			"ref count for entry %d is not zero\n", i);
	}
	kfree(smpt_info->entry);
	kfree(smpt_info);
}

/**
 * mic_smpt_restore - Restore MIC System Memory Page Tables.
 *
 * @mdev: pointer to mic_device instance.
 *
 * Restore the SMPT registers to values previously stored in the
 * SW data structures. Some MIC steppings lose register state
 * across resets and this API should be called for performing
 * a restore operation if required.
 *
 * returns None.
 */
void mic_smpt_restore(struct mic_device *mdev)
{
	int i;
	dma_addr_t dma_addr;

	for (i = 0; i < mdev->smpt->info.num_reg; i++) {
		dma_addr = mdev->smpt->entry[i].dma_addr;
		mdev->smpt_ops->set(mdev, dma_addr, i);
	}
}