i915_gem_gtt.h 22.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Please try to maintain the following order within this file unless it makes
 * sense to do otherwise. From top to bottom:
 * 1. typedefs
 * 2. #defines, and macros
 * 3. structure definitions
 * 4. function prototypes
 *
 * Within each section, please try to order by generation in ascending order,
 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
 */

#ifndef __I915_GEM_GTT_H__
#define __I915_GEM_GTT_H__

37 38
#include <linux/io-mapping.h>

39 40
#include "i915_gem_request.h"

41 42
struct drm_i915_file_private;

43 44 45
typedef uint32_t gen6_pte_t;
typedef uint64_t gen8_pte_t;
typedef uint64_t gen8_pde_t;
46 47
typedef uint64_t gen8_ppgtt_pdpe_t;
typedef uint64_t gen8_ppgtt_pml4e_t;
48

49
#define ggtt_total_entries(ggtt) ((ggtt)->base.total >> PAGE_SHIFT)
50 51 52 53 54 55 56 57 58

/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
#define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
#define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
#define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
#define GEN6_PTE_CACHE_LLC		(2 << 1)
#define GEN6_PTE_UNCACHED		(1 << 1)
#define GEN6_PTE_VALID			(1 << 0)

59 60 61 62
#define I915_PTES(pte_len)		(PAGE_SIZE / (pte_len))
#define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
#define I915_PDES			512
#define I915_PDE_MASK			(I915_PDES - 1)
63
#define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
64 65 66

#define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
#define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
67
#define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
68
#define GEN6_PDE_SHIFT			22
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
#define GEN6_PDE_VALID			(1 << 0)

#define GEN7_PTE_CACHE_L3_LLC		(3 << 1)

#define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
#define BYT_PTE_WRITEABLE		(1 << 1)

/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
 */
#define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
					 (((bits) & 0x8) << (11 - 3)))
#define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
#define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
#define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
#define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
#define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
#define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
#define HSW_PTE_UNCACHED		(0)
#define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
#define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)

/* GEN8 legacy style address is defined as a 3 level page table:
 * 31:30 | 29:21 | 20:12 |  11:0
 * PDPE  |  PDE  |  PTE  | offset
 * The difference as compared to normal x86 3 level page table is the PDPEs are
 * programmed via register.
96 97 98 99
 *
 * GEN8 48b legacy style address is defined as a 4 level page table:
 * 47:39 | 38:30 | 29:21 | 20:12 |  11:0
 * PML4E | PDPE  |  PDE  |  PTE  | offset
100
 */
101 102
#define GEN8_PML4ES_PER_PML4		512
#define GEN8_PML4E_SHIFT		39
103
#define GEN8_PML4E_MASK			(GEN8_PML4ES_PER_PML4 - 1)
104
#define GEN8_PDPE_SHIFT			30
105 106 107
/* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
 * tables */
#define GEN8_PDPE_MASK			0x1ff
108 109 110 111
#define GEN8_PDE_SHIFT			21
#define GEN8_PDE_MASK			0x1ff
#define GEN8_PTE_SHIFT			12
#define GEN8_PTE_MASK			0x1ff
112
#define GEN8_LEGACY_PDPES		4
113
#define GEN8_PTES			I915_PTES(sizeof(gen8_pte_t))
114

115 116
#define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
				 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
117

118 119 120 121 122
#define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
#define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
#define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
#define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */

123
#define CHV_PPAT_SNOOP			(1<<6)
124 125 126 127 128 129 130 131 132 133 134
#define GEN8_PPAT_AGE(x)		(x<<4)
#define GEN8_PPAT_LLCeLLC		(3<<2)
#define GEN8_PPAT_LLCELLC		(2<<2)
#define GEN8_PPAT_LLC			(1<<2)
#define GEN8_PPAT_WB			(3<<0)
#define GEN8_PPAT_WT			(2<<0)
#define GEN8_PPAT_WC			(1<<0)
#define GEN8_PPAT_UC			(0<<0)
#define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
#define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))

135 136
enum i915_ggtt_view_type {
	I915_GGTT_VIEW_NORMAL = 0,
137 138
	I915_GGTT_VIEW_ROTATED,
	I915_GGTT_VIEW_PARTIAL,
139 140 141
};

struct intel_rotation_info {
142 143
	struct {
		/* tiles */
144
		unsigned int width, height, stride, offset;
145
	} plane[2];
146 147 148 149 150
};

struct i915_ggtt_view {
	enum i915_ggtt_view_type type;

151 152
	union {
		struct {
153
			u64 offset;
154 155
			unsigned int size;
		} partial;
156
		struct intel_rotation_info rotated;
157
	} params;
158 159 160
};

extern const struct i915_ggtt_view i915_ggtt_view_normal;
161
extern const struct i915_ggtt_view i915_ggtt_view_rotated;
162

163
enum i915_cache_level;
164

165 166 167 168 169 170 171 172 173 174 175 176
/**
 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
 * VMA's presence cannot be guaranteed before binding, or after unbinding the
 * object into/from the address space.
 *
 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
 * will always be <= an objects lifetime. So object refcounting should cover us.
 */
struct i915_vma {
	struct drm_mm_node node;
	struct drm_i915_gem_object *obj;
	struct i915_address_space *vm;
177
	struct sg_table *pages;
178
	void __iomem *iomap;
179
	u64 size;
180

181 182 183 184 185 186 187 188 189 190 191 192
	unsigned int flags;
	/**
	 * How many users have pinned this object in GTT space. The following
	 * users can each hold at most one reference: pwrite/pread, execbuffer
	 * (objects are not allowed multiple times for the same batchbuffer),
	 * and the framebuffer code. When switching/pageflipping, the
	 * framebuffer code has at most two buffers pinned per crtc.
	 *
	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
	 * bits with absolutely no headroom. So use 4 bits.
	 */
#define I915_VMA_PIN_MASK 0xf
193
#define I915_VMA_PIN_OVERFLOW	BIT(5)
194

195
	/** Flags and address space this VMA is bound to */
196 197 198
#define I915_VMA_GLOBAL_BIND	BIT(6)
#define I915_VMA_LOCAL_BIND	BIT(7)
#define I915_VMA_BIND_MASK (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND | I915_VMA_PIN_OVERFLOW)
199

200 201
#define I915_VMA_GGTT	BIT(8)
#define I915_VMA_CLOSED BIT(9)
202 203 204

	unsigned int active;
	struct i915_gem_active last_read[I915_NUM_ENGINES];
205

206 207 208 209 210 211 212 213 214
	/**
	 * Support different GGTT views into the same object.
	 * This means there can be multiple VMA mappings per object and per VM.
	 * i915_ggtt_view_type is used to distinguish between those entries.
	 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
	 * assumed in GEM functions which take no ggtt view parameter.
	 */
	struct i915_ggtt_view ggtt_view;

215
	/** This object's place on the active/inactive lists */
216
	struct list_head vm_link;
217

218
	struct list_head obj_link; /* Link in the object's VMA list */
219 220 221 222 223 224 225 226 227 228 229 230

	/** This vma's place in the batchbuffer or on the eviction list */
	struct list_head exec_list;

	/**
	 * Used for performing relocations during execbuffer insertion.
	 */
	struct hlist_node exec_node;
	unsigned long exec_handle;
	struct drm_i915_gem_exec_object2 *exec_entry;
};

231 232 233 234
struct i915_vma *
i915_vma_create(struct drm_i915_gem_object *obj,
		struct i915_address_space *vm,
		const struct i915_ggtt_view *view);
235
void i915_vma_unpin_and_release(struct i915_vma **p_vma);
236

237 238 239 240 241 242 243 244 245 246
static inline bool i915_vma_is_ggtt(const struct i915_vma *vma)
{
	return vma->flags & I915_VMA_GGTT;
}

static inline bool i915_vma_is_closed(const struct i915_vma *vma)
{
	return vma->flags & I915_VMA_CLOSED;
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
static inline unsigned int i915_vma_get_active(const struct i915_vma *vma)
{
	return vma->active;
}

static inline bool i915_vma_is_active(const struct i915_vma *vma)
{
	return i915_vma_get_active(vma);
}

static inline void i915_vma_set_active(struct i915_vma *vma,
				       unsigned int engine)
{
	vma->active |= BIT(engine);
}

static inline void i915_vma_clear_active(struct i915_vma *vma,
					 unsigned int engine)
{
	vma->active &= ~BIT(engine);
}

static inline bool i915_vma_has_active_engine(const struct i915_vma *vma,
					      unsigned int engine)
{
	return vma->active & BIT(engine);
}

275 276 277 278 279 280 281 282 283
static inline u32 i915_ggtt_offset(const struct i915_vma *vma)
{
	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
	GEM_BUG_ON(!vma->node.allocated);
	GEM_BUG_ON(upper_32_bits(vma->node.start));
	GEM_BUG_ON(upper_32_bits(vma->node.start + vma->node.size - 1));
	return lower_32_bits(vma->node.start);
}

284
struct i915_page_dma {
B
Ben Widawsky 已提交
285
	struct page *page;
286 287 288 289 290 291 292 293 294 295
	union {
		dma_addr_t daddr;

		/* For gen6/gen7 only. This is the offset in the GGTT
		 * where the page directory entries for PPGTT begin
		 */
		uint32_t ggtt_offset;
	};
};

296 297 298 299
#define px_base(px) (&(px)->base)
#define px_page(px) (px_base(px)->page)
#define px_dma(px) (px_base(px)->daddr)

300 301 302 303
struct i915_page_scratch {
	struct i915_page_dma base;
};

304 305
struct i915_page_table {
	struct i915_page_dma base;
306 307

	unsigned long *used_ptes;
B
Ben Widawsky 已提交
308 309
};

310
struct i915_page_directory {
311
	struct i915_page_dma base;
312

313
	unsigned long *used_pdes;
314
	struct i915_page_table *page_table[I915_PDES]; /* PDEs */
B
Ben Widawsky 已提交
315 316
};

317
struct i915_page_directory_pointer {
318 319 320 321
	struct i915_page_dma base;

	unsigned long *used_pdpes;
	struct i915_page_directory **page_directory;
B
Ben Widawsky 已提交
322 323
};

324 325 326 327 328 329 330
struct i915_pml4 {
	struct i915_page_dma base;

	DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
	struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
};

331 332 333
struct i915_address_space {
	struct drm_mm mm;
	struct drm_device *dev;
334 335 336 337 338 339 340 341 342
	/* Every address space belongs to a struct file - except for the global
	 * GTT that is owned by the driver (and so @file is set to NULL). In
	 * principle, no information should leak from one context to another
	 * (or between files/processes etc) unless explicitly shared by the
	 * owner. Tracking the owner is important in order to free up per-file
	 * objects along with the file, to aide resource tracking, and to
	 * assign blame.
	 */
	struct drm_i915_file_private *file;
343
	struct list_head global_link;
344 345
	u64 start;		/* Start offset always 0 for dri2 */
	u64 total;		/* size addr space maps (ex. 2GB for ggtt) */
346

347 348
	bool closed;

349
	struct i915_page_scratch *scratch_page;
350 351
	struct i915_page_table *scratch_pt;
	struct i915_page_directory *scratch_pd;
352
	struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
353 354 355 356 357

	/**
	 * List of objects currently involved in rendering.
	 *
	 * Includes buffers having the contents of their GPU caches
358
	 * flushed, not necessarily primitives. last_read_req
359 360 361 362 363 364 365 366 367 368
	 * represents when the rendering involved will be completed.
	 *
	 * A reference is held on the buffer while on this list.
	 */
	struct list_head active_list;

	/**
	 * LRU list of objects which are not in the ringbuffer and
	 * are ready to unbind, but are still in the GTT.
	 *
369
	 * last_read_req is NULL while an object is in this list.
370 371 372 373 374 375 376
	 *
	 * A reference is not held on the buffer while on this list,
	 * as merely being GTT-bound shouldn't prevent its being
	 * freed, and we'll pull it off the list in the free path.
	 */
	struct list_head inactive_list;

377 378 379 380 381 382 383
	/**
	 * List of vma that have been unbound.
	 *
	 * A reference is not held on the buffer while on this list.
	 */
	struct list_head unbound_list;

384
	/* FIXME: Need a more generic return type */
385 386 387
	gen6_pte_t (*pte_encode)(dma_addr_t addr,
				 enum i915_cache_level level,
				 bool valid, u32 flags); /* Create a valid PTE */
388 389
	/* flags for pte_encode */
#define PTE_READ_ONLY	(1<<0)
390 391 392
	int (*allocate_va_range)(struct i915_address_space *vm,
				 uint64_t start,
				 uint64_t length);
393 394 395 396
	void (*clear_range)(struct i915_address_space *vm,
			    uint64_t start,
			    uint64_t length,
			    bool use_scratch);
397 398 399 400 401
	void (*insert_page)(struct i915_address_space *vm,
			    dma_addr_t addr,
			    uint64_t offset,
			    enum i915_cache_level cache_level,
			    u32 flags);
402 403 404
	void (*insert_entries)(struct i915_address_space *vm,
			       struct sg_table *st,
			       uint64_t start,
405
			       enum i915_cache_level cache_level, u32 flags);
406
	void (*cleanup)(struct i915_address_space *vm);
407 408 409 410
	/** Unmap an object from an address space. This usually consists of
	 * setting the valid PTE entries to a reserved scratch page. */
	void (*unbind_vma)(struct i915_vma *vma);
	/* Map an object into an address space with the given cache flags. */
411 412 413
	int (*bind_vma)(struct i915_vma *vma,
			enum i915_cache_level cache_level,
			u32 flags);
414 415
};

416
#define i915_is_ggtt(V) (!(V)->file)
417

418 419 420 421 422 423 424
/* The Graphics Translation Table is the way in which GEN hardware translates a
 * Graphics Virtual Address into a Physical Address. In addition to the normal
 * collateral associated with any va->pa translations GEN hardware also has a
 * portion of the GTT which can be mapped by the CPU and remain both coherent
 * and correct (in cases like swizzling). That region is referred to as GMADR in
 * the spec.
 */
425
struct i915_ggtt {
426 427
	struct i915_address_space base;

428
	size_t stolen_size;		/* Total size of stolen memory */
429
	size_t stolen_usable_size;	/* Total size minus BIOS reserved */
430 431
	size_t stolen_reserved_base;
	size_t stolen_reserved_size;
432
	u64 mappable_end;		/* End offset that we can CPU map */
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	struct io_mapping *mappable;	/* Mapping to our CPU mappable region */
	phys_addr_t mappable_base;	/* PA of our GMADR */

	/** "Graphics Stolen Memory" holds the global PTEs */
	void __iomem *gsm;

	bool do_idle_maps;

	int mtrr;
};

struct i915_hw_ppgtt {
	struct i915_address_space base;
	struct kref ref;
	struct drm_mm_node node;
448
	unsigned long pd_dirty_rings;
B
Ben Widawsky 已提交
449
	union {
450 451 452
		struct i915_pml4 pml4;		/* GEN8+ & 48b PPGTT */
		struct i915_page_directory_pointer pdp;	/* GEN8+ */
		struct i915_page_directory pd;		/* GEN6-7 */
B
Ben Widawsky 已提交
453
	};
454

455 456
	gen6_pte_t __iomem *pd_addr;

457 458
	int (*enable)(struct i915_hw_ppgtt *ppgtt);
	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
459
			 struct drm_i915_gem_request *req);
460 461 462
	void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
};

463 464 465 466 467 468 469
/*
 * gen6_for_each_pde() iterates over every pde from start until start+length.
 * If start and start+length are not perfectly divisible, the macro will round
 * down and up as needed. Start=0 and length=2G effectively iterates over
 * every PDE in the system. The macro modifies ALL its parameters except 'pd',
 * so each of the other parameters should preferably be a simple variable, or
 * at most an lvalue with no side-effects!
470
 */
471 472 473 474 475 476 477 478 479 480 481 482 483
#define gen6_for_each_pde(pt, pd, start, length, iter)			\
	for (iter = gen6_pde_index(start);				\
	     length > 0 && iter < I915_PDES &&				\
		(pt = (pd)->page_table[iter], true);			\
	     ({ u32 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT);		\
		    temp = min(temp - start, length);			\
		    start += temp, length -= temp; }), ++iter)

#define gen6_for_all_pdes(pt, pd, iter)					\
	for (iter = 0;							\
	     iter < I915_PDES &&					\
		(pt = (pd)->page_table[iter], true);			\
	     ++iter)
484

485 486 487 488 489 490 491 492 493 494 495 496 497 498
static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
{
	const uint32_t mask = NUM_PTE(pde_shift) - 1;

	return (address >> PAGE_SHIFT) & mask;
}

/* Helper to counts the number of PTEs within the given length. This count
 * does not cross a page table boundary, so the max value would be
 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
*/
static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
				      uint32_t pde_shift)
{
499
	const uint64_t mask = ~((1ULL << pde_shift) - 1);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	uint64_t end;

	WARN_ON(length == 0);
	WARN_ON(offset_in_page(addr|length));

	end = addr + length;

	if ((addr & mask) != (end & mask))
		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);

	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
}

static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
{
	return (addr >> shift) & I915_PDE_MASK;
}

static inline uint32_t gen6_pte_index(uint32_t addr)
{
	return i915_pte_index(addr, GEN6_PDE_SHIFT);
}

static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
{
	return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
}

static inline uint32_t gen6_pde_index(uint32_t addr)
{
	return i915_pde_index(addr, GEN6_PDE_SHIFT);
}

533 534 535 536
/* Equivalent to the gen6 version, For each pde iterates over every pde
 * between from start until start + length. On gen8+ it simply iterates
 * over every page directory entry in a page directory.
 */
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
#define gen8_for_each_pde(pt, pd, start, length, iter)			\
	for (iter = gen8_pde_index(start);				\
	     length > 0 && iter < I915_PDES &&				\
		(pt = (pd)->page_table[iter], true);			\
	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT);		\
		    temp = min(temp - start, length);			\
		    start += temp, length -= temp; }), ++iter)

#define gen8_for_each_pdpe(pd, pdp, start, length, iter)		\
	for (iter = gen8_pdpe_index(start);				\
	     length > 0 && iter < I915_PDPES_PER_PDP(dev) &&		\
		(pd = (pdp)->page_directory[iter], true);		\
	     ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT);	\
		    temp = min(temp - start, length);			\
		    start += temp, length -= temp; }), ++iter)

#define gen8_for_each_pml4e(pdp, pml4, start, length, iter)		\
	for (iter = gen8_pml4e_index(start);				\
	     length > 0 && iter < GEN8_PML4ES_PER_PML4 &&		\
		(pdp = (pml4)->pdps[iter], true);			\
	     ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT);	\
		    temp = min(temp - start, length);			\
		    start += temp, length -= temp; }), ++iter)
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
static inline uint32_t gen8_pte_index(uint64_t address)
{
	return i915_pte_index(address, GEN8_PDE_SHIFT);
}

static inline uint32_t gen8_pde_index(uint64_t address)
{
	return i915_pde_index(address, GEN8_PDE_SHIFT);
}

static inline uint32_t gen8_pdpe_index(uint64_t address)
{
	return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
}

static inline uint32_t gen8_pml4e_index(uint64_t address)
{
578
	return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
579 580
}

581 582 583 584 585
static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
{
	return i915_pte_count(address, length, GEN8_PDE_SHIFT);
}

586 587 588 589
static inline dma_addr_t
i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
{
	return test_bit(n, ppgtt->pdp.used_pdpes) ?
590
		px_dma(ppgtt->pdp.page_directory[n]) :
591
		px_dma(ppgtt->base.scratch_pd);
592 593
}

594 595 596
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv);
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv);
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv);
597
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv);
598
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv);
599

600
int i915_ppgtt_init_hw(struct drm_device *dev);
601
void i915_ppgtt_release(struct kref *kref);
602
struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_i915_private *dev_priv,
603
					struct drm_i915_file_private *fpriv);
604 605 606 607 608 609 610 611 612 613
static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
{
	if (ppgtt)
		kref_get(&ppgtt->ref);
}
static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
{
	if (ppgtt)
		kref_put(&ppgtt->ref, i915_ppgtt_release);
}
614

615
void i915_check_and_clear_faults(struct drm_i915_private *dev_priv);
616 617 618 619 620 621
void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
void i915_gem_restore_gtt_mappings(struct drm_device *dev);

int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);

622
/* Flags used by pin/bind&friends. */
623 624 625 626 627 628 629 630 631 632 633 634
#define PIN_NONBLOCK		BIT(0)
#define PIN_MAPPABLE		BIT(1)
#define PIN_ZONE_4G		BIT(2)

#define PIN_MBZ			BIT(5) /* I915_VMA_PIN_OVERFLOW */
#define PIN_GLOBAL		BIT(6) /* I915_VMA_GLOBAL_BIND */
#define PIN_USER		BIT(7) /* I915_VMA_LOCAL_BIND */
#define PIN_UPDATE		BIT(8)

#define PIN_HIGH		BIT(9)
#define PIN_OFFSET_BIAS		BIT(10)
#define PIN_OFFSET_FIXED	BIT(11)
635 636
#define PIN_OFFSET_MASK		(~4095)

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags);
static inline int __must_check
i915_vma_pin(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
{
	BUILD_BUG_ON(PIN_MBZ != I915_VMA_PIN_OVERFLOW);
	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);

	/* Pin early to prevent the shrinker/eviction logic from destroying
	 * our vma as we insert and bind.
	 */
	if (likely(((++vma->flags ^ flags) & I915_VMA_BIND_MASK) == 0))
		return 0;

	return __i915_vma_do_pin(vma, size, alignment, flags);
}

655 656
static inline int i915_vma_pin_count(const struct i915_vma *vma)
{
657
	return vma->flags & I915_VMA_PIN_MASK;
658 659 660 661 662 663 664 665 666
}

static inline bool i915_vma_is_pinned(const struct i915_vma *vma)
{
	return i915_vma_pin_count(vma);
}

static inline void __i915_vma_pin(struct i915_vma *vma)
{
667
	vma->flags++;
668
	GEM_BUG_ON(vma->flags & I915_VMA_PIN_OVERFLOW);
669 670 671 672 673
}

static inline void __i915_vma_unpin(struct i915_vma *vma)
{
	GEM_BUG_ON(!i915_vma_is_pinned(vma));
674
	vma->flags--;
675 676 677 678 679 680 681 682
}

static inline void i915_vma_unpin(struct i915_vma *vma)
{
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
	__i915_vma_unpin(vma);
}

683 684 685 686 687 688 689 690 691 692 693 694 695 696
/**
 * i915_vma_pin_iomap - calls ioremap_wc to map the GGTT VMA via the aperture
 * @vma: VMA to iomap
 *
 * The passed in VMA has to be pinned in the global GTT mappable region.
 * An extra pinning of the VMA is acquired for the return iomapping,
 * the caller must call i915_vma_unpin_iomap to relinquish the pinning
 * after the iomapping is no longer required.
 *
 * Callers must hold the struct_mutex.
 *
 * Returns a valid iomapped pointer or ERR_PTR.
 */
void __iomem *i915_vma_pin_iomap(struct i915_vma *vma);
697
#define IO_ERR_PTR(x) ((void __iomem *)ERR_PTR(x))
698 699 700 701 702 703 704 705 706 707 708 709 710 711

/**
 * i915_vma_unpin_iomap - unpins the mapping returned from i915_vma_iomap
 * @vma: VMA to unpin
 *
 * Unpins the previously iomapped VMA from i915_vma_pin_iomap().
 *
 * Callers must hold the struct_mutex. This function is only valid to be
 * called on a VMA previously iomapped by the caller with i915_vma_pin_iomap().
 */
static inline void i915_vma_unpin_iomap(struct i915_vma *vma)
{
	lockdep_assert_held(&vma->vm->dev->struct_mutex);
	GEM_BUG_ON(vma->iomap == NULL);
712
	i915_vma_unpin(vma);
713 714
}

715 716 717 718 719 720
static inline struct page *i915_vma_first_page(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
	return sg_page(vma->pages->sgl);
}

721
#endif