gpmi-nand.c 57.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Freescale GPMI NAND Flash Driver
 *
 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
24
#include <linux/module.h>
25
#include <linux/mtd/partitions.h>
26 27
#include <linux/of.h>
#include <linux/of_device.h>
28
#include <linux/of_mtd.h>
29
#include "gpmi-nand.h"
30
#include "bch-regs.h"
31

32 33 34 35 36
/* Resource names for the GPMI NAND driver. */
#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
#define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"

37 38 39 40 41 42 43 44 45
/* add our owner bbt descriptor */
static uint8_t scan_ff_pattern[] = { 0xff };
static struct nand_bbt_descr gpmi_bbt_descr = {
	.options	= 0,
	.offs		= 0,
	.len		= 1,
	.pattern	= scan_ff_pattern
};

46 47 48 49
/*
 * We may change the layout if we can get the ECC info from the datasheet,
 * else we will use all the (page + OOB).
 */
50 51 52 53 54 55
static struct nand_ecclayout gpmi_hw_ecclayout = {
	.eccbytes = 0,
	.eccpos = { 0, },
	.oobfree = { {.offset = 0, .length = 0} }
};

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
static const struct gpmi_devdata gpmi_devdata_imx23 = {
	.type = IS_MX23,
	.bch_max_ecc_strength = 20,
	.max_chain_delay = 16,
};

static const struct gpmi_devdata gpmi_devdata_imx28 = {
	.type = IS_MX28,
	.bch_max_ecc_strength = 20,
	.max_chain_delay = 16,
};

static const struct gpmi_devdata gpmi_devdata_imx6q = {
	.type = IS_MX6Q,
	.bch_max_ecc_strength = 40,
	.max_chain_delay = 12,
};

74 75 76 77 78 79
static const struct gpmi_devdata gpmi_devdata_imx6sx = {
	.type = IS_MX6SX,
	.bch_max_ecc_strength = 62,
	.max_chain_delay = 12,
};

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
static irqreturn_t bch_irq(int irq, void *cookie)
{
	struct gpmi_nand_data *this = cookie;

	gpmi_clear_bch(this);
	complete(&this->bch_done);
	return IRQ_HANDLED;
}

/*
 *  Calculate the ECC strength by hand:
 *	E : The ECC strength.
 *	G : the length of Galois Field.
 *	N : The chunk count of per page.
 *	O : the oobsize of the NAND chip.
 *	M : the metasize of per page.
 *
 *	The formula is :
 *		E * G * N
 *	      ------------ <= (O - M)
 *                  8
 *
 *      So, we get E by:
 *                    (O - M) * 8
 *              E <= -------------
 *                       G * N
 */
static inline int get_ecc_strength(struct gpmi_nand_data *this)
{
	struct bch_geometry *geo = &this->bch_geometry;
	struct mtd_info	*mtd = &this->mtd;
	int ecc_strength;

	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
			/ (geo->gf_len * geo->ecc_chunk_count);

	/* We need the minor even number. */
	return round_down(ecc_strength, 2);
}

120 121 122 123 124 125 126 127 128 129
static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
{
	struct bch_geometry *geo = &this->bch_geometry;

	/* Do the sanity check. */
	if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
		/* The mx23/mx28 only support the GF13. */
		if (geo->gf_len == 14)
			return false;
	}
130
	return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
131 132
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
/*
 * If we can get the ECC information from the nand chip, we do not
 * need to calculate them ourselves.
 *
 * We may have available oob space in this case.
 */
static bool set_geometry_by_ecc_info(struct gpmi_nand_data *this)
{
	struct bch_geometry *geo = &this->bch_geometry;
	struct mtd_info *mtd = &this->mtd;
	struct nand_chip *chip = mtd->priv;
	struct nand_oobfree *of = gpmi_hw_ecclayout.oobfree;
	unsigned int block_mark_bit_offset;

	if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
		return false;

	switch (chip->ecc_step_ds) {
	case SZ_512:
		geo->gf_len = 13;
		break;
	case SZ_1K:
		geo->gf_len = 14;
		break;
	default:
		dev_err(this->dev,
			"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
			chip->ecc_strength_ds, chip->ecc_step_ds);
		return false;
	}
	geo->ecc_chunk_size = chip->ecc_step_ds;
	geo->ecc_strength = round_up(chip->ecc_strength_ds, 2);
	if (!gpmi_check_ecc(this))
		return false;

	/* Keep the C >= O */
	if (geo->ecc_chunk_size < mtd->oobsize) {
		dev_err(this->dev,
			"unsupported nand chip. ecc size: %d, oob size : %d\n",
			chip->ecc_step_ds, mtd->oobsize);
		return false;
	}

	/* The default value, see comment in the legacy_set_geometry(). */
	geo->metadata_size = 10;

	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;

	/*
	 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
	 *
	 *    |                          P                            |
	 *    |<----------------------------------------------------->|
	 *    |                                                       |
	 *    |                                        (Block Mark)   |
	 *    |                      P'                      |      | |     |
	 *    |<-------------------------------------------->|  D   | |  O' |
	 *    |                                              |<---->| |<--->|
	 *    V                                              V      V V     V
	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
	 *                                                   ^              ^
	 *                                                   |      O       |
	 *                                                   |<------------>|
	 *                                                   |              |
	 *
	 *	P : the page size for BCH module.
	 *	E : The ECC strength.
	 *	G : the length of Galois Field.
	 *	N : The chunk count of per page.
	 *	M : the metasize of per page.
	 *	C : the ecc chunk size, aka the "data" above.
	 *	P': the nand chip's page size.
	 *	O : the nand chip's oob size.
	 *	O': the free oob.
	 *
	 *	The formula for P is :
	 *
	 *	            E * G * N
	 *	       P = ------------ + P' + M
	 *                      8
	 *
	 * The position of block mark moves forward in the ECC-based view
	 * of page, and the delta is:
	 *
	 *                   E * G * (N - 1)
	 *             D = (---------------- + M)
	 *                          8
	 *
	 * Please see the comment in legacy_set_geometry().
	 * With the condition C >= O , we still can get same result.
	 * So the bit position of the physical block mark within the ECC-based
	 * view of the page is :
	 *             (P' - D) * 8
	 */
	geo->page_size = mtd->writesize + geo->metadata_size +
		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;

	/* The available oob size we have. */
	if (geo->page_size < mtd->writesize + mtd->oobsize) {
		of->offset = geo->page_size - mtd->writesize;
		of->length = mtd->oobsize - of->offset;
	}

	geo->payload_size = mtd->writesize;

	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
				+ ALIGN(geo->ecc_chunk_count, 4);

	if (!this->swap_block_mark)
		return true;

	/* For bit swap. */
	block_mark_bit_offset = mtd->writesize * 8 -
		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
				+ geo->metadata_size * 8);

	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
	return true;
}

static int legacy_set_geometry(struct gpmi_nand_data *this)
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
{
	struct bch_geometry *geo = &this->bch_geometry;
	struct mtd_info *mtd = &this->mtd;
	unsigned int metadata_size;
	unsigned int status_size;
	unsigned int block_mark_bit_offset;

	/*
	 * The size of the metadata can be changed, though we set it to 10
	 * bytes now. But it can't be too large, because we have to save
	 * enough space for BCH.
	 */
	geo->metadata_size = 10;

	/* The default for the length of Galois Field. */
	geo->gf_len = 13;

275
	/* The default for chunk size. */
276
	geo->ecc_chunk_size = 512;
277
	while (geo->ecc_chunk_size < mtd->oobsize) {
278
		geo->ecc_chunk_size *= 2; /* keep C >= O */
279 280
		geo->gf_len = 14;
	}
281 282 283 284 285

	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;

	/* We use the same ECC strength for all chunks. */
	geo->ecc_strength = get_ecc_strength(this);
286 287
	if (!gpmi_check_ecc(this)) {
		dev_err(this->dev,
288 289
			"required ecc strength of the NAND chip: %d is not supported by the GPMI controller (%d)\n",
			geo->ecc_strength,
290
			this->devdata->bch_max_ecc_strength);
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
		return -EINVAL;
	}

	geo->page_size = mtd->writesize + mtd->oobsize;
	geo->payload_size = mtd->writesize;

	/*
	 * The auxiliary buffer contains the metadata and the ECC status. The
	 * metadata is padded to the nearest 32-bit boundary. The ECC status
	 * contains one byte for every ECC chunk, and is also padded to the
	 * nearest 32-bit boundary.
	 */
	metadata_size = ALIGN(geo->metadata_size, 4);
	status_size   = ALIGN(geo->ecc_chunk_count, 4);

	geo->auxiliary_size = metadata_size + status_size;
	geo->auxiliary_status_offset = metadata_size;

	if (!this->swap_block_mark)
		return 0;

	/*
	 * We need to compute the byte and bit offsets of
	 * the physical block mark within the ECC-based view of the page.
	 *
	 * NAND chip with 2K page shows below:
	 *                                             (Block Mark)
	 *                                                   |      |
	 *                                                   |  D   |
	 *                                                   |<---->|
	 *                                                   V      V
	 *    +---+----------+-+----------+-+----------+-+----------+-+
	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
	 *    +---+----------+-+----------+-+----------+-+----------+-+
	 *
	 * The position of block mark moves forward in the ECC-based view
	 * of page, and the delta is:
	 *
	 *                   E * G * (N - 1)
	 *             D = (---------------- + M)
	 *                          8
	 *
	 * With the formula to compute the ECC strength, and the condition
	 *       : C >= O         (C is the ecc chunk size)
	 *
	 * It's easy to deduce to the following result:
	 *
	 *         E * G       (O - M)      C - M         C - M
	 *      ----------- <= ------- <=  --------  <  ---------
	 *           8            N           N          (N - 1)
	 *
	 *  So, we get:
	 *
	 *                   E * G * (N - 1)
	 *             D = (---------------- + M) < C
	 *                          8
	 *
	 *  The above inequality means the position of block mark
	 *  within the ECC-based view of the page is still in the data chunk,
	 *  and it's NOT in the ECC bits of the chunk.
	 *
	 *  Use the following to compute the bit position of the
	 *  physical block mark within the ECC-based view of the page:
	 *          (page_size - D) * 8
	 *
	 *  --Huang Shijie
	 */
	block_mark_bit_offset = mtd->writesize * 8 -
		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
				+ geo->metadata_size * 8);

	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
	return 0;
}

367 368
int common_nfc_set_geometry(struct gpmi_nand_data *this)
{
369 370 371
	if (of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc")
		&& set_geometry_by_ecc_info(this))
		return 0;
D
David Woodhouse 已提交
372
	return legacy_set_geometry(this);
373 374
}

375 376
struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
{
377 378
	/* We use the DMA channel 0 to access all the nand chips. */
	return this->dma_chans[0];
379 380 381 382 383 384 385 386 387
}

/* Can we use the upper's buffer directly for DMA? */
void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
{
	struct scatterlist *sgl = &this->data_sgl;
	int ret;

	/* first try to map the upper buffer directly */
388 389 390
	if (virt_addr_valid(this->upper_buf) &&
		!object_is_on_stack(this->upper_buf)) {
		sg_init_one(sgl, this->upper_buf, this->upper_len);
391 392
		ret = dma_map_sg(this->dev, sgl, 1, dr);
		if (ret == 0)
393
			goto map_fail;
394

395 396
		this->direct_dma_map_ok = true;
		return;
397
	}
398 399 400 401 402 403 404 405 406 407 408

map_fail:
	/* We have to use our own DMA buffer. */
	sg_init_one(sgl, this->data_buffer_dma, this->upper_len);

	if (dr == DMA_TO_DEVICE)
		memcpy(this->data_buffer_dma, this->upper_buf, this->upper_len);

	dma_map_sg(this->dev, sgl, 1, dr);

	this->direct_dma_map_ok = false;
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
}

/* This will be called after the DMA operation is finished. */
static void dma_irq_callback(void *param)
{
	struct gpmi_nand_data *this = param;
	struct completion *dma_c = &this->dma_done;

	switch (this->dma_type) {
	case DMA_FOR_COMMAND:
		dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
		break;

	case DMA_FOR_READ_DATA:
		dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
		if (this->direct_dma_map_ok == false)
			memcpy(this->upper_buf, this->data_buffer_dma,
				this->upper_len);
		break;

	case DMA_FOR_WRITE_DATA:
		dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
		break;

	case DMA_FOR_READ_ECC_PAGE:
	case DMA_FOR_WRITE_ECC_PAGE:
		/* We have to wait the BCH interrupt to finish. */
		break;

	default:
439
		dev_err(this->dev, "in wrong DMA operation.\n");
440
	}
441 442

	complete(dma_c);
443 444 445 446 447 448
}

int start_dma_without_bch_irq(struct gpmi_nand_data *this,
				struct dma_async_tx_descriptor *desc)
{
	struct completion *dma_c = &this->dma_done;
449
	unsigned long timeout;
450 451 452 453 454 455

	init_completion(dma_c);

	desc->callback		= dma_irq_callback;
	desc->callback_param	= this;
	dmaengine_submit(desc);
456
	dma_async_issue_pending(get_dma_chan(this));
457 458

	/* Wait for the interrupt from the DMA block. */
459 460
	timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
	if (!timeout) {
461 462
		dev_err(this->dev, "DMA timeout, last DMA :%d\n",
			this->last_dma_type);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
		gpmi_dump_info(this);
		return -ETIMEDOUT;
	}
	return 0;
}

/*
 * This function is used in BCH reading or BCH writing pages.
 * It will wait for the BCH interrupt as long as ONE second.
 * Actually, we must wait for two interrupts :
 *	[1] firstly the DMA interrupt and
 *	[2] secondly the BCH interrupt.
 */
int start_dma_with_bch_irq(struct gpmi_nand_data *this,
			struct dma_async_tx_descriptor *desc)
{
	struct completion *bch_c = &this->bch_done;
480
	unsigned long timeout;
481 482 483 484 485 486 487 488

	/* Prepare to receive an interrupt from the BCH block. */
	init_completion(bch_c);

	/* start the DMA */
	start_dma_without_bch_irq(this, desc);

	/* Wait for the interrupt from the BCH block. */
489 490
	timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
	if (!timeout) {
491 492
		dev_err(this->dev, "BCH timeout, last DMA :%d\n",
			this->last_dma_type);
493 494 495 496 497 498
		gpmi_dump_info(this);
		return -ETIMEDOUT;
	}
	return 0;
}

499 500
static int acquire_register_block(struct gpmi_nand_data *this,
				  const char *res_name)
501 502 503 504
{
	struct platform_device *pdev = this->pdev;
	struct resources *res = &this->resources;
	struct resource *r;
505
	void __iomem *p;
506 507

	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
508 509 510
	p = devm_ioremap_resource(&pdev->dev, r);
	if (IS_ERR(p))
		return PTR_ERR(p);
511 512 513 514 515 516

	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
		res->gpmi_regs = p;
	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
		res->bch_regs = p;
	else
517
		dev_err(this->dev, "unknown resource name : %s\n", res_name);
518 519 520 521

	return 0;
}

522
static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
523 524 525 526 527 528 529 530
{
	struct platform_device *pdev = this->pdev;
	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
	struct resource *r;
	int err;

	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
	if (!r) {
531
		dev_err(this->dev, "Can't get resource for %s\n", res_name);
532
		return -ENODEV;
533 534
	}

H
Huang Shijie 已提交
535 536 537
	err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
	if (err)
		dev_err(this->dev, "error requesting BCH IRQ\n");
538

H
Huang Shijie 已提交
539
	return err;
540 541 542 543 544 545 546 547 548 549 550 551
}

static void release_dma_channels(struct gpmi_nand_data *this)
{
	unsigned int i;
	for (i = 0; i < DMA_CHANS; i++)
		if (this->dma_chans[i]) {
			dma_release_channel(this->dma_chans[i]);
			this->dma_chans[i] = NULL;
		}
}

B
Bill Pemberton 已提交
552
static int acquire_dma_channels(struct gpmi_nand_data *this)
553 554
{
	struct platform_device *pdev = this->pdev;
555
	struct dma_chan *dma_chan;
556

557
	/* request dma channel */
558
	dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
559
	if (!dma_chan) {
560
		dev_err(this->dev, "Failed to request DMA channel.\n");
561
		goto acquire_err;
562 563
	}

564
	this->dma_chans[0] = dma_chan;
565 566 567 568 569 570 571
	return 0;

acquire_err:
	release_dma_channels(this);
	return -EINVAL;
}

572 573 574 575
static char *extra_clks_for_mx6q[GPMI_CLK_MAX] = {
	"gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
};

B
Bill Pemberton 已提交
576
static int gpmi_get_clks(struct gpmi_nand_data *this)
577 578 579 580
{
	struct resources *r = &this->resources;
	char **extra_clks = NULL;
	struct clk *clk;
581
	int err, i;
582 583

	/* The main clock is stored in the first. */
F
Fabio Estevam 已提交
584
	r->clock[0] = devm_clk_get(this->dev, "gpmi_io");
585 586
	if (IS_ERR(r->clock[0])) {
		err = PTR_ERR(r->clock[0]);
587
		goto err_clock;
588
	}
589 590

	/* Get extra clocks */
591
	if (GPMI_IS_MX6(this))
592 593 594 595 596 597 598 599
		extra_clks = extra_clks_for_mx6q;
	if (!extra_clks)
		return 0;

	for (i = 1; i < GPMI_CLK_MAX; i++) {
		if (extra_clks[i - 1] == NULL)
			break;

F
Fabio Estevam 已提交
600
		clk = devm_clk_get(this->dev, extra_clks[i - 1]);
601 602
		if (IS_ERR(clk)) {
			err = PTR_ERR(clk);
603
			goto err_clock;
604
		}
605 606 607 608

		r->clock[i] = clk;
	}

609
	if (GPMI_IS_MX6(this))
610
		/*
611
		 * Set the default value for the gpmi clock.
612
		 *
613 614
		 * If you want to use the ONFI nand which is in the
		 * Synchronous Mode, you should change the clock as you need.
615 616
		 */
		clk_set_rate(r->clock[0], 22000000);
617

618 619 620 621
	return 0;

err_clock:
	dev_dbg(this->dev, "failed in finding the clocks.\n");
622
	return err;
623 624
}

B
Bill Pemberton 已提交
625
static int acquire_resources(struct gpmi_nand_data *this)
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
{
	int ret;

	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
	if (ret)
		goto exit_regs;

	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
	if (ret)
		goto exit_regs;

	ret = acquire_bch_irq(this, bch_irq);
	if (ret)
		goto exit_regs;

	ret = acquire_dma_channels(this);
	if (ret)
H
Huang Shijie 已提交
643
		goto exit_regs;
644

645 646
	ret = gpmi_get_clks(this);
	if (ret)
647 648 649 650 651 652 653 654 655 656 657 658 659 660
		goto exit_clock;
	return 0;

exit_clock:
	release_dma_channels(this);
exit_regs:
	return ret;
}

static void release_resources(struct gpmi_nand_data *this)
{
	release_dma_channels(this);
}

B
Bill Pemberton 已提交
661
static int init_hardware(struct gpmi_nand_data *this)
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
{
	int ret;

	/*
	 * This structure contains the "safe" GPMI timing that should succeed
	 * with any NAND Flash device
	 * (although, with less-than-optimal performance).
	 */
	struct nand_timing  safe_timing = {
		.data_setup_in_ns        = 80,
		.data_hold_in_ns         = 60,
		.address_setup_in_ns     = 25,
		.gpmi_sample_delay_in_ns =  6,
		.tREA_in_ns              = -1,
		.tRLOH_in_ns             = -1,
		.tRHOH_in_ns             = -1,
	};

	/* Initialize the hardwares. */
	ret = gpmi_init(this);
	if (ret)
		return ret;

	this->timing = safe_timing;
	return 0;
}

static int read_page_prepare(struct gpmi_nand_data *this,
			void *destination, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			void **use_virt, dma_addr_t *use_phys)
{
	struct device *dev = this->dev;

	if (virt_addr_valid(destination)) {
		dma_addr_t dest_phys;

		dest_phys = dma_map_single(dev, destination,
						length, DMA_FROM_DEVICE);
		if (dma_mapping_error(dev, dest_phys)) {
			if (alt_size < length) {
703
				dev_err(dev, "Alternate buffer is too small\n");
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
				return -ENOMEM;
			}
			goto map_failed;
		}
		*use_virt = destination;
		*use_phys = dest_phys;
		this->direct_dma_map_ok = true;
		return 0;
	}

map_failed:
	*use_virt = alt_virt;
	*use_phys = alt_phys;
	this->direct_dma_map_ok = false;
	return 0;
}

static inline void read_page_end(struct gpmi_nand_data *this,
			void *destination, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			void *used_virt, dma_addr_t used_phys)
{
	if (this->direct_dma_map_ok)
		dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
}

static inline void read_page_swap_end(struct gpmi_nand_data *this,
			void *destination, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			void *used_virt, dma_addr_t used_phys)
{
	if (!this->direct_dma_map_ok)
		memcpy(destination, alt_virt, length);
}

static int send_page_prepare(struct gpmi_nand_data *this,
			const void *source, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			const void **use_virt, dma_addr_t *use_phys)
{
	struct device *dev = this->dev;

	if (virt_addr_valid(source)) {
		dma_addr_t source_phys;

		source_phys = dma_map_single(dev, (void *)source, length,
						DMA_TO_DEVICE);
		if (dma_mapping_error(dev, source_phys)) {
			if (alt_size < length) {
753
				dev_err(dev, "Alternate buffer is too small\n");
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
				return -ENOMEM;
			}
			goto map_failed;
		}
		*use_virt = source;
		*use_phys = source_phys;
		return 0;
	}
map_failed:
	/*
	 * Copy the content of the source buffer into the alternate
	 * buffer and set up the return values accordingly.
	 */
	memcpy(alt_virt, source, length);

	*use_virt = alt_virt;
	*use_phys = alt_phys;
	return 0;
}

static void send_page_end(struct gpmi_nand_data *this,
			const void *source, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			const void *used_virt, dma_addr_t used_phys)
{
	struct device *dev = this->dev;
	if (used_virt == source)
		dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
}

static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
{
	struct device *dev = this->dev;

	if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
		dma_free_coherent(dev, this->page_buffer_size,
					this->page_buffer_virt,
					this->page_buffer_phys);
	kfree(this->cmd_buffer);
	kfree(this->data_buffer_dma);
794
	kfree(this->raw_buffer);
795 796 797 798 799 800 801 802 803 804 805 806

	this->cmd_buffer	= NULL;
	this->data_buffer_dma	= NULL;
	this->page_buffer_virt	= NULL;
	this->page_buffer_size	=  0;
}

/* Allocate the DMA buffers */
static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
{
	struct bch_geometry *geo = &this->bch_geometry;
	struct device *dev = this->dev;
807
	struct mtd_info *mtd = &this->mtd;
808 809

	/* [1] Allocate a command buffer. PAGE_SIZE is enough. */
810
	this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
811 812 813
	if (this->cmd_buffer == NULL)
		goto error_alloc;

814 815 816 817 818 819 820 821 822 823
	/*
	 * [2] Allocate a read/write data buffer.
	 *     The gpmi_alloc_dma_buffer can be called twice.
	 *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
	 *     is called before the nand_scan_ident; and we allocate a buffer
	 *     of the real NAND page size when the gpmi_alloc_dma_buffer is
	 *     called after the nand_scan_ident.
	 */
	this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
	if (this->data_buffer_dma == NULL)
		goto error_alloc;

	/*
	 * [3] Allocate the page buffer.
	 *
	 * Both the payload buffer and the auxiliary buffer must appear on
	 * 32-bit boundaries. We presume the size of the payload buffer is a
	 * power of two and is much larger than four, which guarantees the
	 * auxiliary buffer will appear on a 32-bit boundary.
	 */
	this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
	this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
					&this->page_buffer_phys, GFP_DMA);
	if (!this->page_buffer_virt)
		goto error_alloc;

841 842 843
	this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
	if (!this->raw_buffer)
		goto error_alloc;
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884

	/* Slice up the page buffer. */
	this->payload_virt = this->page_buffer_virt;
	this->payload_phys = this->page_buffer_phys;
	this->auxiliary_virt = this->payload_virt + geo->payload_size;
	this->auxiliary_phys = this->payload_phys + geo->payload_size;
	return 0;

error_alloc:
	gpmi_free_dma_buffer(this);
	return -ENOMEM;
}

static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;
	int ret;

	/*
	 * Every operation begins with a command byte and a series of zero or
	 * more address bytes. These are distinguished by either the Address
	 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
	 * asserted. When MTD is ready to execute the command, it will deassert
	 * both latch enables.
	 *
	 * Rather than run a separate DMA operation for every single byte, we
	 * queue them up and run a single DMA operation for the entire series
	 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
	 */
	if ((ctrl & (NAND_ALE | NAND_CLE))) {
		if (data != NAND_CMD_NONE)
			this->cmd_buffer[this->command_length++] = data;
		return;
	}

	if (!this->command_length)
		return;

	ret = gpmi_send_command(this);
	if (ret)
885 886
		dev_err(this->dev, "Chip: %u, Error %d\n",
			this->current_chip, ret);
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916

	this->command_length = 0;
}

static int gpmi_dev_ready(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;

	return gpmi_is_ready(this, this->current_chip);
}

static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;

	if ((this->current_chip < 0) && (chipnr >= 0))
		gpmi_begin(this);
	else if ((this->current_chip >= 0) && (chipnr < 0))
		gpmi_end(this);

	this->current_chip = chipnr;
}

static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;

917
	dev_dbg(this->dev, "len is %d\n", len);
918 919 920 921 922 923 924 925 926 927 928
	this->upper_buf	= buf;
	this->upper_len	= len;

	gpmi_read_data(this);
}

static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;

929
	dev_dbg(this->dev, "len is %d\n", len);
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
	this->upper_buf	= (uint8_t *)buf;
	this->upper_len	= len;

	gpmi_send_data(this);
}

static uint8_t gpmi_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;
	uint8_t *buf = this->data_buffer_dma;

	gpmi_read_buf(mtd, buf, 1);
	return buf[0];
}

/*
 * Handles block mark swapping.
 * It can be called in swapping the block mark, or swapping it back,
 * because the the operations are the same.
 */
static void block_mark_swapping(struct gpmi_nand_data *this,
				void *payload, void *auxiliary)
{
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	unsigned char *p;
	unsigned char *a;
	unsigned int  bit;
	unsigned char mask;
	unsigned char from_data;
	unsigned char from_oob;

	if (!this->swap_block_mark)
		return;

	/*
	 * If control arrives here, we're swapping. Make some convenience
	 * variables.
	 */
	bit = nfc_geo->block_mark_bit_offset;
	p   = payload + nfc_geo->block_mark_byte_offset;
	a   = auxiliary;

	/*
	 * Get the byte from the data area that overlays the block mark. Since
	 * the ECC engine applies its own view to the bits in the page, the
	 * physical block mark won't (in general) appear on a byte boundary in
	 * the data.
	 */
	from_data = (p[0] >> bit) | (p[1] << (8 - bit));

	/* Get the byte from the OOB. */
	from_oob = a[0];

	/* Swap them. */
	a[0] = from_data;

	mask = (0x1 << bit) - 1;
	p[0] = (p[0] & mask) | (from_oob << bit);

	mask = ~0 << bit;
	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
}

static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
995
				uint8_t *buf, int oob_required, int page)
996 997 998 999 1000 1001 1002 1003 1004
{
	struct gpmi_nand_data *this = chip->priv;
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	void          *payload_virt;
	dma_addr_t    payload_phys;
	void          *auxiliary_virt;
	dma_addr_t    auxiliary_phys;
	unsigned int  i;
	unsigned char *status;
1005
	unsigned int  max_bitflips = 0;
1006 1007
	int           ret;

1008
	dev_dbg(this->dev, "page number is : %d\n", page);
1009
	ret = read_page_prepare(this, buf, nfc_geo->payload_size,
1010 1011 1012 1013
					this->payload_virt, this->payload_phys,
					nfc_geo->payload_size,
					&payload_virt, &payload_phys);
	if (ret) {
1014
		dev_err(this->dev, "Inadequate DMA buffer\n");
1015 1016 1017 1018 1019 1020 1021 1022
		ret = -ENOMEM;
		return ret;
	}
	auxiliary_virt = this->auxiliary_virt;
	auxiliary_phys = this->auxiliary_phys;

	/* go! */
	ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
1023
	read_page_end(this, buf, nfc_geo->payload_size,
1024 1025 1026 1027
			this->payload_virt, this->payload_phys,
			nfc_geo->payload_size,
			payload_virt, payload_phys);
	if (ret) {
1028
		dev_err(this->dev, "Error in ECC-based read: %d\n", ret);
1029
		return ret;
1030 1031 1032 1033 1034 1035
	}

	/* handle the block mark swapping */
	block_mark_swapping(this, payload_virt, auxiliary_virt);

	/* Loop over status bytes, accumulating ECC status. */
1036
	status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
1037 1038 1039 1040 1041 1042

	for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
			continue;

		if (*status == STATUS_UNCORRECTABLE) {
1043
			mtd->ecc_stats.failed++;
1044 1045
			continue;
		}
1046 1047
		mtd->ecc_stats.corrected += *status;
		max_bitflips = max_t(unsigned int, max_bitflips, *status);
1048 1049
	}

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	if (oob_required) {
		/*
		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
		 * for details about our policy for delivering the OOB.
		 *
		 * We fill the caller's buffer with set bits, and then copy the
		 * block mark to th caller's buffer. Note that, if block mark
		 * swapping was necessary, it has already been done, so we can
		 * rely on the first byte of the auxiliary buffer to contain
		 * the block mark.
		 */
		memset(chip->oob_poi, ~0, mtd->oobsize);
		chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
	}
1064

1065
	read_page_swap_end(this, buf, nfc_geo->payload_size,
1066 1067 1068
			this->payload_virt, this->payload_phys,
			nfc_geo->payload_size,
			payload_virt, payload_phys);
1069 1070

	return max_bitflips;
1071 1072
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
/* Fake a virtual small page for the subpage read */
static int gpmi_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
			uint32_t offs, uint32_t len, uint8_t *buf, int page)
{
	struct gpmi_nand_data *this = chip->priv;
	void __iomem *bch_regs = this->resources.bch_regs;
	struct bch_geometry old_geo = this->bch_geometry;
	struct bch_geometry *geo = &this->bch_geometry;
	int size = chip->ecc.size; /* ECC chunk size */
	int meta, n, page_size;
	u32 r1_old, r2_old, r1_new, r2_new;
	unsigned int max_bitflips;
	int first, last, marker_pos;
	int ecc_parity_size;
	int col = 0;
1088
	int old_swap_block_mark = this->swap_block_mark;
1089 1090 1091 1092 1093 1094 1095 1096

	/* The size of ECC parity */
	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;

	/* Align it with the chunk size */
	first = offs / size;
	last = (offs + len - 1) / size;

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	if (this->swap_block_mark) {
		/*
		 * Find the chunk which contains the Block Marker.
		 * If this chunk is in the range of [first, last],
		 * we have to read out the whole page.
		 * Why? since we had swapped the data at the position of Block
		 * Marker to the metadata which is bound with the chunk 0.
		 */
		marker_pos = geo->block_mark_byte_offset / size;
		if (last >= marker_pos && first <= marker_pos) {
			dev_dbg(this->dev,
				"page:%d, first:%d, last:%d, marker at:%d\n",
1109
				page, first, last, marker_pos);
1110 1111
			return gpmi_ecc_read_page(mtd, chip, buf, 0, page);
		}
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	}

	meta = geo->metadata_size;
	if (first) {
		col = meta + (size + ecc_parity_size) * first;
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, col, -1);

		meta = 0;
		buf = buf + first * size;
	}

	/* Save the old environment */
	r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0);
	r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1);

	/* change the BCH registers and bch_geometry{} */
	n = last - first + 1;
	page_size = meta + (size + ecc_parity_size) * n;

	r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS |
			BM_BCH_FLASH0LAYOUT0_META_SIZE);
	r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1)
			| BF_BCH_FLASH0LAYOUT0_META_SIZE(meta);
	writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0);

	r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE;
	r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size);
	writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1);

	geo->ecc_chunk_count = n;
	geo->payload_size = n * size;
	geo->page_size = page_size;
	geo->auxiliary_status_offset = ALIGN(meta, 4);

	dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
		page, offs, len, col, first, n, page_size);

	/* Read the subpage now */
	this->swap_block_mark = false;
	max_bitflips = gpmi_ecc_read_page(mtd, chip, buf, 0, page);

	/* Restore */
	writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0);
	writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1);
	this->bch_geometry = old_geo;
1157
	this->swap_block_mark = old_swap_block_mark;
1158 1159 1160 1161

	return max_bitflips;
}

1162
static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1163
				const uint8_t *buf, int oob_required, int page)
1164 1165 1166 1167 1168 1169 1170 1171 1172
{
	struct gpmi_nand_data *this = chip->priv;
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	const void *payload_virt;
	dma_addr_t payload_phys;
	const void *auxiliary_virt;
	dma_addr_t auxiliary_phys;
	int        ret;

1173
	dev_dbg(this->dev, "ecc write page.\n");
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	if (this->swap_block_mark) {
		/*
		 * If control arrives here, we're doing block mark swapping.
		 * Since we can't modify the caller's buffers, we must copy them
		 * into our own.
		 */
		memcpy(this->payload_virt, buf, mtd->writesize);
		payload_virt = this->payload_virt;
		payload_phys = this->payload_phys;

		memcpy(this->auxiliary_virt, chip->oob_poi,
				nfc_geo->auxiliary_size);
		auxiliary_virt = this->auxiliary_virt;
		auxiliary_phys = this->auxiliary_phys;

		/* Handle block mark swapping. */
		block_mark_swapping(this,
1191
				(void *)payload_virt, (void *)auxiliary_virt);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	} else {
		/*
		 * If control arrives here, we're not doing block mark swapping,
		 * so we can to try and use the caller's buffers.
		 */
		ret = send_page_prepare(this,
				buf, mtd->writesize,
				this->payload_virt, this->payload_phys,
				nfc_geo->payload_size,
				&payload_virt, &payload_phys);
		if (ret) {
1203
			dev_err(this->dev, "Inadequate payload DMA buffer\n");
1204
			return 0;
1205 1206 1207 1208 1209 1210 1211 1212
		}

		ret = send_page_prepare(this,
				chip->oob_poi, mtd->oobsize,
				this->auxiliary_virt, this->auxiliary_phys,
				nfc_geo->auxiliary_size,
				&auxiliary_virt, &auxiliary_phys);
		if (ret) {
1213
			dev_err(this->dev, "Inadequate auxiliary DMA buffer\n");
1214 1215 1216 1217 1218 1219 1220
			goto exit_auxiliary;
		}
	}

	/* Ask the NFC. */
	ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
	if (ret)
1221
		dev_err(this->dev, "Error in ECC-based write: %d\n", ret);
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

	if (!this->swap_block_mark) {
		send_page_end(this, chip->oob_poi, mtd->oobsize,
				this->auxiliary_virt, this->auxiliary_phys,
				nfc_geo->auxiliary_size,
				auxiliary_virt, auxiliary_phys);
exit_auxiliary:
		send_page_end(this, buf, mtd->writesize,
				this->payload_virt, this->payload_phys,
				nfc_geo->payload_size,
				payload_virt, payload_phys);
	}
1234 1235

	return 0;
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
}

/*
 * There are several places in this driver where we have to handle the OOB and
 * block marks. This is the function where things are the most complicated, so
 * this is where we try to explain it all. All the other places refer back to
 * here.
 *
 * These are the rules, in order of decreasing importance:
 *
 * 1) Nothing the caller does can be allowed to imperil the block mark.
 *
 * 2) In read operations, the first byte of the OOB we return must reflect the
 *    true state of the block mark, no matter where that block mark appears in
 *    the physical page.
 *
 * 3) ECC-based read operations return an OOB full of set bits (since we never
 *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
 *    return).
 *
 * 4) "Raw" read operations return a direct view of the physical bytes in the
 *    page, using the conventional definition of which bytes are data and which
 *    are OOB. This gives the caller a way to see the actual, physical bytes
 *    in the page, without the distortions applied by our ECC engine.
 *
 *
 * What we do for this specific read operation depends on two questions:
 *
 * 1) Are we doing a "raw" read, or an ECC-based read?
 *
 * 2) Are we using block mark swapping or transcription?
 *
 * There are four cases, illustrated by the following Karnaugh map:
 *
 *                    |           Raw           |         ECC-based       |
 *       -------------+-------------------------+-------------------------+
 *                    | Read the conventional   |                         |
 *                    | OOB at the end of the   |                         |
 *       Swapping     | page and return it. It  |                         |
 *                    | contains exactly what   |                         |
 *                    | we want.                | Read the block mark and |
 *       -------------+-------------------------+ return it in a buffer   |
 *                    | Read the conventional   | full of set bits.       |
 *                    | OOB at the end of the   |                         |
 *                    | page and also the block |                         |
 *       Transcribing | mark in the metadata.   |                         |
 *                    | Copy the block mark     |                         |
 *                    | into the first byte of  |                         |
 *                    | the OOB.                |                         |
 *       -------------+-------------------------+-------------------------+
 *
 * Note that we break rule #4 in the Transcribing/Raw case because we're not
 * giving an accurate view of the actual, physical bytes in the page (we're
 * overwriting the block mark). That's OK because it's more important to follow
 * rule #2.
 *
 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
 * easy. When reading a page, for example, the NAND Flash MTD code calls our
 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
 * ECC-based or raw view of the page is implicit in which function it calls
 * (there is a similar pair of ECC-based/raw functions for writing).
 */
static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1299
				int page)
1300 1301 1302
{
	struct gpmi_nand_data *this = chip->priv;

1303
	dev_dbg(this->dev, "page number is %d\n", page);
1304 1305 1306 1307 1308 1309 1310 1311 1312
	/* clear the OOB buffer */
	memset(chip->oob_poi, ~0, mtd->oobsize);

	/* Read out the conventional OOB. */
	chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);

	/*
	 * Now, we want to make sure the block mark is correct. In the
1313 1314
	 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
	 * Otherwise, we need to explicitly read it.
1315
	 */
1316
	if (GPMI_IS_MX23(this)) {
1317 1318 1319 1320 1321
		/* Read the block mark into the first byte of the OOB buffer. */
		chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
		chip->oob_poi[0] = chip->read_byte(mtd);
	}

1322
	return 0;
1323 1324 1325 1326 1327
}

static int
gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
{
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	struct nand_oobfree *of = mtd->ecclayout->oobfree;
	int status = 0;

	/* Do we have available oob area? */
	if (!of->length)
		return -EPERM;

	if (!nand_is_slc(chip))
		return -EPERM;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize + of->offset, page);
	chip->write_buf(mtd, chip->oob_poi + of->offset, of->length);
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);

	status = chip->waitfunc(mtd, chip);
	return status & NAND_STATUS_FAIL ? -EIO : 0;
1344 1345
}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
/*
 * This function reads a NAND page without involving the ECC engine (no HW
 * ECC correction).
 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
 * inline (interleaved with payload DATA), and do not align data chunk on
 * byte boundaries.
 * We thus need to take care moving the payload data and ECC bits stored in the
 * page into the provided buffers, which is why we're using gpmi_copy_bits.
 *
 * See set_geometry_by_ecc_info inline comments to have a full description
 * of the layout used by the GPMI controller.
 */
static int gpmi_ecc_read_page_raw(struct mtd_info *mtd,
				  struct nand_chip *chip, uint8_t *buf,
				  int oob_required, int page)
{
	struct gpmi_nand_data *this = chip->priv;
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	int eccsize = nfc_geo->ecc_chunk_size;
	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
	u8 *tmp_buf = this->raw_buffer;
	size_t src_bit_off;
	size_t oob_bit_off;
	size_t oob_byte_off;
	uint8_t *oob = chip->oob_poi;
	int step;

	chip->read_buf(mtd, tmp_buf,
		       mtd->writesize + mtd->oobsize);

	/*
	 * If required, swap the bad block marker and the data stored in the
	 * metadata section, so that we don't wrongly consider a block as bad.
	 *
	 * See the layout description for a detailed explanation on why this
	 * is needed.
	 */
	if (this->swap_block_mark) {
		u8 swap = tmp_buf[0];

		tmp_buf[0] = tmp_buf[mtd->writesize];
		tmp_buf[mtd->writesize] = swap;
	}

	/*
	 * Copy the metadata section into the oob buffer (this section is
	 * guaranteed to be aligned on a byte boundary).
	 */
	if (oob_required)
		memcpy(oob, tmp_buf, nfc_geo->metadata_size);

	oob_bit_off = nfc_geo->metadata_size * 8;
	src_bit_off = oob_bit_off;

	/* Extract interleaved payload data and ECC bits */
	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
		if (buf)
			gpmi_copy_bits(buf, step * eccsize * 8,
				       tmp_buf, src_bit_off,
				       eccsize * 8);
		src_bit_off += eccsize * 8;

		/* Align last ECC block to align a byte boundary */
		if (step == nfc_geo->ecc_chunk_count - 1 &&
		    (oob_bit_off + eccbits) % 8)
			eccbits += 8 - ((oob_bit_off + eccbits) % 8);

		if (oob_required)
			gpmi_copy_bits(oob, oob_bit_off,
				       tmp_buf, src_bit_off,
				       eccbits);

		src_bit_off += eccbits;
		oob_bit_off += eccbits;
	}

	if (oob_required) {
		oob_byte_off = oob_bit_off / 8;

		if (oob_byte_off < mtd->oobsize)
			memcpy(oob + oob_byte_off,
			       tmp_buf + mtd->writesize + oob_byte_off,
			       mtd->oobsize - oob_byte_off);
	}

	return 0;
}

/*
 * This function writes a NAND page without involving the ECC engine (no HW
 * ECC generation).
 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
 * inline (interleaved with payload DATA), and do not align data chunk on
 * byte boundaries.
 * We thus need to take care moving the OOB area at the right place in the
 * final page, which is why we're using gpmi_copy_bits.
 *
 * See set_geometry_by_ecc_info inline comments to have a full description
 * of the layout used by the GPMI controller.
 */
static int gpmi_ecc_write_page_raw(struct mtd_info *mtd,
				   struct nand_chip *chip,
				   const uint8_t *buf,
1449
				   int oob_required, int page)
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
{
	struct gpmi_nand_data *this = chip->priv;
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	int eccsize = nfc_geo->ecc_chunk_size;
	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
	u8 *tmp_buf = this->raw_buffer;
	uint8_t *oob = chip->oob_poi;
	size_t dst_bit_off;
	size_t oob_bit_off;
	size_t oob_byte_off;
	int step;

	/*
	 * Initialize all bits to 1 in case we don't have a buffer for the
	 * payload or oob data in order to leave unspecified bits of data
	 * to their initial state.
	 */
	if (!buf || !oob_required)
		memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);

	/*
	 * First copy the metadata section (stored in oob buffer) at the
	 * beginning of the page, as imposed by the GPMI layout.
	 */
	memcpy(tmp_buf, oob, nfc_geo->metadata_size);
	oob_bit_off = nfc_geo->metadata_size * 8;
	dst_bit_off = oob_bit_off;

	/* Interleave payload data and ECC bits */
	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
		if (buf)
			gpmi_copy_bits(tmp_buf, dst_bit_off,
				       buf, step * eccsize * 8, eccsize * 8);
		dst_bit_off += eccsize * 8;

		/* Align last ECC block to align a byte boundary */
		if (step == nfc_geo->ecc_chunk_count - 1 &&
		    (oob_bit_off + eccbits) % 8)
			eccbits += 8 - ((oob_bit_off + eccbits) % 8);

		if (oob_required)
			gpmi_copy_bits(tmp_buf, dst_bit_off,
				       oob, oob_bit_off, eccbits);

		dst_bit_off += eccbits;
		oob_bit_off += eccbits;
	}

	oob_byte_off = oob_bit_off / 8;

	if (oob_required && oob_byte_off < mtd->oobsize)
		memcpy(tmp_buf + mtd->writesize + oob_byte_off,
		       oob + oob_byte_off, mtd->oobsize - oob_byte_off);

	/*
	 * If required, swap the bad block marker and the first byte of the
	 * metadata section, so that we don't modify the bad block marker.
	 *
	 * See the layout description for a detailed explanation on why this
	 * is needed.
	 */
	if (this->swap_block_mark) {
		u8 swap = tmp_buf[0];

		tmp_buf[0] = tmp_buf[mtd->writesize];
		tmp_buf[mtd->writesize] = swap;
	}

	chip->write_buf(mtd, tmp_buf, mtd->writesize + mtd->oobsize);

	return 0;
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
static int gpmi_ecc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
				 int page)
{
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

	return gpmi_ecc_read_page_raw(mtd, chip, NULL, 1, page);
}

static int gpmi_ecc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
				 int page)
{
	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0, page);

1536
	return gpmi_ecc_write_page_raw(mtd, chip, NULL, 1, page);
1537 1538
}

1539 1540 1541 1542
static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;
1543
	int ret = 0;
1544 1545 1546
	uint8_t *block_mark;
	int column, page, status, chipnr;

1547 1548
	chipnr = (int)(ofs >> chip->chip_shift);
	chip->select_chip(mtd, chipnr);
1549

1550
	column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1551

1552 1553 1554
	/* Write the block mark. */
	block_mark = this->data_buffer_dma;
	block_mark[0] = 0; /* bad block marker */
1555

1556 1557
	/* Shift to get page */
	page = (int)(ofs >> chip->page_shift);
1558

1559 1560 1561
	chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
	chip->write_buf(mtd, block_mark, 1);
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1562

1563 1564 1565
	status = chip->waitfunc(mtd, chip);
	if (status & NAND_STATUS_FAIL)
		ret = -EIO;
1566

1567
	chip->select_chip(mtd, -1);
1568 1569 1570 1571

	return ret;
}

1572
static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
{
	struct boot_rom_geometry *geometry = &this->rom_geometry;

	/*
	 * Set the boot block stride size.
	 *
	 * In principle, we should be reading this from the OTP bits, since
	 * that's where the ROM is going to get it. In fact, we don't have any
	 * way to read the OTP bits, so we go with the default and hope for the
	 * best.
	 */
	geometry->stride_size_in_pages = 64;

	/*
	 * Set the search area stride exponent.
	 *
	 * In principle, we should be reading this from the OTP bits, since
	 * that's where the ROM is going to get it. In fact, we don't have any
	 * way to read the OTP bits, so we go with the default and hope for the
	 * best.
	 */
	geometry->search_area_stride_exponent = 2;
	return 0;
}

static const char  *fingerprint = "STMP";
1599
static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
{
	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
	struct device *dev = this->dev;
	struct mtd_info *mtd = &this->mtd;
	struct nand_chip *chip = &this->nand;
	unsigned int search_area_size_in_strides;
	unsigned int stride;
	unsigned int page;
	uint8_t *buffer = chip->buffers->databuf;
	int saved_chip_number;
	int found_an_ncb_fingerprint = false;

	/* Compute the number of strides in a search area. */
	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;

	saved_chip_number = this->current_chip;
	chip->select_chip(mtd, 0);

	/*
	 * Loop through the first search area, looking for the NCB fingerprint.
	 */
	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");

	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1624
		/* Compute the page addresses. */
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
		page = stride * rom_geo->stride_size_in_pages;

		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);

		/*
		 * Read the NCB fingerprint. The fingerprint is four bytes long
		 * and starts in the 12th byte of the page.
		 */
		chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
		chip->read_buf(mtd, buffer, strlen(fingerprint));

		/* Look for the fingerprint. */
		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
			found_an_ncb_fingerprint = true;
			break;
		}

	}

	chip->select_chip(mtd, saved_chip_number);

	if (found_an_ncb_fingerprint)
		dev_dbg(dev, "\tFound a fingerprint\n");
	else
		dev_dbg(dev, "\tNo fingerprint found\n");
	return found_an_ncb_fingerprint;
}

/* Writes a transcription stamp. */
1654
static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
{
	struct device *dev = this->dev;
	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
	struct mtd_info *mtd = &this->mtd;
	struct nand_chip *chip = &this->nand;
	unsigned int block_size_in_pages;
	unsigned int search_area_size_in_strides;
	unsigned int search_area_size_in_pages;
	unsigned int search_area_size_in_blocks;
	unsigned int block;
	unsigned int stride;
	unsigned int page;
	uint8_t      *buffer = chip->buffers->databuf;
	int saved_chip_number;
	int status;

	/* Compute the search area geometry. */
	block_size_in_pages = mtd->erasesize / mtd->writesize;
	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
	search_area_size_in_pages = search_area_size_in_strides *
					rom_geo->stride_size_in_pages;
	search_area_size_in_blocks =
		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
				    block_size_in_pages;

	dev_dbg(dev, "Search Area Geometry :\n");
	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);

	/* Select chip 0. */
	saved_chip_number = this->current_chip;
	chip->select_chip(mtd, 0);

	/* Loop over blocks in the first search area, erasing them. */
	dev_dbg(dev, "Erasing the search area...\n");

	for (block = 0; block < search_area_size_in_blocks; block++) {
		/* Compute the page address. */
		page = block * block_size_in_pages;

		/* Erase this block. */
		dev_dbg(dev, "\tErasing block 0x%x\n", block);
		chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
		chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);

		/* Wait for the erase to finish. */
		status = chip->waitfunc(mtd, chip);
		if (status & NAND_STATUS_FAIL)
			dev_err(dev, "[%s] Erase failed.\n", __func__);
	}

	/* Write the NCB fingerprint into the page buffer. */
	memset(buffer, ~0, mtd->writesize);
	memcpy(buffer + 12, fingerprint, strlen(fingerprint));

	/* Loop through the first search area, writing NCB fingerprints. */
	dev_dbg(dev, "Writing NCB fingerprints...\n");
	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1714
		/* Compute the page addresses. */
1715 1716 1717 1718 1719
		page = stride * rom_geo->stride_size_in_pages;

		/* Write the first page of the current stride. */
		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
		chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1720
		chip->ecc.write_page_raw(mtd, chip, buffer, 0, page);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);

		/* Wait for the write to finish. */
		status = chip->waitfunc(mtd, chip);
		if (status & NAND_STATUS_FAIL)
			dev_err(dev, "[%s] Write failed.\n", __func__);
	}

	/* Deselect chip 0. */
	chip->select_chip(mtd, saved_chip_number);
	return 0;
}

1734
static int mx23_boot_init(struct gpmi_nand_data  *this)
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
{
	struct device *dev = this->dev;
	struct nand_chip *chip = &this->nand;
	struct mtd_info *mtd = &this->mtd;
	unsigned int block_count;
	unsigned int block;
	int     chipnr;
	int     page;
	loff_t  byte;
	uint8_t block_mark;
	int     ret = 0;

	/*
	 * If control arrives here, we can't use block mark swapping, which
	 * means we're forced to use transcription. First, scan for the
	 * transcription stamp. If we find it, then we don't have to do
	 * anything -- the block marks are already transcribed.
	 */
	if (mx23_check_transcription_stamp(this))
		return 0;

	/*
	 * If control arrives here, we couldn't find a transcription stamp, so
	 * so we presume the block marks are in the conventional location.
	 */
	dev_dbg(dev, "Transcribing bad block marks...\n");

	/* Compute the number of blocks in the entire medium. */
	block_count = chip->chipsize >> chip->phys_erase_shift;

	/*
	 * Loop over all the blocks in the medium, transcribing block marks as
	 * we go.
	 */
	for (block = 0; block < block_count; block++) {
		/*
		 * Compute the chip, page and byte addresses for this block's
		 * conventional mark.
		 */
		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
		page = block << (chip->phys_erase_shift - chip->page_shift);
		byte = block <<  chip->phys_erase_shift;

		/* Send the command to read the conventional block mark. */
		chip->select_chip(mtd, chipnr);
		chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
		block_mark = chip->read_byte(mtd);
		chip->select_chip(mtd, -1);

		/*
		 * Check if the block is marked bad. If so, we need to mark it
		 * again, but this time the result will be a mark in the
		 * location where we transcribe block marks.
		 */
		if (block_mark != 0xff) {
			dev_dbg(dev, "Transcribing mark in block %u\n", block);
			ret = chip->block_markbad(mtd, byte);
			if (ret)
1793 1794 1795
				dev_err(dev,
					"Failed to mark block bad with ret %d\n",
					ret);
1796 1797 1798 1799 1800 1801 1802 1803
		}
	}

	/* Write the stamp that indicates we've transcribed the block marks. */
	mx23_write_transcription_stamp(this);
	return 0;
}

1804
static int nand_boot_init(struct gpmi_nand_data  *this)
1805 1806 1807 1808 1809 1810 1811 1812 1813
{
	nand_boot_set_geometry(this);

	/* This is ROM arch-specific initilization before the BBT scanning. */
	if (GPMI_IS_MX23(this))
		return mx23_boot_init(this);
	return 0;
}

1814
static int gpmi_set_geometry(struct gpmi_nand_data *this)
1815 1816 1817 1818 1819 1820 1821 1822 1823
{
	int ret;

	/* Free the temporary DMA memory for reading ID. */
	gpmi_free_dma_buffer(this);

	/* Set up the NFC geometry which is used by BCH. */
	ret = bch_set_geometry(this);
	if (ret) {
1824
		dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
1825 1826 1827 1828 1829 1830 1831
		return ret;
	}

	/* Alloc the new DMA buffers according to the pagesize and oobsize */
	return gpmi_alloc_dma_buffer(this);
}

1832
static void gpmi_nand_exit(struct gpmi_nand_data *this)
H
Huang Shijie 已提交
1833 1834 1835 1836 1837 1838
{
	nand_release(&this->mtd);
	gpmi_free_dma_buffer(this);
}

static int gpmi_init_last(struct gpmi_nand_data *this)
1839
{
H
Huang Shijie 已提交
1840
	struct mtd_info *mtd = &this->mtd;
1841
	struct nand_chip *chip = mtd->priv;
H
Huang Shijie 已提交
1842 1843
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	struct bch_geometry *bch_geo = &this->bch_geometry;
1844 1845
	int ret;

1846 1847
	/* Set up the medium geometry */
	ret = gpmi_set_geometry(this);
1848 1849 1850
	if (ret)
		return ret;

H
Huang Shijie 已提交
1851 1852 1853 1854 1855
	/* Init the nand_ecc_ctrl{} */
	ecc->read_page	= gpmi_ecc_read_page;
	ecc->write_page	= gpmi_ecc_write_page;
	ecc->read_oob	= gpmi_ecc_read_oob;
	ecc->write_oob	= gpmi_ecc_write_oob;
1856 1857
	ecc->read_page_raw = gpmi_ecc_read_page_raw;
	ecc->write_page_raw = gpmi_ecc_write_page_raw;
1858 1859
	ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
	ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
H
Huang Shijie 已提交
1860 1861 1862 1863 1864
	ecc->mode	= NAND_ECC_HW;
	ecc->size	= bch_geo->ecc_chunk_size;
	ecc->strength	= bch_geo->ecc_strength;
	ecc->layout	= &gpmi_hw_ecclayout;

1865 1866 1867 1868 1869
	/*
	 * We only enable the subpage read when:
	 *  (1) the chip is imx6, and
	 *  (2) the size of the ECC parity is byte aligned.
	 */
1870
	if (GPMI_IS_MX6(this) &&
1871 1872 1873 1874 1875
		((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
		ecc->read_subpage = gpmi_ecc_read_subpage;
		chip->options |= NAND_SUBPAGE_READ;
	}

1876 1877 1878 1879 1880 1881 1882 1883
	/*
	 * Can we enable the extra features? such as EDO or Sync mode.
	 *
	 * We do not check the return value now. That's means if we fail in
	 * enable the extra features, we still can run in the normal way.
	 */
	gpmi_extra_init(this);

H
Huang Shijie 已提交
1884
	return 0;
1885 1886
}

1887
static int gpmi_nand_init(struct gpmi_nand_data *this)
1888 1889 1890
{
	struct mtd_info  *mtd = &this->mtd;
	struct nand_chip *chip = &this->nand;
1891
	struct mtd_part_parser_data ppdata = {};
1892 1893 1894 1895 1896 1897 1898 1899
	int ret;

	/* init current chip */
	this->current_chip	= -1;

	/* init the MTD data structures */
	mtd->priv		= chip;
	mtd->name		= "gpmi-nand";
1900
	mtd->dev.parent		= this->dev;
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912

	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
	chip->priv		= this;
	chip->select_chip	= gpmi_select_chip;
	chip->cmd_ctrl		= gpmi_cmd_ctrl;
	chip->dev_ready		= gpmi_dev_ready;
	chip->read_byte		= gpmi_read_byte;
	chip->read_buf		= gpmi_read_buf;
	chip->write_buf		= gpmi_write_buf;
	chip->badblock_pattern	= &gpmi_bbt_descr;
	chip->block_markbad	= gpmi_block_markbad;
	chip->options		|= NAND_NO_SUBPAGE_WRITE;
1913 1914 1915 1916 1917

	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
	this->swap_block_mark = !GPMI_IS_MX23(this);

	if (of_get_nand_on_flash_bbt(this->dev->of_node)) {
1918
		chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1919

1920 1921 1922 1923 1924 1925 1926
		if (of_property_read_bool(this->dev->of_node,
						"fsl,no-blockmark-swap"))
			this->swap_block_mark = false;
	}
	dev_dbg(this->dev, "Blockmark swapping %sabled\n",
		this->swap_block_mark ? "en" : "dis");

H
Huang Shijie 已提交
1927 1928 1929 1930
	/*
	 * Allocate a temporary DMA buffer for reading ID in the
	 * nand_scan_ident().
	 */
1931 1932 1933 1934 1935 1936
	this->bch_geometry.payload_size = 1024;
	this->bch_geometry.auxiliary_size = 128;
	ret = gpmi_alloc_dma_buffer(this);
	if (ret)
		goto err_out;

1937
	ret = nand_scan_ident(mtd, GPMI_IS_MX6(this) ? 2 : 1, NULL);
H
Huang Shijie 已提交
1938 1939 1940 1941 1942 1943 1944
	if (ret)
		goto err_out;

	ret = gpmi_init_last(this);
	if (ret)
		goto err_out;

H
Huang Shijie 已提交
1945
	chip->options |= NAND_SKIP_BBTSCAN;
H
Huang Shijie 已提交
1946 1947
	ret = nand_scan_tail(mtd);
	if (ret)
1948 1949
		goto err_out;

H
Huang Shijie 已提交
1950 1951 1952
	ret = nand_boot_init(this);
	if (ret)
		goto err_out;
1953 1954 1955
	ret = chip->scan_bbt(mtd);
	if (ret)
		goto err_out;
H
Huang Shijie 已提交
1956

1957 1958
	ppdata.of_node = this->pdev->dev.of_node;
	ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
1959 1960 1961 1962 1963
	if (ret)
		goto err_out;
	return 0;

err_out:
1964
	gpmi_nand_exit(this);
1965 1966 1967
	return ret;
}

1968 1969 1970
static const struct of_device_id gpmi_nand_id_table[] = {
	{
		.compatible = "fsl,imx23-gpmi-nand",
1971
		.data = &gpmi_devdata_imx23,
1972 1973
	}, {
		.compatible = "fsl,imx28-gpmi-nand",
1974
		.data = &gpmi_devdata_imx28,
1975 1976
	}, {
		.compatible = "fsl,imx6q-gpmi-nand",
1977
		.data = &gpmi_devdata_imx6q,
1978 1979
	}, {
		.compatible = "fsl,imx6sx-gpmi-nand",
1980
		.data = &gpmi_devdata_imx6sx,
1981 1982 1983 1984
	}, {}
};
MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);

B
Bill Pemberton 已提交
1985
static int gpmi_nand_probe(struct platform_device *pdev)
1986 1987
{
	struct gpmi_nand_data *this;
1988
	const struct of_device_id *of_id;
1989 1990
	int ret;

1991 1992 1993 1994
	this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
	if (!this)
		return -ENOMEM;

1995 1996
	of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
	if (of_id) {
1997
		this->devdata = of_id->data;
1998
	} else {
1999
		dev_err(&pdev->dev, "Failed to find the right device id.\n");
2000
		return -ENODEV;
2001 2002
	}

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
	platform_set_drvdata(pdev, this);
	this->pdev  = pdev;
	this->dev   = &pdev->dev;

	ret = acquire_resources(this);
	if (ret)
		goto exit_acquire_resources;

	ret = init_hardware(this);
	if (ret)
		goto exit_nfc_init;

2015
	ret = gpmi_nand_init(this);
2016 2017 2018
	if (ret)
		goto exit_nfc_init;

2019 2020
	dev_info(this->dev, "driver registered.\n");

2021 2022 2023 2024 2025
	return 0;

exit_nfc_init:
	release_resources(this);
exit_acquire_resources:
2026

2027 2028 2029
	return ret;
}

B
Bill Pemberton 已提交
2030
static int gpmi_nand_remove(struct platform_device *pdev)
2031 2032 2033
{
	struct gpmi_nand_data *this = platform_get_drvdata(pdev);

2034
	gpmi_nand_exit(this);
2035 2036 2037 2038 2039 2040 2041
	release_resources(this);
	return 0;
}

static struct platform_driver gpmi_nand_driver = {
	.driver = {
		.name = "gpmi-nand",
2042
		.of_match_table = gpmi_nand_id_table,
2043 2044
	},
	.probe   = gpmi_nand_probe,
B
Bill Pemberton 已提交
2045
	.remove  = gpmi_nand_remove,
2046
};
2047
module_platform_driver(gpmi_nand_driver);
2048 2049 2050 2051

MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
MODULE_LICENSE("GPL");