ib_srpt.c 104.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
/*
 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/ctype.h>
#include <linux/kthread.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/atomic.h>
#include <scsi/scsi_tcq.h>
#include <target/configfs_macros.h>
#include <target/target_core_base.h>
#include <target/target_core_fabric_configfs.h>
#include <target/target_core_fabric.h>
#include <target/target_core_configfs.h>
#include "ib_srpt.h"

/* Name of this kernel module. */
#define DRV_NAME		"ib_srpt"
#define DRV_VERSION		"2.0.0"
#define DRV_RELDATE		"2011-02-14"

#define SRPT_ID_STRING	"Linux SRP target"

#undef pr_fmt
#define pr_fmt(fmt) DRV_NAME " " fmt

MODULE_AUTHOR("Vu Pham and Bart Van Assche");
MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
		   "v" DRV_VERSION " (" DRV_RELDATE ")");
MODULE_LICENSE("Dual BSD/GPL");

/*
 * Global Variables
 */

static u64 srpt_service_guid;
72 73
static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689

static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
module_param(srp_max_req_size, int, 0444);
MODULE_PARM_DESC(srp_max_req_size,
		 "Maximum size of SRP request messages in bytes.");

static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
module_param(srpt_srq_size, int, 0444);
MODULE_PARM_DESC(srpt_srq_size,
		 "Shared receive queue (SRQ) size.");

static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
{
	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
}
module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
		  0444);
MODULE_PARM_DESC(srpt_service_guid,
		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
		 " instead of using the node_guid of the first HCA.");

static struct ib_client srpt_client;
static struct target_fabric_configfs *srpt_target;
static void srpt_release_channel(struct srpt_rdma_ch *ch);
static int srpt_queue_status(struct se_cmd *cmd);

/**
 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
 */
static inline
enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
{
	switch (dir) {
	case DMA_TO_DEVICE:	return DMA_FROM_DEVICE;
	case DMA_FROM_DEVICE:	return DMA_TO_DEVICE;
	default:		return dir;
	}
}

/**
 * srpt_sdev_name() - Return the name associated with the HCA.
 *
 * Examples are ib0, ib1, ...
 */
static inline const char *srpt_sdev_name(struct srpt_device *sdev)
{
	return sdev->device->name;
}

static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
{
	unsigned long flags;
	enum rdma_ch_state state;

	spin_lock_irqsave(&ch->spinlock, flags);
	state = ch->state;
	spin_unlock_irqrestore(&ch->spinlock, flags);
	return state;
}

static enum rdma_ch_state
srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
{
	unsigned long flags;
	enum rdma_ch_state prev;

	spin_lock_irqsave(&ch->spinlock, flags);
	prev = ch->state;
	ch->state = new_state;
	spin_unlock_irqrestore(&ch->spinlock, flags);
	return prev;
}

/**
 * srpt_test_and_set_ch_state() - Test and set the channel state.
 *
 * Returns true if and only if the channel state has been set to the new state.
 */
static bool
srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
			   enum rdma_ch_state new)
{
	unsigned long flags;
	enum rdma_ch_state prev;

	spin_lock_irqsave(&ch->spinlock, flags);
	prev = ch->state;
	if (prev == old)
		ch->state = new;
	spin_unlock_irqrestore(&ch->spinlock, flags);
	return prev == old;
}

/**
 * srpt_event_handler() - Asynchronous IB event callback function.
 *
 * Callback function called by the InfiniBand core when an asynchronous IB
 * event occurs. This callback may occur in interrupt context. See also
 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
 * Architecture Specification.
 */
static void srpt_event_handler(struct ib_event_handler *handler,
			       struct ib_event *event)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;

	sdev = ib_get_client_data(event->device, &srpt_client);
	if (!sdev || sdev->device != event->device)
		return;

	pr_debug("ASYNC event= %d on device= %s\n", event->event,
		 srpt_sdev_name(sdev));

	switch (event->event) {
	case IB_EVENT_PORT_ERR:
		if (event->element.port_num <= sdev->device->phys_port_cnt) {
			sport = &sdev->port[event->element.port_num - 1];
			sport->lid = 0;
			sport->sm_lid = 0;
		}
		break;
	case IB_EVENT_PORT_ACTIVE:
	case IB_EVENT_LID_CHANGE:
	case IB_EVENT_PKEY_CHANGE:
	case IB_EVENT_SM_CHANGE:
	case IB_EVENT_CLIENT_REREGISTER:
		/* Refresh port data asynchronously. */
		if (event->element.port_num <= sdev->device->phys_port_cnt) {
			sport = &sdev->port[event->element.port_num - 1];
			if (!sport->lid && !sport->sm_lid)
				schedule_work(&sport->work);
		}
		break;
	default:
		printk(KERN_ERR "received unrecognized IB event %d\n",
		       event->event);
		break;
	}
}

/**
 * srpt_srq_event() - SRQ event callback function.
 */
static void srpt_srq_event(struct ib_event *event, void *ctx)
{
	printk(KERN_INFO "SRQ event %d\n", event->event);
}

/**
 * srpt_qp_event() - QP event callback function.
 */
static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
{
	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
		 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));

	switch (event->event) {
	case IB_EVENT_COMM_EST:
		ib_cm_notify(ch->cm_id, event->event);
		break;
	case IB_EVENT_QP_LAST_WQE_REACHED:
		if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
					       CH_RELEASING))
			srpt_release_channel(ch);
		else
			pr_debug("%s: state %d - ignored LAST_WQE.\n",
				 ch->sess_name, srpt_get_ch_state(ch));
		break;
	default:
		printk(KERN_ERR "received unrecognized IB QP event %d\n",
		       event->event);
		break;
	}
}

/**
 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
 *
 * @slot: one-based slot number.
 * @value: four-bit value.
 *
 * Copies the lowest four bits of value in element slot of the array of four
 * bit elements called c_list (controller list). The index slot is one-based.
 */
static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
{
	u16 id;
	u8 tmp;

	id = (slot - 1) / 2;
	if (slot & 0x1) {
		tmp = c_list[id] & 0xf;
		c_list[id] = (value << 4) | tmp;
	} else {
		tmp = c_list[id] & 0xf0;
		c_list[id] = (value & 0xf) | tmp;
	}
}

/**
 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
 *
 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
 * Specification.
 */
static void srpt_get_class_port_info(struct ib_dm_mad *mad)
{
	struct ib_class_port_info *cif;

	cif = (struct ib_class_port_info *)mad->data;
	memset(cif, 0, sizeof *cif);
	cif->base_version = 1;
	cif->class_version = 1;
	cif->resp_time_value = 20;

	mad->mad_hdr.status = 0;
}

/**
 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
 *
 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
 * Specification. See also section B.7, table B.6 in the SRP r16a document.
 */
static void srpt_get_iou(struct ib_dm_mad *mad)
{
	struct ib_dm_iou_info *ioui;
	u8 slot;
	int i;

	ioui = (struct ib_dm_iou_info *)mad->data;
	ioui->change_id = __constant_cpu_to_be16(1);
	ioui->max_controllers = 16;

	/* set present for slot 1 and empty for the rest */
	srpt_set_ioc(ioui->controller_list, 1, 1);
	for (i = 1, slot = 2; i < 16; i++, slot++)
		srpt_set_ioc(ioui->controller_list, slot, 0);

	mad->mad_hdr.status = 0;
}

/**
 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
 *
 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
 * Architecture Specification. See also section B.7, table B.7 in the SRP
 * r16a document.
 */
static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
			 struct ib_dm_mad *mad)
{
	struct srpt_device *sdev = sport->sdev;
	struct ib_dm_ioc_profile *iocp;

	iocp = (struct ib_dm_ioc_profile *)mad->data;

	if (!slot || slot > 16) {
		mad->mad_hdr.status
			= __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
		return;
	}

	if (slot > 2) {
		mad->mad_hdr.status
			= __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
		return;
	}

	memset(iocp, 0, sizeof *iocp);
	strcpy(iocp->id_string, SRPT_ID_STRING);
	iocp->guid = cpu_to_be64(srpt_service_guid);
	iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
	iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
	iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
	iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
	iocp->subsys_device_id = 0x0;
	iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
	iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
	iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
	iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
	iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
	iocp->rdma_read_depth = 4;
	iocp->send_size = cpu_to_be32(srp_max_req_size);
	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
					  1U << 24));
	iocp->num_svc_entries = 1;
	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;

	mad->mad_hdr.status = 0;
}

/**
 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
 *
 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
 * Specification. See also section B.7, table B.8 in the SRP r16a document.
 */
static void srpt_get_svc_entries(u64 ioc_guid,
				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
{
	struct ib_dm_svc_entries *svc_entries;

	WARN_ON(!ioc_guid);

	if (!slot || slot > 16) {
		mad->mad_hdr.status
			= __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
		return;
	}

	if (slot > 2 || lo > hi || hi > 1) {
		mad->mad_hdr.status
			= __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
		return;
	}

	svc_entries = (struct ib_dm_svc_entries *)mad->data;
	memset(svc_entries, 0, sizeof *svc_entries);
	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
	snprintf(svc_entries->service_entries[0].name,
		 sizeof(svc_entries->service_entries[0].name),
		 "%s%016llx",
		 SRP_SERVICE_NAME_PREFIX,
		 ioc_guid);

	mad->mad_hdr.status = 0;
}

/**
 * srpt_mgmt_method_get() - Process a received management datagram.
 * @sp:      source port through which the MAD has been received.
 * @rq_mad:  received MAD.
 * @rsp_mad: response MAD.
 */
static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
				 struct ib_dm_mad *rsp_mad)
{
	u16 attr_id;
	u32 slot;
	u8 hi, lo;

	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
	switch (attr_id) {
	case DM_ATTR_CLASS_PORT_INFO:
		srpt_get_class_port_info(rsp_mad);
		break;
	case DM_ATTR_IOU_INFO:
		srpt_get_iou(rsp_mad);
		break;
	case DM_ATTR_IOC_PROFILE:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		srpt_get_ioc(sp, slot, rsp_mad);
		break;
	case DM_ATTR_SVC_ENTRIES:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		hi = (u8) ((slot >> 8) & 0xff);
		lo = (u8) (slot & 0xff);
		slot = (u16) ((slot >> 16) & 0xffff);
		srpt_get_svc_entries(srpt_service_guid,
				     slot, hi, lo, rsp_mad);
		break;
	default:
		rsp_mad->mad_hdr.status =
		    __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
		break;
	}
}

/**
 * srpt_mad_send_handler() - Post MAD-send callback function.
 */
static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
				  struct ib_mad_send_wc *mad_wc)
{
	ib_destroy_ah(mad_wc->send_buf->ah);
	ib_free_send_mad(mad_wc->send_buf);
}

/**
 * srpt_mad_recv_handler() - MAD reception callback function.
 */
static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
				  struct ib_mad_recv_wc *mad_wc)
{
	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
	struct ib_ah *ah;
	struct ib_mad_send_buf *rsp;
	struct ib_dm_mad *dm_mad;

	if (!mad_wc || !mad_wc->recv_buf.mad)
		return;

	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
				  mad_wc->recv_buf.grh, mad_agent->port_num);
	if (IS_ERR(ah))
		goto err;

	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);

	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
				 mad_wc->wc->pkey_index, 0,
				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
				 GFP_KERNEL);
	if (IS_ERR(rsp))
		goto err_rsp;

	rsp->ah = ah;

	dm_mad = rsp->mad;
	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
	dm_mad->mad_hdr.status = 0;

	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
	case IB_MGMT_METHOD_GET:
		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
		break;
	case IB_MGMT_METHOD_SET:
		dm_mad->mad_hdr.status =
		    __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
		break;
	default:
		dm_mad->mad_hdr.status =
		    __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
		break;
	}

	if (!ib_post_send_mad(rsp, NULL)) {
		ib_free_recv_mad(mad_wc);
		/* will destroy_ah & free_send_mad in send completion */
		return;
	}

	ib_free_send_mad(rsp);

err_rsp:
	ib_destroy_ah(ah);
err:
	ib_free_recv_mad(mad_wc);
}

/**
 * srpt_refresh_port() - Configure a HCA port.
 *
 * Enable InfiniBand management datagram processing, update the cached sm_lid,
 * lid and gid values, and register a callback function for processing MADs
 * on the specified port.
 *
 * Note: It is safe to call this function more than once for the same port.
 */
static int srpt_refresh_port(struct srpt_port *sport)
{
	struct ib_mad_reg_req reg_req;
	struct ib_port_modify port_modify;
	struct ib_port_attr port_attr;
	int ret;

	memset(&port_modify, 0, sizeof port_modify);
	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	port_modify.clr_port_cap_mask = 0;

	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
	if (ret)
		goto err_mod_port;

	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
	if (ret)
		goto err_query_port;

	sport->sm_lid = port_attr.sm_lid;
	sport->lid = port_attr.lid;

	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
	if (ret)
		goto err_query_port;

	if (!sport->mad_agent) {
		memset(&reg_req, 0, sizeof reg_req);
		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);

		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
							 sport->port,
							 IB_QPT_GSI,
							 &reg_req, 0,
							 srpt_mad_send_handler,
							 srpt_mad_recv_handler,
							 sport);
		if (IS_ERR(sport->mad_agent)) {
			ret = PTR_ERR(sport->mad_agent);
			sport->mad_agent = NULL;
			goto err_query_port;
		}
	}

	return 0;

err_query_port:

	port_modify.set_port_cap_mask = 0;
	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);

err_mod_port:

	return ret;
}

/**
 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
 *
 * Note: It is safe to call this function more than once for the same device.
 */
static void srpt_unregister_mad_agent(struct srpt_device *sdev)
{
	struct ib_port_modify port_modify = {
		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
	};
	struct srpt_port *sport;
	int i;

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
		WARN_ON(sport->port != i);
		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
			printk(KERN_ERR "disabling MAD processing failed.\n");
		if (sport->mad_agent) {
			ib_unregister_mad_agent(sport->mad_agent);
			sport->mad_agent = NULL;
		}
	}
}

/**
 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
 */
static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
					   int ioctx_size, int dma_size,
					   enum dma_data_direction dir)
{
	struct srpt_ioctx *ioctx;

	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
	if (!ioctx)
		goto err;

	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
	if (!ioctx->buf)
		goto err_free_ioctx;

	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
		goto err_free_buf;

	return ioctx;

err_free_buf:
	kfree(ioctx->buf);
err_free_ioctx:
	kfree(ioctx);
err:
	return NULL;
}

/**
 * srpt_free_ioctx() - Free an SRPT I/O context structure.
 */
static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
			    int dma_size, enum dma_data_direction dir)
{
	if (!ioctx)
		return;

	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
	kfree(ioctx->buf);
	kfree(ioctx);
}

/**
 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
 * @sdev:       Device to allocate the I/O context ring for.
 * @ring_size:  Number of elements in the I/O context ring.
 * @ioctx_size: I/O context size.
 * @dma_size:   DMA buffer size.
 * @dir:        DMA data direction.
 */
static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
				int ring_size, int ioctx_size,
				int dma_size, enum dma_data_direction dir)
{
	struct srpt_ioctx **ring;
	int i;

	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
		&& ioctx_size != sizeof(struct srpt_send_ioctx));

	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
	if (!ring)
		goto out;
	for (i = 0; i < ring_size; ++i) {
		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
		if (!ring[i])
			goto err;
		ring[i]->index = i;
	}
	goto out;

err:
	while (--i >= 0)
		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
	kfree(ring);
690
	ring = NULL;
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
out:
	return ring;
}

/**
 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
 */
static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
				 struct srpt_device *sdev, int ring_size,
				 int dma_size, enum dma_data_direction dir)
{
	int i;

	for (i = 0; i < ring_size; ++i)
		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
	kfree(ioctx_ring);
}

/**
 * srpt_get_cmd_state() - Get the state of a SCSI command.
 */
static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
{
	enum srpt_command_state state;
	unsigned long flags;

	BUG_ON(!ioctx);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	state = ioctx->state;
	spin_unlock_irqrestore(&ioctx->spinlock, flags);
	return state;
}

/**
 * srpt_set_cmd_state() - Set the state of a SCSI command.
 *
 * Does not modify the state of aborted commands. Returns the previous command
 * state.
 */
static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
						  enum srpt_command_state new)
{
	enum srpt_command_state previous;
	unsigned long flags;

	BUG_ON(!ioctx);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	previous = ioctx->state;
	if (previous != SRPT_STATE_DONE)
		ioctx->state = new;
	spin_unlock_irqrestore(&ioctx->spinlock, flags);

	return previous;
}

/**
 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
 *
 * Returns true if and only if the previous command state was equal to 'old'.
 */
static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
					enum srpt_command_state old,
					enum srpt_command_state new)
{
	enum srpt_command_state previous;
	unsigned long flags;

	WARN_ON(!ioctx);
	WARN_ON(old == SRPT_STATE_DONE);
	WARN_ON(new == SRPT_STATE_NEW);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	previous = ioctx->state;
	if (previous == old)
		ioctx->state = new;
	spin_unlock_irqrestore(&ioctx->spinlock, flags);
	return previous == old;
}

/**
 * srpt_post_recv() - Post an IB receive request.
 */
static int srpt_post_recv(struct srpt_device *sdev,
			  struct srpt_recv_ioctx *ioctx)
{
	struct ib_sge list;
	struct ib_recv_wr wr, *bad_wr;

	BUG_ON(!sdev);
	wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);

	list.addr = ioctx->ioctx.dma;
	list.length = srp_max_req_size;
	list.lkey = sdev->mr->lkey;

	wr.next = NULL;
	wr.sg_list = &list;
	wr.num_sge = 1;

	return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
}

/**
 * srpt_post_send() - Post an IB send request.
 *
 * Returns zero upon success and a non-zero value upon failure.
 */
static int srpt_post_send(struct srpt_rdma_ch *ch,
			  struct srpt_send_ioctx *ioctx, int len)
{
	struct ib_sge list;
	struct ib_send_wr wr, *bad_wr;
	struct srpt_device *sdev = ch->sport->sdev;
	int ret;

	atomic_inc(&ch->req_lim);

	ret = -ENOMEM;
	if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
		printk(KERN_WARNING "IB send queue full (needed 1)\n");
		goto out;
	}

	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
				      DMA_TO_DEVICE);

	list.addr = ioctx->ioctx.dma;
	list.length = len;
	list.lkey = sdev->mr->lkey;

	wr.next = NULL;
	wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
	wr.sg_list = &list;
	wr.num_sge = 1;
	wr.opcode = IB_WR_SEND;
	wr.send_flags = IB_SEND_SIGNALED;

	ret = ib_post_send(ch->qp, &wr, &bad_wr);

out:
	if (ret < 0) {
		atomic_inc(&ch->sq_wr_avail);
		atomic_dec(&ch->req_lim);
	}
	return ret;
}

/**
 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
 * @ioctx: Pointer to the I/O context associated with the request.
 * @srp_cmd: Pointer to the SRP_CMD request data.
 * @dir: Pointer to the variable to which the transfer direction will be
 *   written.
 * @data_len: Pointer to the variable to which the total data length of all
 *   descriptors in the SRP_CMD request will be written.
 *
 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
 *
 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
 * -ENOMEM when memory allocation fails and zero upon success.
 */
static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
			     struct srp_cmd *srp_cmd,
			     enum dma_data_direction *dir, u64 *data_len)
{
	struct srp_indirect_buf *idb;
	struct srp_direct_buf *db;
	unsigned add_cdb_offset;
	int ret;

	/*
	 * The pointer computations below will only be compiled correctly
	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
	 * whether srp_cmd::add_data has been declared as a byte pointer.
	 */
	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
		     && !__same_type(srp_cmd->add_data[0], (u8)0));

	BUG_ON(!dir);
	BUG_ON(!data_len);

	ret = 0;
	*data_len = 0;

	/*
	 * The lower four bits of the buffer format field contain the DATA-IN
	 * buffer descriptor format, and the highest four bits contain the
	 * DATA-OUT buffer descriptor format.
	 */
	*dir = DMA_NONE;
	if (srp_cmd->buf_fmt & 0xf)
		/* DATA-IN: transfer data from target to initiator (read). */
		*dir = DMA_FROM_DEVICE;
	else if (srp_cmd->buf_fmt >> 4)
		/* DATA-OUT: transfer data from initiator to target (write). */
		*dir = DMA_TO_DEVICE;

	/*
	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
	 * CDB LENGTH' field are reserved and the size in bytes of this field
	 * is four times the value specified in bits 3..7. Hence the "& ~3".
	 */
	add_cdb_offset = srp_cmd->add_cdb_len & ~3;
	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
		ioctx->n_rbuf = 1;
		ioctx->rbufs = &ioctx->single_rbuf;

		db = (struct srp_direct_buf *)(srp_cmd->add_data
					       + add_cdb_offset);
		memcpy(ioctx->rbufs, db, sizeof *db);
		*data_len = be32_to_cpu(db->len);
	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
		idb = (struct srp_indirect_buf *)(srp_cmd->add_data
						  + add_cdb_offset);

		ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;

		if (ioctx->n_rbuf >
		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
			printk(KERN_ERR "received unsupported SRP_CMD request"
			       " type (%u out + %u in != %u / %zu)\n",
			       srp_cmd->data_out_desc_cnt,
			       srp_cmd->data_in_desc_cnt,
			       be32_to_cpu(idb->table_desc.len),
			       sizeof(*db));
			ioctx->n_rbuf = 0;
			ret = -EINVAL;
			goto out;
		}

		if (ioctx->n_rbuf == 1)
			ioctx->rbufs = &ioctx->single_rbuf;
		else {
			ioctx->rbufs =
				kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
			if (!ioctx->rbufs) {
				ioctx->n_rbuf = 0;
				ret = -ENOMEM;
				goto out;
			}
		}

		db = idb->desc_list;
		memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
		*data_len = be32_to_cpu(idb->len);
	}
out:
	return ret;
}

/**
 * srpt_init_ch_qp() - Initialize queue pair attributes.
 *
 * Initialized the attributes of queue pair 'qp' by allowing local write,
 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
 */
static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr *attr;
	int ret;

	attr = kzalloc(sizeof *attr, GFP_KERNEL);
	if (!attr)
		return -ENOMEM;

	attr->qp_state = IB_QPS_INIT;
	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
	    IB_ACCESS_REMOTE_WRITE;
	attr->port_num = ch->sport->port;
	attr->pkey_index = 0;

	ret = ib_modify_qp(qp, attr,
			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
			   IB_QP_PKEY_INDEX);

	kfree(attr);
	return ret;
}

/**
 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTR;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_dest_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTS;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
 */
static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
{
	struct ib_qp_attr qp_attr;

	qp_attr.qp_state = IB_QPS_ERR;
	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
}

/**
 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
 */
static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
				    struct srpt_send_ioctx *ioctx)
{
	struct scatterlist *sg;
	enum dma_data_direction dir;

	BUG_ON(!ch);
	BUG_ON(!ioctx);
	BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);

	while (ioctx->n_rdma)
		kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);

	kfree(ioctx->rdma_ius);
	ioctx->rdma_ius = NULL;

	if (ioctx->mapped_sg_count) {
		sg = ioctx->sg;
		WARN_ON(!sg);
		dir = ioctx->cmd.data_direction;
		BUG_ON(dir == DMA_NONE);
		ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
				opposite_dma_dir(dir));
		ioctx->mapped_sg_count = 0;
	}
}

/**
 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
 */
static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
				 struct srpt_send_ioctx *ioctx)
{
1081
	struct ib_device *dev = ch->sport->sdev->device;
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	struct se_cmd *cmd;
	struct scatterlist *sg, *sg_orig;
	int sg_cnt;
	enum dma_data_direction dir;
	struct rdma_iu *riu;
	struct srp_direct_buf *db;
	dma_addr_t dma_addr;
	struct ib_sge *sge;
	u64 raddr;
	u32 rsize;
	u32 tsize;
	u32 dma_len;
	int count, nrdma;
	int i, j, k;

	BUG_ON(!ch);
	BUG_ON(!ioctx);
	cmd = &ioctx->cmd;
	dir = cmd->data_direction;
	BUG_ON(dir == DMA_NONE);

1103 1104
	ioctx->sg = sg = sg_orig = cmd->t_data_sg;
	ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

	count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
			      opposite_dma_dir(dir));
	if (unlikely(!count))
		return -EAGAIN;

	ioctx->mapped_sg_count = count;

	if (ioctx->rdma_ius && ioctx->n_rdma_ius)
		nrdma = ioctx->n_rdma_ius;
	else {
		nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
			+ ioctx->n_rbuf;

		ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
		if (!ioctx->rdma_ius)
			goto free_mem;

		ioctx->n_rdma_ius = nrdma;
	}

	db = ioctx->rbufs;
	tsize = cmd->data_length;
1128
	dma_len = ib_sg_dma_len(dev, &sg[0]);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	riu = ioctx->rdma_ius;

	/*
	 * For each remote desc - calculate the #ib_sge.
	 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
	 *      each remote desc rdma_iu is required a rdma wr;
	 * else
	 *      we need to allocate extra rdma_iu to carry extra #ib_sge in
	 *      another rdma wr
	 */
	for (i = 0, j = 0;
	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
		rsize = be32_to_cpu(db->len);
		raddr = be64_to_cpu(db->va);
		riu->raddr = raddr;
		riu->rkey = be32_to_cpu(db->key);
		riu->sge_cnt = 0;

		/* calculate how many sge required for this remote_buf */
		while (rsize > 0 && tsize > 0) {

			if (rsize >= dma_len) {
				tsize -= dma_len;
				rsize -= dma_len;
				raddr += dma_len;

				if (tsize > 0) {
					++j;
					if (j < count) {
						sg = sg_next(sg);
1159 1160
						dma_len = ib_sg_dma_len(
								dev, sg);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
					}
				}
			} else {
				tsize -= rsize;
				dma_len -= rsize;
				rsize = 0;
			}

			++riu->sge_cnt;

			if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
				++ioctx->n_rdma;
				riu->sge =
				    kmalloc(riu->sge_cnt * sizeof *riu->sge,
					    GFP_KERNEL);
				if (!riu->sge)
					goto free_mem;

				++riu;
				riu->sge_cnt = 0;
				riu->raddr = raddr;
				riu->rkey = be32_to_cpu(db->key);
			}
		}

		++ioctx->n_rdma;
		riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
				   GFP_KERNEL);
		if (!riu->sge)
			goto free_mem;
	}

	db = ioctx->rbufs;
	tsize = cmd->data_length;
	riu = ioctx->rdma_ius;
	sg = sg_orig;
1197 1198
	dma_len = ib_sg_dma_len(dev, &sg[0]);
	dma_addr = ib_sg_dma_address(dev, &sg[0]);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220

	/* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
	for (i = 0, j = 0;
	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
		rsize = be32_to_cpu(db->len);
		sge = riu->sge;
		k = 0;

		while (rsize > 0 && tsize > 0) {
			sge->addr = dma_addr;
			sge->lkey = ch->sport->sdev->mr->lkey;

			if (rsize >= dma_len) {
				sge->length =
					(tsize < dma_len) ? tsize : dma_len;
				tsize -= dma_len;
				rsize -= dma_len;

				if (tsize > 0) {
					++j;
					if (j < count) {
						sg = sg_next(sg);
1221 1222 1223 1224
						dma_len = ib_sg_dma_len(
								dev, sg);
						dma_addr = ib_sg_dma_address(
								dev, sg);
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
					}
				}
			} else {
				sge->length = (tsize < rsize) ? tsize : rsize;
				tsize -= rsize;
				dma_len -= rsize;
				dma_addr += rsize;
				rsize = 0;
			}

			++k;
			if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
				++riu;
				sge = riu->sge;
				k = 0;
			} else if (rsize > 0 && tsize > 0)
				++sge;
		}
	}

	return 0;

free_mem:
	srpt_unmap_sg_to_ib_sge(ch, ioctx);

	return -ENOMEM;
}

/**
 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
 */
static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
{
	struct srpt_send_ioctx *ioctx;
	unsigned long flags;

	BUG_ON(!ch);

	ioctx = NULL;
	spin_lock_irqsave(&ch->spinlock, flags);
	if (!list_empty(&ch->free_list)) {
		ioctx = list_first_entry(&ch->free_list,
					 struct srpt_send_ioctx, free_list);
		list_del(&ioctx->free_list);
	}
	spin_unlock_irqrestore(&ch->spinlock, flags);

	if (!ioctx)
		return ioctx;

	BUG_ON(ioctx->ch != ch);
	spin_lock_init(&ioctx->spinlock);
	ioctx->state = SRPT_STATE_NEW;
	ioctx->n_rbuf = 0;
	ioctx->rbufs = NULL;
	ioctx->n_rdma = 0;
	ioctx->n_rdma_ius = 0;
	ioctx->rdma_ius = NULL;
	ioctx->mapped_sg_count = 0;
	init_completion(&ioctx->tx_done);
	ioctx->queue_status_only = false;
	/*
	 * transport_init_se_cmd() does not initialize all fields, so do it
	 * here.
	 */
	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));

	return ioctx;
}

/**
 * srpt_abort_cmd() - Abort a SCSI command.
 * @ioctx:   I/O context associated with the SCSI command.
 * @context: Preferred execution context.
 */
static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
{
	enum srpt_command_state state;
	unsigned long flags;

	BUG_ON(!ioctx);

	/*
	 * If the command is in a state where the target core is waiting for
	 * the ib_srpt driver, change the state to the next state. Changing
	 * the state of the command from SRPT_STATE_NEED_DATA to
	 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
	 * function a second time.
	 */

	spin_lock_irqsave(&ioctx->spinlock, flags);
	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEED_DATA:
		ioctx->state = SRPT_STATE_DATA_IN;
		break;
	case SRPT_STATE_DATA_IN:
	case SRPT_STATE_CMD_RSP_SENT:
	case SRPT_STATE_MGMT_RSP_SENT:
		ioctx->state = SRPT_STATE_DONE;
		break;
	default:
		break;
	}
	spin_unlock_irqrestore(&ioctx->spinlock, flags);

1332 1333 1334 1335 1336 1337
	if (state == SRPT_STATE_DONE) {
		struct srpt_rdma_ch *ch = ioctx->ch;

		BUG_ON(ch->sess == NULL);

		target_put_sess_cmd(ch->sess, &ioctx->cmd);
1338
		goto out;
1339
	}
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

	pr_debug("Aborting cmd with state %d and tag %lld\n", state,
		 ioctx->tag);

	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
	case SRPT_STATE_MGMT:
		/*
		 * Do nothing - defer abort processing until
		 * srpt_queue_response() is invoked.
		 */
		WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
		break;
	case SRPT_STATE_NEED_DATA:
		/* DMA_TO_DEVICE (write) - RDMA read error. */
1356 1357

		/* XXX(hch): this is a horrible layering violation.. */
1358
		spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1359
		ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1360
		spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1361 1362 1363 1364 1365 1366 1367
		break;
	case SRPT_STATE_CMD_RSP_SENT:
		/*
		 * SRP_RSP sending failed or the SRP_RSP send completion has
		 * not been received in time.
		 */
		srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1368
		target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1369 1370 1371
		break;
	case SRPT_STATE_MGMT_RSP_SENT:
		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1372
		target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1373 1374
		break;
	default:
G
Grant Grundler 已提交
1375
		WARN(1, "Unexpected command state (%d)", state);
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
		break;
	}

out:
	return state;
}

/**
 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
 */
static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
{
	struct srpt_send_ioctx *ioctx;
	enum srpt_command_state state;
	struct se_cmd *cmd;
	u32 index;

	atomic_inc(&ch->sq_wr_avail);

	index = idx_from_wr_id(wr_id);
	ioctx = ch->ioctx_ring[index];
	state = srpt_get_cmd_state(ioctx);
	cmd = &ioctx->cmd;

	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
		&& state != SRPT_STATE_MGMT_RSP_SENT
		&& state != SRPT_STATE_NEED_DATA
		&& state != SRPT_STATE_DONE);

	/* If SRP_RSP sending failed, undo the ch->req_lim change. */
	if (state == SRPT_STATE_CMD_RSP_SENT
	    || state == SRPT_STATE_MGMT_RSP_SENT)
		atomic_dec(&ch->req_lim);

	srpt_abort_cmd(ioctx);
}

/**
 * srpt_handle_send_comp() - Process an IB send completion notification.
 */
static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
				  struct srpt_send_ioctx *ioctx)
{
	enum srpt_command_state state;

	atomic_inc(&ch->sq_wr_avail);

	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);

	if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
		    && state != SRPT_STATE_MGMT_RSP_SENT
		    && state != SRPT_STATE_DONE))
		pr_debug("state = %d\n", state);

1430 1431 1432 1433
	if (state != SRPT_STATE_DONE) {
		srpt_unmap_sg_to_ib_sge(ch, ioctx);
		transport_generic_free_cmd(&ioctx->cmd, 0);
	} else {
1434 1435
		printk(KERN_ERR "IB completion has been received too late for"
		       " wr_id = %u.\n", ioctx->ioctx.index);
1436
	}
1437 1438 1439 1440 1441
}

/**
 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
 *
1442 1443
 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
 * the data that has been transferred via IB RDMA had to be postponed until the
1444
 * check_stop_free() callback.  None of this is necessary anymore and needs to
1445
 * be cleaned up.
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
 */
static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
				  struct srpt_send_ioctx *ioctx,
				  enum srpt_opcode opcode)
{
	WARN_ON(ioctx->n_rdma <= 0);
	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);

	if (opcode == SRPT_RDMA_READ_LAST) {
		if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
						SRPT_STATE_DATA_IN))
1457
			target_execute_cmd(&ioctx->cmd);
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
		else
			printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
			       __LINE__, srpt_get_cmd_state(ioctx));
	} else if (opcode == SRPT_RDMA_ABORT) {
		ioctx->rdma_aborted = true;
	} else {
		WARN(true, "unexpected opcode %d\n", opcode);
	}
}

/**
 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
 */
static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
				      struct srpt_send_ioctx *ioctx,
				      enum srpt_opcode opcode)
{
	struct se_cmd *cmd;
	enum srpt_command_state state;

	cmd = &ioctx->cmd;
	state = srpt_get_cmd_state(ioctx);
	switch (opcode) {
	case SRPT_RDMA_READ_LAST:
		if (ioctx->n_rdma <= 0) {
			printk(KERN_ERR "Received invalid RDMA read"
			       " error completion with idx %d\n",
			       ioctx->ioctx.index);
			break;
		}
		atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
		if (state == SRPT_STATE_NEED_DATA)
			srpt_abort_cmd(ioctx);
		else
			printk(KERN_ERR "%s[%d]: wrong state = %d\n",
			       __func__, __LINE__, state);
		break;
	case SRPT_RDMA_WRITE_LAST:
		break;
	default:
		printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
		       __LINE__, opcode);
		break;
	}
}

/**
 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
 * @ch: RDMA channel through which the request has been received.
 * @ioctx: I/O context associated with the SRP_CMD request. The response will
 *   be built in the buffer ioctx->buf points at and hence this function will
 *   overwrite the request data.
 * @tag: tag of the request for which this response is being generated.
 * @status: value for the STATUS field of the SRP_RSP information unit.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response. See also SPC-2 for more information about sense data.
 */
static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
			      struct srpt_send_ioctx *ioctx, u64 tag,
			      int status)
{
	struct srp_rsp *srp_rsp;
	const u8 *sense_data;
	int sense_data_len, max_sense_len;

	/*
	 * The lowest bit of all SAM-3 status codes is zero (see also
	 * paragraph 5.3 in SAM-3).
	 */
	WARN_ON(status & 1);

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);

	sense_data = ioctx->sense_data;
	sense_data_len = ioctx->cmd.scsi_sense_length;
	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));

	memset(srp_rsp, 0, sizeof *srp_rsp);
	srp_rsp->opcode = SRP_RSP;
	srp_rsp->req_lim_delta =
		__constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
	srp_rsp->tag = tag;
	srp_rsp->status = status;

	if (sense_data_len) {
		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
		if (sense_data_len > max_sense_len) {
			printk(KERN_WARNING "truncated sense data from %d to %d"
			       " bytes\n", sense_data_len, max_sense_len);
			sense_data_len = max_sense_len;
		}

		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
		memcpy(srp_rsp + 1, sense_data, sense_data_len);
	}

	return sizeof(*srp_rsp) + sense_data_len;
}

/**
 * srpt_build_tskmgmt_rsp() - Build a task management response.
 * @ch:       RDMA channel through which the request has been received.
 * @ioctx:    I/O context in which the SRP_RSP response will be built.
 * @rsp_code: RSP_CODE that will be stored in the response.
 * @tag:      Tag of the request for which this response is being generated.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response.
 */
static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
				  struct srpt_send_ioctx *ioctx,
				  u8 rsp_code, u64 tag)
{
	struct srp_rsp *srp_rsp;
	int resp_data_len;
	int resp_len;

1585
	resp_data_len = 4;
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	resp_len = sizeof(*srp_rsp) + resp_data_len;

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);
	memset(srp_rsp, 0, sizeof *srp_rsp);

	srp_rsp->opcode = SRP_RSP;
	srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
				    + atomic_xchg(&ch->req_lim_delta, 0));
	srp_rsp->tag = tag;

1597 1598 1599
	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
	srp_rsp->data[3] = rsp_code;
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680

	return resp_len;
}

#define NO_SUCH_LUN ((uint64_t)-1LL)

/*
 * SCSI LUN addressing method. See also SAM-2 and the section about
 * eight byte LUNs.
 */
enum scsi_lun_addr_method {
	SCSI_LUN_ADDR_METHOD_PERIPHERAL   = 0,
	SCSI_LUN_ADDR_METHOD_FLAT         = 1,
	SCSI_LUN_ADDR_METHOD_LUN          = 2,
	SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
};

/*
 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
 *
 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
 */
static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
{
	uint64_t res = NO_SUCH_LUN;
	int addressing_method;

	if (unlikely(len < 2)) {
		printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
		       "more", len);
		goto out;
	}

	switch (len) {
	case 8:
		if ((*((__be64 *)lun) &
		     __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
			goto out_err;
		break;
	case 4:
		if (*((__be16 *)&lun[2]) != 0)
			goto out_err;
		break;
	case 6:
		if (*((__be32 *)&lun[2]) != 0)
			goto out_err;
		break;
	case 2:
		break;
	default:
		goto out_err;
	}

	addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
	switch (addressing_method) {
	case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
	case SCSI_LUN_ADDR_METHOD_FLAT:
	case SCSI_LUN_ADDR_METHOD_LUN:
		res = *(lun + 1) | (((*lun) & 0x3f) << 8);
		break;

	case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
	default:
		printk(KERN_ERR "Unimplemented LUN addressing method %u",
		       addressing_method);
		break;
	}

out:
	return res;

out_err:
	printk(KERN_ERR "Support for multi-level LUNs has not yet been"
	       " implemented");
	goto out;
}

static int srpt_check_stop_free(struct se_cmd *cmd)
{
1681 1682
	struct srpt_send_ioctx *ioctx = container_of(cmd,
				struct srpt_send_ioctx, cmd);
1683

1684
	return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
}

/**
 * srpt_handle_cmd() - Process SRP_CMD.
 */
static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
			   struct srpt_recv_ioctx *recv_ioctx,
			   struct srpt_send_ioctx *send_ioctx)
{
	struct se_cmd *cmd;
	struct srp_cmd *srp_cmd;
	uint64_t unpacked_lun;
	u64 data_len;
	enum dma_data_direction dir;
1699
	sense_reason_t ret;
1700
	int rc;
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

	BUG_ON(!send_ioctx);

	srp_cmd = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;
	send_ioctx->tag = srp_cmd->tag;

	switch (srp_cmd->task_attr) {
	case SRP_CMD_SIMPLE_Q:
		cmd->sam_task_attr = MSG_SIMPLE_TAG;
		break;
	case SRP_CMD_ORDERED_Q:
	default:
		cmd->sam_task_attr = MSG_ORDERED_TAG;
		break;
	case SRP_CMD_HEAD_OF_Q:
		cmd->sam_task_attr = MSG_HEAD_TAG;
		break;
	case SRP_CMD_ACA:
		cmd->sam_task_attr = MSG_ACA_TAG;
		break;
	}

1724
	if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1725 1726
		printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
		       srp_cmd->tag);
1727
		ret = TCM_INVALID_CDB_FIELD;
1728 1729 1730 1731 1732
		goto send_sense;
	}

	unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
				       sizeof(srp_cmd->lun));
1733 1734 1735 1736 1737
	rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
			&send_ioctx->sense_data[0], unpacked_lun, data_len,
			MSG_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
	if (rc != 0) {
		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1738
		goto send_sense;
1739
	}
1740 1741 1742
	return 0;

send_sense:
1743
	transport_send_check_condition_and_sense(cmd, ret, 0);
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	return -1;
}

/**
 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
 * @ch: RDMA channel of the task management request.
 * @fn: Task management function to perform.
 * @req_tag: Tag of the SRP task management request.
 * @mgmt_ioctx: I/O context of the task management request.
 *
 * Returns zero if the target core will process the task management
 * request asynchronously.
 *
 * Note: It is assumed that the initiator serializes tag-based task management
 * requests.
 */
static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
{
	struct srpt_device *sdev;
	struct srpt_rdma_ch *ch;
	struct srpt_send_ioctx *target;
	int ret, i;

	ret = -EINVAL;
	ch = ioctx->ch;
	BUG_ON(!ch);
	BUG_ON(!ch->sport);
	sdev = ch->sport->sdev;
	BUG_ON(!sdev);
	spin_lock_irq(&sdev->spinlock);
	for (i = 0; i < ch->rq_size; ++i) {
		target = ch->ioctx_ring[i];
		if (target->cmd.se_lun == ioctx->cmd.se_lun &&
		    target->tag == tag &&
		    srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
			ret = 0;
			/* now let the target core abort &target->cmd; */
			break;
		}
	}
	spin_unlock_irq(&sdev->spinlock);
	return ret;
}

static int srp_tmr_to_tcm(int fn)
{
	switch (fn) {
	case SRP_TSK_ABORT_TASK:
		return TMR_ABORT_TASK;
	case SRP_TSK_ABORT_TASK_SET:
		return TMR_ABORT_TASK_SET;
	case SRP_TSK_CLEAR_TASK_SET:
		return TMR_CLEAR_TASK_SET;
	case SRP_TSK_LUN_RESET:
		return TMR_LUN_RESET;
	case SRP_TSK_CLEAR_ACA:
		return TMR_CLEAR_ACA;
	default:
		return -1;
	}
}

/**
 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
 *
 * Returns 0 if and only if the request will be processed by the target core.
 *
 * For more information about SRP_TSK_MGMT information units, see also section
 * 6.7 in the SRP r16a document.
 */
static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
				 struct srpt_recv_ioctx *recv_ioctx,
				 struct srpt_send_ioctx *send_ioctx)
{
	struct srp_tsk_mgmt *srp_tsk;
	struct se_cmd *cmd;
1820
	struct se_session *sess = ch->sess;
1821
	uint64_t unpacked_lun;
1822
	uint32_t tag = 0;
1823
	int tcm_tmr;
1824
	int rc;
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

	BUG_ON(!send_ioctx);

	srp_tsk = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;

	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);

	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
	send_ioctx->tag = srp_tsk->tag;
	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
	if (tcm_tmr < 0) {
		send_ioctx->cmd.se_tmr_req->response =
			TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1841
		goto fail;
1842 1843 1844
	}
	unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
				       sizeof(srp_tsk->lun));
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

	if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
		rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
		if (rc < 0) {
			send_ioctx->cmd.se_tmr_req->response =
					TMR_TASK_DOES_NOT_EXIST;
			goto fail;
		}
		tag = srp_tsk->task_tag;
	}
	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
				srp_tsk, tcm_tmr, GFP_KERNEL, tag,
				TARGET_SCF_ACK_KREF);
	if (rc != 0) {
		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1860
		goto fail;
1861
	}
1862 1863 1864
	return;
fail:
	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
}

/**
 * srpt_handle_new_iu() - Process a newly received information unit.
 * @ch:    RDMA channel through which the information unit has been received.
 * @ioctx: SRPT I/O context associated with the information unit.
 */
static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
			       struct srpt_recv_ioctx *recv_ioctx,
			       struct srpt_send_ioctx *send_ioctx)
{
	struct srp_cmd *srp_cmd;
	enum rdma_ch_state ch_state;

	BUG_ON(!ch);
	BUG_ON(!recv_ioctx);

	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
				   recv_ioctx->ioctx.dma, srp_max_req_size,
				   DMA_FROM_DEVICE);

	ch_state = srpt_get_ch_state(ch);
	if (unlikely(ch_state == CH_CONNECTING)) {
		list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
		goto out;
	}

	if (unlikely(ch_state != CH_LIVE))
		goto out;

	srp_cmd = recv_ioctx->ioctx.buf;
	if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
		if (!send_ioctx)
			send_ioctx = srpt_get_send_ioctx(ch);
		if (unlikely(!send_ioctx)) {
			list_add_tail(&recv_ioctx->wait_list,
				      &ch->cmd_wait_list);
			goto out;
		}
	}

	switch (srp_cmd->opcode) {
	case SRP_CMD:
		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_TSK_MGMT:
		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_I_LOGOUT:
		printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
		break;
	case SRP_CRED_RSP:
		pr_debug("received SRP_CRED_RSP\n");
		break;
	case SRP_AER_RSP:
		pr_debug("received SRP_AER_RSP\n");
		break;
	case SRP_RSP:
		printk(KERN_ERR "Received SRP_RSP\n");
		break;
	default:
		printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
		       srp_cmd->opcode);
		break;
	}

	srpt_post_recv(ch->sport->sdev, recv_ioctx);
out:
	return;
}

static void srpt_process_rcv_completion(struct ib_cq *cq,
					struct srpt_rdma_ch *ch,
					struct ib_wc *wc)
{
	struct srpt_device *sdev = ch->sport->sdev;
	struct srpt_recv_ioctx *ioctx;
	u32 index;

	index = idx_from_wr_id(wc->wr_id);
	if (wc->status == IB_WC_SUCCESS) {
		int req_lim;

		req_lim = atomic_dec_return(&ch->req_lim);
		if (unlikely(req_lim < 0))
			printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
		ioctx = sdev->ioctx_ring[index];
		srpt_handle_new_iu(ch, ioctx, NULL);
	} else {
		printk(KERN_INFO "receiving failed for idx %u with status %d\n",
		       index, wc->status);
	}
}

/**
 * srpt_process_send_completion() - Process an IB send completion.
 *
 * Note: Although this has not yet been observed during tests, at least in
 * theory it is possible that the srpt_get_send_ioctx() call invoked by
 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
 * value in each response is set to one, and it is possible that this response
 * makes the initiator send a new request before the send completion for that
 * response has been processed. This could e.g. happen if the call to
 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
 * if IB retransmission causes generation of the send completion to be
 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
 * are queued on cmd_wait_list. The code below processes these delayed
 * requests one at a time.
 */
static void srpt_process_send_completion(struct ib_cq *cq,
					 struct srpt_rdma_ch *ch,
					 struct ib_wc *wc)
{
	struct srpt_send_ioctx *send_ioctx;
	uint32_t index;
	enum srpt_opcode opcode;

	index = idx_from_wr_id(wc->wr_id);
	opcode = opcode_from_wr_id(wc->wr_id);
	send_ioctx = ch->ioctx_ring[index];
	if (wc->status == IB_WC_SUCCESS) {
		if (opcode == SRPT_SEND)
			srpt_handle_send_comp(ch, send_ioctx);
		else {
			WARN_ON(opcode != SRPT_RDMA_ABORT &&
				wc->opcode != IB_WC_RDMA_READ);
			srpt_handle_rdma_comp(ch, send_ioctx, opcode);
		}
	} else {
		if (opcode == SRPT_SEND) {
			printk(KERN_INFO "sending response for idx %u failed"
			       " with status %d\n", index, wc->status);
			srpt_handle_send_err_comp(ch, wc->wr_id);
		} else if (opcode != SRPT_RDMA_MID) {
			printk(KERN_INFO "RDMA t %d for idx %u failed with"
				" status %d", opcode, index, wc->status);
			srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
		}
	}

	while (unlikely(opcode == SRPT_SEND
			&& !list_empty(&ch->cmd_wait_list)
			&& srpt_get_ch_state(ch) == CH_LIVE
			&& (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
		struct srpt_recv_ioctx *recv_ioctx;

		recv_ioctx = list_first_entry(&ch->cmd_wait_list,
					      struct srpt_recv_ioctx,
					      wait_list);
		list_del(&recv_ioctx->wait_list);
		srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
	}
}

static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
{
	struct ib_wc *const wc = ch->wc;
	int i, n;

	WARN_ON(cq != ch->cq);

	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
	while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
		for (i = 0; i < n; i++) {
			if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
				srpt_process_rcv_completion(cq, ch, &wc[i]);
			else
				srpt_process_send_completion(cq, ch, &wc[i]);
		}
	}
}

/**
 * srpt_completion() - IB completion queue callback function.
 *
 * Notes:
 * - It is guaranteed that a completion handler will never be invoked
 *   concurrently on two different CPUs for the same completion queue. See also
 *   Documentation/infiniband/core_locking.txt and the implementation of
 *   handle_edge_irq() in kernel/irq/chip.c.
 * - When threaded IRQs are enabled, completion handlers are invoked in thread
 *   context instead of interrupt context.
 */
static void srpt_completion(struct ib_cq *cq, void *ctx)
{
	struct srpt_rdma_ch *ch = ctx;

	wake_up_interruptible(&ch->wait_queue);
}

static int srpt_compl_thread(void *arg)
{
	struct srpt_rdma_ch *ch;

	/* Hibernation / freezing of the SRPT kernel thread is not supported. */
	current->flags |= PF_NOFREEZE;

	ch = arg;
	BUG_ON(!ch);
	printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
	       ch->sess_name, ch->thread->comm, current->pid);
	while (!kthread_should_stop()) {
		wait_event_interruptible(ch->wait_queue,
			(srpt_process_completion(ch->cq, ch),
			 kthread_should_stop()));
	}
	printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
	       ch->sess_name, ch->thread->comm, current->pid);
	return 0;
}

/**
 * srpt_create_ch_ib() - Create receive and send completion queues.
 */
static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
{
	struct ib_qp_init_attr *qp_init;
	struct srpt_port *sport = ch->sport;
	struct srpt_device *sdev = sport->sdev;
	u32 srp_sq_size = sport->port_attrib.srp_sq_size;
	int ret;

	WARN_ON(ch->rq_size < 1);

	ret = -ENOMEM;
	qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
	if (!qp_init)
		goto out;

	ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
			      ch->rq_size + srp_sq_size, 0);
	if (IS_ERR(ch->cq)) {
		ret = PTR_ERR(ch->cq);
		printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
		       ch->rq_size + srp_sq_size, ret);
		goto out;
	}

	qp_init->qp_context = (void *)ch;
	qp_init->event_handler
		= (void(*)(struct ib_event *, void*))srpt_qp_event;
	qp_init->send_cq = ch->cq;
	qp_init->recv_cq = ch->cq;
	qp_init->srq = sdev->srq;
	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
	qp_init->qp_type = IB_QPT_RC;
	qp_init->cap.max_send_wr = srp_sq_size;
	qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;

	ch->qp = ib_create_qp(sdev->pd, qp_init);
	if (IS_ERR(ch->qp)) {
		ret = PTR_ERR(ch->qp);
		printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
		goto err_destroy_cq;
	}

	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);

	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
		 qp_init->cap.max_send_wr, ch->cm_id);

	ret = srpt_init_ch_qp(ch, ch->qp);
	if (ret)
		goto err_destroy_qp;

	init_waitqueue_head(&ch->wait_queue);

	pr_debug("creating thread for session %s\n", ch->sess_name);

	ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
	if (IS_ERR(ch->thread)) {
		printk(KERN_ERR "failed to create kernel thread %ld\n",
		       PTR_ERR(ch->thread));
		ch->thread = NULL;
		goto err_destroy_qp;
	}

out:
	kfree(qp_init);
	return ret;

err_destroy_qp:
	ib_destroy_qp(ch->qp);
err_destroy_cq:
	ib_destroy_cq(ch->cq);
	goto out;
}

static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
{
	if (ch->thread)
		kthread_stop(ch->thread);

	ib_destroy_qp(ch->qp);
	ib_destroy_cq(ch->cq);
}

/**
 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
 *
 * Reset the QP and make sure all resources associated with the channel will
 * be deallocated at an appropriate time.
 *
 * Note: The caller must hold ch->sport->sdev->spinlock.
 */
static void __srpt_close_ch(struct srpt_rdma_ch *ch)
{
	struct srpt_device *sdev;
	enum rdma_ch_state prev_state;
	unsigned long flags;

	sdev = ch->sport->sdev;

	spin_lock_irqsave(&ch->spinlock, flags);
	prev_state = ch->state;
	switch (prev_state) {
	case CH_CONNECTING:
	case CH_LIVE:
		ch->state = CH_DISCONNECTING;
		break;
	default:
		break;
	}
	spin_unlock_irqrestore(&ch->spinlock, flags);

	switch (prev_state) {
	case CH_CONNECTING:
		ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
			       NULL, 0);
		/* fall through */
	case CH_LIVE:
		if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
			printk(KERN_ERR "sending CM DREQ failed.\n");
		break;
	case CH_DISCONNECTING:
		break;
	case CH_DRAINING:
	case CH_RELEASING:
		break;
	}
}

/**
 * srpt_close_ch() - Close an RDMA channel.
 */
static void srpt_close_ch(struct srpt_rdma_ch *ch)
{
	struct srpt_device *sdev;

	sdev = ch->sport->sdev;
	spin_lock_irq(&sdev->spinlock);
	__srpt_close_ch(ch);
	spin_unlock_irq(&sdev->spinlock);
}

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
/**
 * srpt_shutdown_session() - Whether or not a session may be shut down.
 */
static int srpt_shutdown_session(struct se_session *se_sess)
{
	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
	unsigned long flags;

	spin_lock_irqsave(&ch->spinlock, flags);
	if (ch->in_shutdown) {
		spin_unlock_irqrestore(&ch->spinlock, flags);
		return true;
	}

	ch->in_shutdown = true;
	target_sess_cmd_list_set_waiting(se_sess);
	spin_unlock_irqrestore(&ch->spinlock, flags);

	return true;
}

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
/**
 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
 * @cm_id: Pointer to the CM ID of the channel to be drained.
 *
 * Note: Must be called from inside srpt_cm_handler to avoid a race between
 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
 * waits until all target sessions for the associated IB device have been
 * unregistered and target session registration involves a call to
 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
 * this function has finished).
 */
static void srpt_drain_channel(struct ib_cm_id *cm_id)
{
	struct srpt_device *sdev;
	struct srpt_rdma_ch *ch;
	int ret;
	bool do_reset = false;

	WARN_ON_ONCE(irqs_disabled());

	sdev = cm_id->context;
	BUG_ON(!sdev);
	spin_lock_irq(&sdev->spinlock);
	list_for_each_entry(ch, &sdev->rch_list, list) {
		if (ch->cm_id == cm_id) {
			do_reset = srpt_test_and_set_ch_state(ch,
					CH_CONNECTING, CH_DRAINING) ||
				   srpt_test_and_set_ch_state(ch,
					CH_LIVE, CH_DRAINING) ||
				   srpt_test_and_set_ch_state(ch,
					CH_DISCONNECTING, CH_DRAINING);
			break;
		}
	}
	spin_unlock_irq(&sdev->spinlock);

	if (do_reset) {
2280 2281 2282
		if (ch->sess)
			srpt_shutdown_session(ch->sess);

2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
		ret = srpt_ch_qp_err(ch);
		if (ret < 0)
			printk(KERN_ERR "Setting queue pair in error state"
			       " failed: %d\n", ret);
	}
}

/**
 * srpt_find_channel() - Look up an RDMA channel.
 * @cm_id: Pointer to the CM ID of the channel to be looked up.
 *
 * Return NULL if no matching RDMA channel has been found.
 */
static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
					      struct ib_cm_id *cm_id)
{
	struct srpt_rdma_ch *ch;
	bool found;

	WARN_ON_ONCE(irqs_disabled());
	BUG_ON(!sdev);

	found = false;
	spin_lock_irq(&sdev->spinlock);
	list_for_each_entry(ch, &sdev->rch_list, list) {
		if (ch->cm_id == cm_id) {
			found = true;
			break;
		}
	}
	spin_unlock_irq(&sdev->spinlock);

	return found ? ch : NULL;
}

/**
 * srpt_release_channel() - Release channel resources.
 *
 * Schedules the actual release because:
 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
 *   trigger a deadlock.
 * - It is not safe to call TCM transport_* functions from interrupt context.
 */
static void srpt_release_channel(struct srpt_rdma_ch *ch)
{
	schedule_work(&ch->release_work);
}

static void srpt_release_channel_work(struct work_struct *w)
{
	struct srpt_rdma_ch *ch;
	struct srpt_device *sdev;
2335
	struct se_session *se_sess;
2336 2337 2338 2339 2340 2341 2342 2343

	ch = container_of(w, struct srpt_rdma_ch, release_work);
	pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
		 ch->release_done);

	sdev = ch->sport->sdev;
	BUG_ON(!sdev);

2344 2345 2346
	se_sess = ch->sess;
	BUG_ON(!se_sess);

2347
	target_wait_for_sess_cmds(se_sess);
2348 2349 2350

	transport_deregister_session_configfs(se_sess);
	transport_deregister_session(se_sess);
2351 2352
	ch->sess = NULL;

2353 2354
	ib_destroy_cm_id(ch->cm_id);

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
	srpt_destroy_ch_ib(ch);

	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
			     ch->rsp_size, DMA_TO_DEVICE);

	spin_lock_irq(&sdev->spinlock);
	list_del(&ch->list);
	spin_unlock_irq(&sdev->spinlock);

	if (ch->release_done)
		complete(ch->release_done);

	wake_up(&sdev->ch_releaseQ);

	kfree(ch);
}

static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
					       u8 i_port_id[16])
{
	struct srpt_node_acl *nacl;

	list_for_each_entry(nacl, &sport->port_acl_list, list)
		if (memcmp(nacl->i_port_id, i_port_id,
			   sizeof(nacl->i_port_id)) == 0)
			return nacl;

	return NULL;
}

static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
					     u8 i_port_id[16])
{
	struct srpt_node_acl *nacl;

	spin_lock_irq(&sport->port_acl_lock);
	nacl = __srpt_lookup_acl(sport, i_port_id);
	spin_unlock_irq(&sport->port_acl_lock);

	return nacl;
}

/**
 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
 *
 * Ownership of the cm_id is transferred to the target session if this
 * functions returns zero. Otherwise the caller remains the owner of cm_id.
 */
static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
			    struct ib_cm_req_event_param *param,
			    void *private_data)
{
	struct srpt_device *sdev = cm_id->context;
	struct srpt_port *sport = &sdev->port[param->port - 1];
	struct srp_login_req *req;
	struct srp_login_rsp *rsp;
	struct srp_login_rej *rej;
	struct ib_cm_rep_param *rep_param;
	struct srpt_rdma_ch *ch, *tmp_ch;
	struct srpt_node_acl *nacl;
	u32 it_iu_len;
	int i;
	int ret = 0;

	WARN_ON_ONCE(irqs_disabled());

	if (WARN_ON(!sdev || !private_data))
		return -EINVAL;

	req = (struct srp_login_req *)private_data;

	it_iu_len = be32_to_cpu(req->req_it_iu_len);

	printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
	       " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
	       " (guid=0x%llx:0x%llx)\n",
	       be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
	       be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
	       be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
	       be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
	       it_iu_len,
	       param->port,
	       be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
	       be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));

	rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
	rej = kzalloc(sizeof *rej, GFP_KERNEL);
	rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);

	if (!rsp || !rej || !rep_param) {
		ret = -ENOMEM;
		goto out;
	}

	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
		rej->reason = __constant_cpu_to_be32(
				SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
		ret = -EINVAL;
		printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
		       " length (%d bytes) is out of range (%d .. %d)\n",
		       it_iu_len, 64, srp_max_req_size);
		goto reject;
	}

	if (!sport->enabled) {
		rej->reason = __constant_cpu_to_be32(
			     SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
		ret = -EINVAL;
		printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
		       " has not yet been enabled\n");
		goto reject;
	}

	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;

		spin_lock_irq(&sdev->spinlock);

		list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
			if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
			    && !memcmp(ch->t_port_id, req->target_port_id, 16)
			    && param->port == ch->sport->port
			    && param->listen_id == ch->sport->sdev->cm_id
			    && ch->cm_id) {
				enum rdma_ch_state ch_state;

				ch_state = srpt_get_ch_state(ch);
				if (ch_state != CH_CONNECTING
				    && ch_state != CH_LIVE)
					continue;

				/* found an existing channel */
				pr_debug("Found existing channel %s"
					 " cm_id= %p state= %d\n",
					 ch->sess_name, ch->cm_id, ch_state);

				__srpt_close_ch(ch);

				rsp->rsp_flags =
					SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
			}
		}

		spin_unlock_irq(&sdev->spinlock);

	} else
		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;

	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
	    || *(__be64 *)(req->target_port_id + 8) !=
	       cpu_to_be64(srpt_service_guid)) {
		rej->reason = __constant_cpu_to_be32(
				SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
		ret = -ENOMEM;
		printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
		       " has an invalid target port identifier.\n");
		goto reject;
	}

	ch = kzalloc(sizeof *ch, GFP_KERNEL);
	if (!ch) {
		rej->reason = __constant_cpu_to_be32(
					SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
		printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
		ret = -ENOMEM;
		goto reject;
	}

	INIT_WORK(&ch->release_work, srpt_release_channel_work);
	memcpy(ch->i_port_id, req->initiator_port_id, 16);
	memcpy(ch->t_port_id, req->target_port_id, 16);
	ch->sport = &sdev->port[param->port - 1];
	ch->cm_id = cm_id;
	/*
	 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
	 * for the SRP protocol to the command queue size.
	 */
	ch->rq_size = SRPT_RQ_SIZE;
	spin_lock_init(&ch->spinlock);
	ch->state = CH_CONNECTING;
	INIT_LIST_HEAD(&ch->cmd_wait_list);
	ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;

	ch->ioctx_ring = (struct srpt_send_ioctx **)
		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
				      sizeof(*ch->ioctx_ring[0]),
				      ch->rsp_size, DMA_TO_DEVICE);
	if (!ch->ioctx_ring)
		goto free_ch;

	INIT_LIST_HEAD(&ch->free_list);
	for (i = 0; i < ch->rq_size; i++) {
		ch->ioctx_ring[i]->ch = ch;
		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
	}

	ret = srpt_create_ch_ib(ch);
	if (ret) {
		rej->reason = __constant_cpu_to_be32(
				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
		printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
		       " a new RDMA channel failed.\n");
		goto free_ring;
	}

	ret = srpt_ch_qp_rtr(ch, ch->qp);
	if (ret) {
		rej->reason = __constant_cpu_to_be32(
				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
		printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
		       " RTR failed (error code = %d)\n", ret);
		goto destroy_ib;
	}
	/*
	 * Use the initator port identifier as the session name.
	 */
	snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
			be64_to_cpu(*(__be64 *)ch->i_port_id),
			be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));

	pr_debug("registering session %s\n", ch->sess_name);

	nacl = srpt_lookup_acl(sport, ch->i_port_id);
	if (!nacl) {
		printk(KERN_INFO "Rejected login because no ACL has been"
		       " configured yet for initiator %s.\n", ch->sess_name);
		rej->reason = __constant_cpu_to_be32(
				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
		goto destroy_ib;
	}

2587
	ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2588
	if (IS_ERR(ch->sess)) {
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
		rej->reason = __constant_cpu_to_be32(
				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
		pr_debug("Failed to create session\n");
		goto deregister_session;
	}
	ch->sess->se_node_acl = &nacl->nacl;
	transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);

	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
		 ch->sess_name, ch->cm_id);

	/* create srp_login_response */
	rsp->opcode = SRP_LOGIN_RSP;
	rsp->tag = req->tag;
	rsp->max_it_iu_len = req->req_it_iu_len;
	rsp->max_ti_iu_len = req->req_it_iu_len;
	ch->max_ti_iu_len = it_iu_len;
	rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
					      | SRP_BUF_FORMAT_INDIRECT);
	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
	atomic_set(&ch->req_lim, ch->rq_size);
	atomic_set(&ch->req_lim_delta, 0);

	/* create cm reply */
	rep_param->qp_num = ch->qp->qp_num;
	rep_param->private_data = (void *)rsp;
	rep_param->private_data_len = sizeof *rsp;
	rep_param->rnr_retry_count = 7;
	rep_param->flow_control = 1;
	rep_param->failover_accepted = 0;
	rep_param->srq = 1;
	rep_param->responder_resources = 4;
	rep_param->initiator_depth = 4;

	ret = ib_send_cm_rep(cm_id, rep_param);
	if (ret) {
		printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
		       " (error code = %d)\n", ret);
		goto release_channel;
	}

	spin_lock_irq(&sdev->spinlock);
	list_add_tail(&ch->list, &sdev->rch_list);
	spin_unlock_irq(&sdev->spinlock);

	goto out;

release_channel:
	srpt_set_ch_state(ch, CH_RELEASING);
	transport_deregister_session_configfs(ch->sess);

deregister_session:
	transport_deregister_session(ch->sess);
	ch->sess = NULL;

destroy_ib:
	srpt_destroy_ch_ib(ch);

free_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
			     ch->rsp_size, DMA_TO_DEVICE);
free_ch:
	kfree(ch);

reject:
	rej->opcode = SRP_LOGIN_REJ;
	rej->tag = req->tag;
	rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
					      | SRP_BUF_FORMAT_INDIRECT);

	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
			     (void *)rej, sizeof *rej);

out:
	kfree(rep_param);
	kfree(rsp);
	kfree(rej);

	return ret;
}

static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
{
	printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
	srpt_drain_channel(cm_id);
}

/**
 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
 *
 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
 * and that the recipient may begin transmitting (RTU = ready to use).
 */
static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
{
	struct srpt_rdma_ch *ch;
	int ret;

	ch = srpt_find_channel(cm_id->context, cm_id);
	BUG_ON(!ch);

	if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
		struct srpt_recv_ioctx *ioctx, *ioctx_tmp;

		ret = srpt_ch_qp_rts(ch, ch->qp);

		list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
					 wait_list) {
			list_del(&ioctx->wait_list);
			srpt_handle_new_iu(ch, ioctx, NULL);
		}
		if (ret)
			srpt_close_ch(ch);
	}
}

static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
{
	printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
	srpt_drain_channel(cm_id);
}

static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
{
	printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
	srpt_drain_channel(cm_id);
}

/**
 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
 */
static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
{
	struct srpt_rdma_ch *ch;
	unsigned long flags;
	bool send_drep = false;

	ch = srpt_find_channel(cm_id->context, cm_id);
	BUG_ON(!ch);

	pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));

	spin_lock_irqsave(&ch->spinlock, flags);
	switch (ch->state) {
	case CH_CONNECTING:
	case CH_LIVE:
		send_drep = true;
		ch->state = CH_DISCONNECTING;
		break;
	case CH_DISCONNECTING:
	case CH_DRAINING:
	case CH_RELEASING:
		WARN(true, "unexpected channel state %d\n", ch->state);
		break;
	}
	spin_unlock_irqrestore(&ch->spinlock, flags);

	if (send_drep) {
		if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
			printk(KERN_ERR "Sending IB DREP failed.\n");
		printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
		       ch->sess_name);
	}
}

/**
 * srpt_cm_drep_recv() - Process reception of a DREP message.
 */
static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
{
	printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
	       cm_id);
	srpt_drain_channel(cm_id);
}

/**
 * srpt_cm_handler() - IB connection manager callback function.
 *
 * A non-zero return value will cause the caller destroy the CM ID.
 *
 * Note: srpt_cm_handler() must only return a non-zero value when transferring
 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
 * a non-zero value in any other case will trigger a race with the
 * ib_destroy_cm_id() call in srpt_release_channel().
 */
static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
{
	int ret;

	ret = 0;
	switch (event->event) {
	case IB_CM_REQ_RECEIVED:
		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
				       event->private_data);
		break;
	case IB_CM_REJ_RECEIVED:
		srpt_cm_rej_recv(cm_id);
		break;
	case IB_CM_RTU_RECEIVED:
	case IB_CM_USER_ESTABLISHED:
		srpt_cm_rtu_recv(cm_id);
		break;
	case IB_CM_DREQ_RECEIVED:
		srpt_cm_dreq_recv(cm_id);
		break;
	case IB_CM_DREP_RECEIVED:
		srpt_cm_drep_recv(cm_id);
		break;
	case IB_CM_TIMEWAIT_EXIT:
		srpt_cm_timewait_exit(cm_id);
		break;
	case IB_CM_REP_ERROR:
		srpt_cm_rep_error(cm_id);
		break;
	case IB_CM_DREQ_ERROR:
		printk(KERN_INFO "Received IB DREQ ERROR event.\n");
		break;
	case IB_CM_MRA_RECEIVED:
		printk(KERN_INFO "Received IB MRA event\n");
		break;
	default:
		printk(KERN_ERR "received unrecognized IB CM event %d\n",
		       event->event);
		break;
	}

	return ret;
}

/**
 * srpt_perform_rdmas() - Perform IB RDMA.
 *
 * Returns zero upon success or a negative number upon failure.
 */
static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
			      struct srpt_send_ioctx *ioctx)
{
	struct ib_send_wr wr;
	struct ib_send_wr *bad_wr;
	struct rdma_iu *riu;
	int i;
	int ret;
	int sq_wr_avail;
	enum dma_data_direction dir;
	const int n_rdma = ioctx->n_rdma;

	dir = ioctx->cmd.data_direction;
	if (dir == DMA_TO_DEVICE) {
		/* write */
		ret = -ENOMEM;
		sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
		if (sq_wr_avail < 0) {
			printk(KERN_WARNING "IB send queue full (needed %d)\n",
			       n_rdma);
			goto out;
		}
	}

	ioctx->rdma_aborted = false;
	ret = 0;
	riu = ioctx->rdma_ius;
	memset(&wr, 0, sizeof wr);

	for (i = 0; i < n_rdma; ++i, ++riu) {
		if (dir == DMA_FROM_DEVICE) {
			wr.opcode = IB_WR_RDMA_WRITE;
			wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
						SRPT_RDMA_WRITE_LAST :
						SRPT_RDMA_MID,
						ioctx->ioctx.index);
		} else {
			wr.opcode = IB_WR_RDMA_READ;
			wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
						SRPT_RDMA_READ_LAST :
						SRPT_RDMA_MID,
						ioctx->ioctx.index);
		}
		wr.next = NULL;
		wr.wr.rdma.remote_addr = riu->raddr;
		wr.wr.rdma.rkey = riu->rkey;
		wr.num_sge = riu->sge_cnt;
		wr.sg_list = riu->sge;

		/* only get completion event for the last rdma write */
		if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
			wr.send_flags = IB_SEND_SIGNALED;

		ret = ib_post_send(ch->qp, &wr, &bad_wr);
		if (ret)
			break;
	}

	if (ret)
		printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
				 __func__, __LINE__, ret, i, n_rdma);
	if (ret && i > 0) {
		wr.num_sge = 0;
		wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
		wr.send_flags = IB_SEND_SIGNALED;
		while (ch->state == CH_LIVE &&
			ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
			printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
				ioctx->ioctx.index);
			msleep(1000);
		}
		while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
			printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
				ioctx->ioctx.index);
			msleep(1000);
		}
	}
out:
	if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
		atomic_add(n_rdma, &ch->sq_wr_avail);
	return ret;
}

/**
 * srpt_xfer_data() - Start data transfer from initiator to target.
 */
static int srpt_xfer_data(struct srpt_rdma_ch *ch,
			  struct srpt_send_ioctx *ioctx)
{
	int ret;

	ret = srpt_map_sg_to_ib_sge(ch, ioctx);
	if (ret) {
		printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
		goto out;
	}

	ret = srpt_perform_rdmas(ch, ioctx);
	if (ret) {
		if (ret == -EAGAIN || ret == -ENOMEM)
			printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
				   __func__, __LINE__, ret);
		else
			printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
			       __func__, __LINE__, ret);
		goto out_unmap;
	}

out:
	return ret;
out_unmap:
	srpt_unmap_sg_to_ib_sge(ch, ioctx);
	goto out;
}

static int srpt_write_pending_status(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
	return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
}

/*
 * srpt_write_pending() - Start data transfer from initiator to target (write).
 */
static int srpt_write_pending(struct se_cmd *se_cmd)
{
	struct srpt_rdma_ch *ch;
	struct srpt_send_ioctx *ioctx;
	enum srpt_command_state new_state;
	enum rdma_ch_state ch_state;
	int ret;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);

	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
	WARN_ON(new_state == SRPT_STATE_DONE);

	ch = ioctx->ch;
	BUG_ON(!ch);

	ch_state = srpt_get_ch_state(ch);
	switch (ch_state) {
	case CH_CONNECTING:
		WARN(true, "unexpected channel state %d\n", ch_state);
		ret = -EINVAL;
		goto out;
	case CH_LIVE:
		break;
	case CH_DISCONNECTING:
	case CH_DRAINING:
	case CH_RELEASING:
		pr_debug("cmd with tag %lld: channel disconnecting\n",
			 ioctx->tag);
		srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
		ret = -EINVAL;
		goto out;
	}
	ret = srpt_xfer_data(ch, ioctx);

out:
	return ret;
}

static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
{
	switch (tcm_mgmt_status) {
	case TMR_FUNCTION_COMPLETE:
		return SRP_TSK_MGMT_SUCCESS;
	case TMR_FUNCTION_REJECTED:
		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
	}
	return SRP_TSK_MGMT_FAILED;
}

/**
 * srpt_queue_response() - Transmits the response to a SCSI command.
 *
 * Callback function called by the TCM core. Must not block since it can be
 * invoked on the context of the IB completion handler.
 */
3006
static void srpt_queue_response(struct se_cmd *cmd)
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
{
	struct srpt_rdma_ch *ch;
	struct srpt_send_ioctx *ioctx;
	enum srpt_command_state state;
	unsigned long flags;
	int ret;
	enum dma_data_direction dir;
	int resp_len;
	u8 srp_tm_status;

	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
	ch = ioctx->ch;
	BUG_ON(!ch);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
		break;
	case SRPT_STATE_MGMT:
		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
		break;
	default:
		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
			ch, ioctx->ioctx.index, ioctx->state);
		break;
	}
	spin_unlock_irqrestore(&ioctx->spinlock, flags);

	if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
		     || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
		atomic_inc(&ch->req_lim_delta);
		srpt_abort_cmd(ioctx);
3042
		return;
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
	}

	dir = ioctx->cmd.data_direction;

	/* For read commands, transfer the data to the initiator. */
	if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
	    !ioctx->queue_status_only) {
		ret = srpt_xfer_data(ch, ioctx);
		if (ret) {
			printk(KERN_ERR "xfer_data failed for tag %llu\n",
			       ioctx->tag);
3054
			return;
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
		}
	}

	if (state != SRPT_STATE_MGMT)
		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
					      cmd->scsi_status);
	else {
		srp_tm_status
			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
						 ioctx->tag);
	}
	ret = srpt_post_send(ch, ioctx, resp_len);
	if (ret) {
		printk(KERN_ERR "sending cmd response failed for tag %llu\n",
		       ioctx->tag);
		srpt_unmap_sg_to_ib_sge(ch, ioctx);
		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3073
		target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
3074
	}
3075
}
3076

3077 3078 3079 3080 3081 3082 3083 3084 3085
static int srpt_queue_data_in(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
	return 0;
}

static void srpt_queue_tm_rsp(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
3086 3087
}

3088 3089 3090 3091 3092 3093 3094 3095
static void srpt_aborted_task(struct se_cmd *cmd)
{
	struct srpt_send_ioctx *ioctx = container_of(cmd,
				struct srpt_send_ioctx, cmd);

	srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
}

3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
static int srpt_queue_status(struct se_cmd *cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
	if (cmd->se_cmd_flags &
	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
	ioctx->queue_status_only = true;
3106 3107
	srpt_queue_response(cmd);
	return 0;
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
}

static void srpt_refresh_port_work(struct work_struct *work)
{
	struct srpt_port *sport = container_of(work, struct srpt_port, work);

	srpt_refresh_port(sport);
}

static int srpt_ch_list_empty(struct srpt_device *sdev)
{
	int res;

	spin_lock_irq(&sdev->spinlock);
	res = list_empty(&sdev->rch_list);
	spin_unlock_irq(&sdev->spinlock);

	return res;
}

/**
 * srpt_release_sdev() - Free the channel resources associated with a target.
 */
static int srpt_release_sdev(struct srpt_device *sdev)
{
	struct srpt_rdma_ch *ch, *tmp_ch;
	int res;

	WARN_ON_ONCE(irqs_disabled());

	BUG_ON(!sdev);

	spin_lock_irq(&sdev->spinlock);
	list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
		__srpt_close_ch(ch);
	spin_unlock_irq(&sdev->spinlock);

	res = wait_event_interruptible(sdev->ch_releaseQ,
				       srpt_ch_list_empty(sdev));
	if (res)
		printk(KERN_ERR "%s: interrupted.\n", __func__);

	return 0;
}

static struct srpt_port *__srpt_lookup_port(const char *name)
{
	struct ib_device *dev;
	struct srpt_device *sdev;
	struct srpt_port *sport;
	int i;

	list_for_each_entry(sdev, &srpt_dev_list, list) {
		dev = sdev->device;
		if (!dev)
			continue;

		for (i = 0; i < dev->phys_port_cnt; i++) {
			sport = &sdev->port[i];

			if (!strcmp(sport->port_guid, name))
				return sport;
		}
	}

	return NULL;
}

static struct srpt_port *srpt_lookup_port(const char *name)
{
	struct srpt_port *sport;

	spin_lock(&srpt_dev_lock);
	sport = __srpt_lookup_port(name);
	spin_unlock(&srpt_dev_lock);

	return sport;
}

/**
 * srpt_add_one() - Infiniband device addition callback function.
 */
static void srpt_add_one(struct ib_device *device)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;
	struct ib_srq_init_attr srq_attr;
	int i;

	pr_debug("device = %p, device->dma_ops = %p\n", device,
		 device->dma_ops);

	sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
	if (!sdev)
		goto err;

	sdev->device = device;
	INIT_LIST_HEAD(&sdev->rch_list);
	init_waitqueue_head(&sdev->ch_releaseQ);
	spin_lock_init(&sdev->spinlock);

	if (ib_query_device(device, &sdev->dev_attr))
		goto free_dev;

	sdev->pd = ib_alloc_pd(device);
	if (IS_ERR(sdev->pd))
		goto free_dev;

	sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
	if (IS_ERR(sdev->mr))
		goto err_pd;

	sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);

	srq_attr.event_handler = srpt_srq_event;
	srq_attr.srq_context = (void *)sdev;
	srq_attr.attr.max_wr = sdev->srq_size;
	srq_attr.attr.max_sge = 1;
	srq_attr.attr.srq_limit = 0;
3227
	srq_attr.srq_type = IB_SRQT_BASIC;
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272

	sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
	if (IS_ERR(sdev->srq))
		goto err_mr;

	pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
		 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
		 device->name);

	if (!srpt_service_guid)
		srpt_service_guid = be64_to_cpu(device->node_guid);

	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
	if (IS_ERR(sdev->cm_id))
		goto err_srq;

	/* print out target login information */
	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
		 srpt_service_guid, srpt_service_guid);

	/*
	 * We do not have a consistent service_id (ie. also id_ext of target_id)
	 * to identify this target. We currently use the guid of the first HCA
	 * in the system as service_id; therefore, the target_id will change
	 * if this HCA is gone bad and replaced by different HCA
	 */
	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
		goto err_cm;

	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
			      srpt_event_handler);
	if (ib_register_event_handler(&sdev->event_handler))
		goto err_cm;

	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
				      sizeof(*sdev->ioctx_ring[0]),
				      srp_max_req_size, DMA_FROM_DEVICE);
	if (!sdev->ioctx_ring)
		goto err_event;

	for (i = 0; i < sdev->srq_size; ++i)
		srpt_post_recv(sdev, sdev->ioctx_ring[i]);

3273
	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
		sport->sdev = sdev;
		sport->port = i;
		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
		INIT_WORK(&sport->work, srpt_refresh_port_work);
		INIT_LIST_HEAD(&sport->port_acl_list);
		spin_lock_init(&sport->port_acl_lock);

		if (srpt_refresh_port(sport)) {
			printk(KERN_ERR "MAD registration failed for %s-%d.\n",
			       srpt_sdev_name(sdev), i);
			goto err_ring;
		}
		snprintf(sport->port_guid, sizeof(sport->port_guid),
			"0x%016llx%016llx",
			be64_to_cpu(sport->gid.global.subnet_prefix),
			be64_to_cpu(sport->gid.global.interface_id));
	}

	spin_lock(&srpt_dev_lock);
	list_add_tail(&sdev->list, &srpt_dev_list);
	spin_unlock(&srpt_dev_lock);

out:
	ib_set_client_data(device, &srpt_client, sdev);
	pr_debug("added %s.\n", device->name);
	return;

err_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
			     sdev->srq_size, srp_max_req_size,
			     DMA_FROM_DEVICE);
err_event:
	ib_unregister_event_handler(&sdev->event_handler);
err_cm:
	ib_destroy_cm_id(sdev->cm_id);
err_srq:
	ib_destroy_srq(sdev->srq);
err_mr:
	ib_dereg_mr(sdev->mr);
err_pd:
	ib_dealloc_pd(sdev->pd);
free_dev:
	kfree(sdev);
err:
	sdev = NULL;
	printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
	goto out;
}

/**
 * srpt_remove_one() - InfiniBand device removal callback function.
 */
static void srpt_remove_one(struct ib_device *device)
{
	struct srpt_device *sdev;
	int i;

	sdev = ib_get_client_data(device, &srpt_client);
	if (!sdev) {
		printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
		       device->name);
		return;
	}

	srpt_unregister_mad_agent(sdev);

	ib_unregister_event_handler(&sdev->event_handler);

	/* Cancel any work queued by the just unregistered IB event handler. */
	for (i = 0; i < sdev->device->phys_port_cnt; i++)
		cancel_work_sync(&sdev->port[i].work);

	ib_destroy_cm_id(sdev->cm_id);

	/*
	 * Unregistering a target must happen after destroying sdev->cm_id
	 * such that no new SRP_LOGIN_REQ information units can arrive while
	 * destroying the target.
	 */
	spin_lock(&srpt_dev_lock);
	list_del(&sdev->list);
	spin_unlock(&srpt_dev_lock);
	srpt_release_sdev(sdev);

	ib_destroy_srq(sdev->srq);
	ib_dereg_mr(sdev->mr);
	ib_dealloc_pd(sdev->pd);

	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
	sdev->ioctx_ring = NULL;
	kfree(sdev);
}

static struct ib_client srpt_client = {
	.name = DRV_NAME,
	.add = srpt_add_one,
	.remove = srpt_remove_one
};

static int srpt_check_true(struct se_portal_group *se_tpg)
{
	return 1;
}

static int srpt_check_false(struct se_portal_group *se_tpg)
{
	return 0;
}

static char *srpt_get_fabric_name(void)
{
	return "srpt";
}

static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
{
	return SCSI_TRANSPORTID_PROTOCOLID_SRP;
}

static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
{
	struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);

	return sport->port_guid;
}

static u16 srpt_get_tag(struct se_portal_group *tpg)
{
	return 1;
}

static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
{
	return 1;
}

static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
				    struct se_node_acl *se_nacl,
				    struct t10_pr_registration *pr_reg,
				    int *format_code, unsigned char *buf)
{
	struct srpt_node_acl *nacl;
	struct spc_rdma_transport_id *tr_id;

	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
	tr_id = (void *)buf;
	tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
	memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
	return sizeof(*tr_id);
}

static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
					struct se_node_acl *se_nacl,
					struct t10_pr_registration *pr_reg,
					int *format_code)
{
	*format_code = 0;
	return sizeof(struct spc_rdma_transport_id);
}

static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
					    const char *buf, u32 *out_tid_len,
					    char **port_nexus_ptr)
{
	struct spc_rdma_transport_id *tr_id;

	*port_nexus_ptr = NULL;
	*out_tid_len = sizeof(struct spc_rdma_transport_id);
	tr_id = (void *)buf;
	return (char *)tr_id->i_port_id;
}

static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
{
	struct srpt_node_acl *nacl;

	nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
	if (!nacl) {
M
Masanari Iida 已提交
3458
		printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n");
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
		return NULL;
	}

	return &nacl->nacl;
}

static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
				    struct se_node_acl *se_nacl)
{
	struct srpt_node_acl *nacl;

	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
	kfree(nacl);
}

static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
{
	return 1;
}

static void srpt_release_cmd(struct se_cmd *se_cmd)
{
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
				struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
	unsigned long flags;

	WARN_ON(ioctx->state != SRPT_STATE_DONE);
	WARN_ON(ioctx->mapped_sg_count != 0);

	if (ioctx->n_rbuf > 1) {
		kfree(ioctx->rbufs);
		ioctx->rbufs = NULL;
		ioctx->n_rbuf = 0;
	}

	spin_lock_irqsave(&ch->spinlock, flags);
	list_add(&ioctx->free_list, &ch->free_list);
	spin_unlock_irqrestore(&ch->spinlock, flags);
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
}

/**
 * srpt_close_session() - Forcibly close a session.
 *
 * Callback function invoked by the TCM core to clean up sessions associated
 * with a node ACL when the user invokes
 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
static void srpt_close_session(struct se_session *se_sess)
{
	DECLARE_COMPLETION_ONSTACK(release_done);
	struct srpt_rdma_ch *ch;
	struct srpt_device *sdev;
	int res;

	ch = se_sess->fabric_sess_ptr;
	WARN_ON(ch->sess != se_sess);

	pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));

	sdev = ch->sport->sdev;
	spin_lock_irq(&sdev->spinlock);
	BUG_ON(ch->release_done);
	ch->release_done = &release_done;
	__srpt_close_ch(ch);
	spin_unlock_irq(&sdev->spinlock);

	res = wait_for_completion_timeout(&release_done, 60 * HZ);
	WARN_ON(res <= 0);
}

/**
 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
 *
 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
 * This object represents an arbitrary integer used to uniquely identify a
 * particular attached remote initiator port to a particular SCSI target port
 * within a particular SCSI target device within a particular SCSI instance.
 */
static u32 srpt_sess_get_index(struct se_session *se_sess)
{
	return 0;
}

static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
{
}

static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
	return ioctx->tag;
}

/* Note: only used from inside debug printk's by the TCM core. */
static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
	return srpt_get_cmd_state(ioctx);
}

/**
 * srpt_parse_i_port_id() - Parse an initiator port ID.
 * @name: ASCII representation of a 128-bit initiator port ID.
 * @i_port_id: Binary 128-bit port ID.
 */
static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
{
	const char *p;
	unsigned len, count, leading_zero_bytes;
	int ret, rc;

	p = name;
	if (strnicmp(p, "0x", 2) == 0)
		p += 2;
	ret = -EINVAL;
	len = strlen(p);
	if (len % 2)
		goto out;
	count = min(len / 2, 16U);
	leading_zero_bytes = 16 - count;
	memset(i_port_id, 0, leading_zero_bytes);
	rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
	if (rc < 0)
		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
	ret = 0;
out:
	return ret;
}

/*
 * configfs callback function invoked for
 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
					     struct config_group *group,
					     const char *name)
{
	struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
	struct se_node_acl *se_nacl, *se_nacl_new;
	struct srpt_node_acl *nacl;
	int ret = 0;
	u32 nexus_depth = 1;
	u8 i_port_id[16];

	if (srpt_parse_i_port_id(i_port_id, name) < 0) {
		printk(KERN_ERR "invalid initiator port ID %s\n", name);
		ret = -EINVAL;
		goto err;
	}

	se_nacl_new = srpt_alloc_fabric_acl(tpg);
	if (!se_nacl_new) {
		ret = -ENOMEM;
		goto err;
	}
	/*
	 * nacl_new may be released by core_tpg_add_initiator_node_acl()
	 * when converting a node ACL from demo mode to explict
	 */
	se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
						  nexus_depth);
	if (IS_ERR(se_nacl)) {
		ret = PTR_ERR(se_nacl);
		goto err;
	}
	/* Locate our struct srpt_node_acl and set sdev and i_port_id. */
	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
	memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
	nacl->sport = sport;

	spin_lock_irq(&sport->port_acl_lock);
	list_add_tail(&nacl->list, &sport->port_acl_list);
	spin_unlock_irq(&sport->port_acl_lock);

	return se_nacl;
err:
	return ERR_PTR(ret);
}

/*
 * configfs callback function invoked for
 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
{
	struct srpt_node_acl *nacl;
	struct srpt_device *sdev;
	struct srpt_port *sport;

	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
	sport = nacl->sport;
	sdev = sport->sdev;
	spin_lock_irq(&sport->port_acl_lock);
	list_del(&nacl->list);
	spin_unlock_irq(&sport->port_acl_lock);
	core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
	srpt_release_fabric_acl(NULL, se_nacl);
}

static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
	struct se_portal_group *se_tpg,
	char *page)
{
	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
}

static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
	struct se_portal_group *se_tpg,
	const char *page,
	size_t count)
{
	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
	unsigned long val;
	int ret;

3681
	ret = kstrtoul(page, 0, &val);
3682
	if (ret < 0) {
3683
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
		return -EINVAL;
	}
	if (val > MAX_SRPT_RDMA_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
			MAX_SRPT_RDMA_SIZE);
		return -EINVAL;
	}
	if (val < DEFAULT_MAX_RDMA_SIZE) {
		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
			val, DEFAULT_MAX_RDMA_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rdma_size = val;

	return count;
}

TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);

static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
	struct se_portal_group *se_tpg,
	char *page)
{
	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
}

static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
	struct se_portal_group *se_tpg,
	const char *page,
	size_t count)
{
	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
	unsigned long val;
	int ret;

3721
	ret = kstrtoul(page, 0, &val);
3722
	if (ret < 0) {
3723
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
		return -EINVAL;
	}
	if (val > MAX_SRPT_RSP_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
			MAX_SRPT_RSP_SIZE);
		return -EINVAL;
	}
	if (val < MIN_MAX_RSP_SIZE) {
		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
			MIN_MAX_RSP_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rsp_size = val;

	return count;
}

TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);

static ssize_t srpt_tpg_attrib_show_srp_sq_size(
	struct se_portal_group *se_tpg,
	char *page)
{
	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);

	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
}

static ssize_t srpt_tpg_attrib_store_srp_sq_size(
	struct se_portal_group *se_tpg,
	const char *page,
	size_t count)
{
	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
	unsigned long val;
	int ret;

3761
	ret = kstrtoul(page, 0, &val);
3762
	if (ret < 0) {
3763
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
		return -EINVAL;
	}
	if (val > MAX_SRPT_SRQ_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
			MAX_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	if (val < MIN_SRPT_SRQ_SIZE) {
		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
			MIN_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_sq_size = val;

	return count;
}

TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);

static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
	&srpt_tpg_attrib_srp_max_rdma_size.attr,
	&srpt_tpg_attrib_srp_max_rsp_size.attr,
	&srpt_tpg_attrib_srp_sq_size.attr,
	NULL,
};

static ssize_t srpt_tpg_show_enable(
	struct se_portal_group *se_tpg,
	char *page)
{
	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);

	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
}

static ssize_t srpt_tpg_store_enable(
	struct se_portal_group *se_tpg,
	const char *page,
	size_t count)
{
	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
	unsigned long tmp;
        int ret;

3808
	ret = kstrtoul(page, 0, &tmp);
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
	if (ret < 0) {
		printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
		return -EINVAL;
	}

	if ((tmp != 0) && (tmp != 1)) {
		printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
		return -EINVAL;
	}
	if (tmp == 1)
		sport->enabled = true;
	else
		sport->enabled = false;

	return count;
}

TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);

static struct configfs_attribute *srpt_tpg_attrs[] = {
	&srpt_tpg_enable.attr,
	NULL,
};

/**
 * configfs callback invoked for
 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
 */
static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
					     struct config_group *group,
					     const char *name)
{
	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
	int res;

	/* Initialize sport->port_wwn and sport->port_tpg_1 */
	res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
			&sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
	if (res)
		return ERR_PTR(res);

	return &sport->port_tpg_1;
}

/**
 * configfs callback invoked for
 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
 */
static void srpt_drop_tpg(struct se_portal_group *tpg)
{
	struct srpt_port *sport = container_of(tpg,
				struct srpt_port, port_tpg_1);

	sport->enabled = false;
	core_tpg_deregister(&sport->port_tpg_1);
}

/**
 * configfs callback invoked for
 * mkdir /sys/kernel/config/target/$driver/$port
 */
static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
				      struct config_group *group,
				      const char *name)
{
	struct srpt_port *sport;
	int ret;

	sport = srpt_lookup_port(name);
	pr_debug("make_tport(%s)\n", name);
	ret = -EINVAL;
	if (!sport)
		goto err;

	return &sport->port_wwn;

err:
	return ERR_PTR(ret);
}

/**
 * configfs callback invoked for
 * rmdir /sys/kernel/config/target/$driver/$port
 */
static void srpt_drop_tport(struct se_wwn *wwn)
{
	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);

	pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
}

static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
					      char *buf)
{
	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
}

TF_WWN_ATTR_RO(srpt, version);

static struct configfs_attribute *srpt_wwn_attrs[] = {
	&srpt_wwn_version.attr,
	NULL,
};

static struct target_core_fabric_ops srpt_template = {
	.get_fabric_name		= srpt_get_fabric_name,
	.get_fabric_proto_ident		= srpt_get_fabric_proto_ident,
	.tpg_get_wwn			= srpt_get_fabric_wwn,
	.tpg_get_tag			= srpt_get_tag,
	.tpg_get_default_depth		= srpt_get_default_depth,
	.tpg_get_pr_transport_id	= srpt_get_pr_transport_id,
	.tpg_get_pr_transport_id_len	= srpt_get_pr_transport_id_len,
	.tpg_parse_pr_out_transport_id	= srpt_parse_pr_out_transport_id,
	.tpg_check_demo_mode		= srpt_check_false,
	.tpg_check_demo_mode_cache	= srpt_check_true,
	.tpg_check_demo_mode_write_protect = srpt_check_true,
	.tpg_check_prod_mode_write_protect = srpt_check_false,
	.tpg_alloc_fabric_acl		= srpt_alloc_fabric_acl,
	.tpg_release_fabric_acl		= srpt_release_fabric_acl,
	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
	.release_cmd			= srpt_release_cmd,
	.check_stop_free		= srpt_check_stop_free,
	.shutdown_session		= srpt_shutdown_session,
	.close_session			= srpt_close_session,
	.sess_get_index			= srpt_sess_get_index,
	.sess_get_initiator_sid		= NULL,
	.write_pending			= srpt_write_pending,
	.write_pending_status		= srpt_write_pending_status,
	.set_default_node_attributes	= srpt_set_default_node_attrs,
	.get_task_tag			= srpt_get_task_tag,
	.get_cmd_state			= srpt_get_tcm_cmd_state,
3940
	.queue_data_in			= srpt_queue_data_in,
3941
	.queue_status			= srpt_queue_status,
3942
	.queue_tm_rsp			= srpt_queue_tm_rsp,
3943
	.aborted_task			= srpt_aborted_task,
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
	/*
	 * Setup function pointers for generic logic in
	 * target_core_fabric_configfs.c
	 */
	.fabric_make_wwn		= srpt_make_tport,
	.fabric_drop_wwn		= srpt_drop_tport,
	.fabric_make_tpg		= srpt_make_tpg,
	.fabric_drop_tpg		= srpt_drop_tpg,
	.fabric_post_link		= NULL,
	.fabric_pre_unlink		= NULL,
	.fabric_make_np			= NULL,
	.fabric_drop_np			= NULL,
	.fabric_make_nodeacl		= srpt_make_nodeacl,
	.fabric_drop_nodeacl		= srpt_drop_nodeacl,
};

/**
 * srpt_init_module() - Kernel module initialization.
 *
 * Note: Since ib_register_client() registers callback functions, and since at
 * least one of these callback functions (srpt_add_one()) calls target core
 * functions, this driver must be registered with the target core before
 * ib_register_client() is called.
 */
static int __init srpt_init_module(void)
{
	int ret;

	ret = -EINVAL;
	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
		printk(KERN_ERR "invalid value %d for kernel module parameter"
		       " srp_max_req_size -- must be at least %d.\n",
		       srp_max_req_size, MIN_MAX_REQ_SIZE);
		goto out;
	}

	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
		printk(KERN_ERR "invalid value %d for kernel module parameter"
		       " srpt_srq_size -- must be in the range [%d..%d].\n",
		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
		goto out;
	}

	srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
3989
	if (IS_ERR(srpt_target)) {
3990
		printk(KERN_ERR "couldn't register\n");
3991
		ret = PTR_ERR(srpt_target);
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
		goto out;
	}

	srpt_target->tf_ops = srpt_template;

	/*
	 * Set up default attribute lists.
	 */
	srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
	srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
	srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
	srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
	srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
	srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
	srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
	srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
	srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;

	ret = target_fabric_configfs_register(srpt_target);
	if (ret < 0) {
		printk(KERN_ERR "couldn't register\n");
		goto out_free_target;
	}

	ret = ib_register_client(&srpt_client);
	if (ret) {
		printk(KERN_ERR "couldn't register IB client\n");
		goto out_unregister_target;
	}

	return 0;

out_unregister_target:
	target_fabric_configfs_deregister(srpt_target);
	srpt_target = NULL;
out_free_target:
	if (srpt_target)
		target_fabric_configfs_free(srpt_target);
out:
	return ret;
}

static void __exit srpt_cleanup_module(void)
{
	ib_unregister_client(&srpt_client);
	target_fabric_configfs_deregister(srpt_target);
	srpt_target = NULL;
}

module_init(srpt_init_module);
module_exit(srpt_cleanup_module);