psi.c 35.3 KB
Newer Older
1 2 3 4 5 6
/*
 * Pressure stall information for CPU, memory and IO
 *
 * Copyright (c) 2018 Facebook, Inc.
 * Author: Johannes Weiner <hannes@cmpxchg.org>
 *
S
Suren Baghdasaryan 已提交
7 8 9
 * Polling support by Suren Baghdasaryan <surenb@google.com>
 * Copyright (c) 2018 Google, Inc.
 *
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
 * When CPU, memory and IO are contended, tasks experience delays that
 * reduce throughput and introduce latencies into the workload. Memory
 * and IO contention, in addition, can cause a full loss of forward
 * progress in which the CPU goes idle.
 *
 * This code aggregates individual task delays into resource pressure
 * metrics that indicate problems with both workload health and
 * resource utilization.
 *
 *			Model
 *
 * The time in which a task can execute on a CPU is our baseline for
 * productivity. Pressure expresses the amount of time in which this
 * potential cannot be realized due to resource contention.
 *
 * This concept of productivity has two components: the workload and
 * the CPU. To measure the impact of pressure on both, we define two
 * contention states for a resource: SOME and FULL.
 *
 * In the SOME state of a given resource, one or more tasks are
 * delayed on that resource. This affects the workload's ability to
 * perform work, but the CPU may still be executing other tasks.
 *
 * In the FULL state of a given resource, all non-idle tasks are
 * delayed on that resource such that nobody is advancing and the CPU
 * goes idle. This leaves both workload and CPU unproductive.
 *
 * (Naturally, the FULL state doesn't exist for the CPU resource.)
 *
 *	SOME = nr_delayed_tasks != 0
 *	FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
 *
 * The percentage of wallclock time spent in those compound stall
 * states gives pressure numbers between 0 and 100 for each resource,
 * where the SOME percentage indicates workload slowdowns and the FULL
 * percentage indicates reduced CPU utilization:
 *
 *	%SOME = time(SOME) / period
 *	%FULL = time(FULL) / period
 *
 *			Multiple CPUs
 *
 * The more tasks and available CPUs there are, the more work can be
 * performed concurrently. This means that the potential that can go
 * unrealized due to resource contention *also* scales with non-idle
 * tasks and CPUs.
 *
 * Consider a scenario where 257 number crunching tasks are trying to
 * run concurrently on 256 CPUs. If we simply aggregated the task
 * states, we would have to conclude a CPU SOME pressure number of
 * 100%, since *somebody* is waiting on a runqueue at all
 * times. However, that is clearly not the amount of contention the
 * workload is experiencing: only one out of 256 possible exceution
 * threads will be contended at any given time, or about 0.4%.
 *
 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
 * given time *one* of the tasks is delayed due to a lack of memory.
 * Again, looking purely at the task state would yield a memory FULL
 * pressure number of 0%, since *somebody* is always making forward
 * progress. But again this wouldn't capture the amount of execution
 * potential lost, which is 1 out of 4 CPUs, or 25%.
 *
 * To calculate wasted potential (pressure) with multiple processors,
 * we have to base our calculation on the number of non-idle tasks in
 * conjunction with the number of available CPUs, which is the number
 * of potential execution threads. SOME becomes then the proportion of
 * delayed tasks to possibe threads, and FULL is the share of possible
 * threads that are unproductive due to delays:
 *
 *	threads = min(nr_nonidle_tasks, nr_cpus)
 *	   SOME = min(nr_delayed_tasks / threads, 1)
 *	   FULL = (threads - min(nr_running_tasks, threads)) / threads
 *
 * For the 257 number crunchers on 256 CPUs, this yields:
 *
 *	threads = min(257, 256)
 *	   SOME = min(1 / 256, 1)             = 0.4%
 *	   FULL = (256 - min(257, 256)) / 256 = 0%
 *
 * For the 1 out of 4 memory-delayed tasks, this yields:
 *
 *	threads = min(4, 4)
 *	   SOME = min(1 / 4, 1)               = 25%
 *	   FULL = (4 - min(3, 4)) / 4         = 25%
 *
 * [ Substitute nr_cpus with 1, and you can see that it's a natural
 *   extension of the single-CPU model. ]
 *
 *			Implementation
 *
 * To assess the precise time spent in each such state, we would have
 * to freeze the system on task changes and start/stop the state
 * clocks accordingly. Obviously that doesn't scale in practice.
 *
 * Because the scheduler aims to distribute the compute load evenly
 * among the available CPUs, we can track task state locally to each
 * CPU and, at much lower frequency, extrapolate the global state for
 * the cumulative stall times and the running averages.
 *
 * For each runqueue, we track:
 *
 *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
 *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
 *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
 *
 * and then periodically aggregate:
 *
 *	tNONIDLE = sum(tNONIDLE[i])
 *
 *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
 *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
 *
 *	   %SOME = tSOME / period
 *	   %FULL = tFULL / period
 *
 * This gives us an approximation of pressure that is practical
 * cost-wise, yet way more sensitive and accurate than periodic
 * sampling of the aggregate task states would be.
 */

130
#include "../workqueue_internal.h"
131 132 133 134
#include <linux/sched/loadavg.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/seqlock.h>
S
Suren Baghdasaryan 已提交
135
#include <linux/uaccess.h>
136 137 138
#include <linux/cgroup.h>
#include <linux/module.h>
#include <linux/sched.h>
S
Suren Baghdasaryan 已提交
139 140 141
#include <linux/ctype.h>
#include <linux/file.h>
#include <linux/poll.h>
142 143 144 145 146
#include <linux/psi.h>
#include "sched.h"

static int psi_bug __read_mostly;

147 148 149
DEFINE_STATIC_KEY_FALSE(psi_disabled);

#ifdef CONFIG_PSI_DEFAULT_DISABLED
S
Suren Baghdasaryan 已提交
150
static bool psi_enable;
151
#else
S
Suren Baghdasaryan 已提交
152
static bool psi_enable = true;
153 154 155 156 157 158
#endif
static int __init setup_psi(char *str)
{
	return kstrtobool(str, &psi_enable) == 0;
}
__setup("psi=", setup_psi);
159 160 161 162 163 164 165

/* Running averages - we need to be higher-res than loadavg */
#define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
#define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
#define EXP_60s		1981		/* 1/exp(2s/60s) */
#define EXP_300s	2034		/* 1/exp(2s/300s) */

S
Suren Baghdasaryan 已提交
166 167 168 169 170
/* PSI trigger definitions */
#define WINDOW_MIN_US 500000	/* Min window size is 500ms */
#define WINDOW_MAX_US 10000000	/* Max window size is 10s */
#define UPDATES_PER_WINDOW 10	/* 10 updates per window */

171 172 173 174 175
/* Sampling frequency in nanoseconds */
static u64 psi_period __read_mostly;

/* System-level pressure and stall tracking */
static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
176
struct psi_group psi_system = {
177 178 179
	.pcpu = &system_group_pcpu,
};

180
static void psi_avgs_work(struct work_struct *work);
181 182 183 184 185 186 187

static void group_init(struct psi_group *group)
{
	int cpu;

	for_each_possible_cpu(cpu)
		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
188 189 190
	group->avg_next_update = sched_clock() + psi_period;
	INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
	mutex_init(&group->avgs_lock);
S
Suren Baghdasaryan 已提交
191 192 193 194 195 196 197 198 199 200 201
	/* Init trigger-related members */
	atomic_set(&group->poll_scheduled, 0);
	mutex_init(&group->trigger_lock);
	INIT_LIST_HEAD(&group->triggers);
	memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
	group->poll_states = 0;
	group->poll_min_period = U32_MAX;
	memset(group->polling_total, 0, sizeof(group->polling_total));
	group->polling_next_update = ULLONG_MAX;
	group->polling_until = 0;
	rcu_assign_pointer(group->poll_kworker, NULL);
202 203 204 205
}

void __init psi_init(void)
{
206 207
	if (!psi_enable) {
		static_branch_enable(&psi_disabled);
208
		return;
209
	}
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

	psi_period = jiffies_to_nsecs(PSI_FREQ);
	group_init(&psi_system);
}

static bool test_state(unsigned int *tasks, enum psi_states state)
{
	switch (state) {
	case PSI_IO_SOME:
		return tasks[NR_IOWAIT];
	case PSI_IO_FULL:
		return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
	case PSI_MEM_SOME:
		return tasks[NR_MEMSTALL];
	case PSI_MEM_FULL:
		return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
	case PSI_CPU_SOME:
		return tasks[NR_RUNNING] > 1;
	case PSI_NONIDLE:
		return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
			tasks[NR_RUNNING];
	default:
		return false;
	}
}

S
Suren Baghdasaryan 已提交
236 237
static void get_recent_times(struct psi_group *group, int cpu,
			     enum psi_aggregators aggregator, u32 *times,
S
Suren Baghdasaryan 已提交
238
			     u32 *pchanged_states)
239 240 241
{
	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
	u64 now, state_start;
242
	enum psi_states s;
243
	unsigned int seq;
244
	u32 state_mask;
245

S
Suren Baghdasaryan 已提交
246 247
	*pchanged_states = 0;

248 249 250 251 252
	/* Snapshot a coherent view of the CPU state */
	do {
		seq = read_seqcount_begin(&groupc->seq);
		now = cpu_clock(cpu);
		memcpy(times, groupc->times, sizeof(groupc->times));
253
		state_mask = groupc->state_mask;
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
		state_start = groupc->state_start;
	} while (read_seqcount_retry(&groupc->seq, seq));

	/* Calculate state time deltas against the previous snapshot */
	for (s = 0; s < NR_PSI_STATES; s++) {
		u32 delta;
		/*
		 * In addition to already concluded states, we also
		 * incorporate currently active states on the CPU,
		 * since states may last for many sampling periods.
		 *
		 * This way we keep our delta sampling buckets small
		 * (u32) and our reported pressure close to what's
		 * actually happening.
		 */
269
		if (state_mask & (1 << s))
270 271
			times[s] += now - state_start;

S
Suren Baghdasaryan 已提交
272 273
		delta = times[s] - groupc->times_prev[aggregator][s];
		groupc->times_prev[aggregator][s] = times[s];
274 275

		times[s] = delta;
S
Suren Baghdasaryan 已提交
276 277
		if (delta)
			*pchanged_states |= (1 << s);
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	}
}

static void calc_avgs(unsigned long avg[3], int missed_periods,
		      u64 time, u64 period)
{
	unsigned long pct;

	/* Fill in zeroes for periods of no activity */
	if (missed_periods) {
		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
	}

	/* Sample the most recent active period */
	pct = div_u64(time * 100, period);
	pct *= FIXED_1;
	avg[0] = calc_load(avg[0], EXP_10s, pct);
	avg[1] = calc_load(avg[1], EXP_60s, pct);
	avg[2] = calc_load(avg[2], EXP_300s, pct);
}

S
Suren Baghdasaryan 已提交
301 302 303
static void collect_percpu_times(struct psi_group *group,
				 enum psi_aggregators aggregator,
				 u32 *pchanged_states)
304 305 306
{
	u64 deltas[NR_PSI_STATES - 1] = { 0, };
	unsigned long nonidle_total = 0;
S
Suren Baghdasaryan 已提交
307
	u32 changed_states = 0;
308 309 310 311 312 313 314 315 316 317 318 319 320 321
	int cpu;
	int s;

	/*
	 * Collect the per-cpu time buckets and average them into a
	 * single time sample that is normalized to wallclock time.
	 *
	 * For averaging, each CPU is weighted by its non-idle time in
	 * the sampling period. This eliminates artifacts from uneven
	 * loading, or even entirely idle CPUs.
	 */
	for_each_possible_cpu(cpu) {
		u32 times[NR_PSI_STATES];
		u32 nonidle;
S
Suren Baghdasaryan 已提交
322
		u32 cpu_changed_states;
323

S
Suren Baghdasaryan 已提交
324
		get_recent_times(group, cpu, aggregator, times,
S
Suren Baghdasaryan 已提交
325 326
				&cpu_changed_states);
		changed_states |= cpu_changed_states;
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
		nonidle_total += nonidle;

		for (s = 0; s < PSI_NONIDLE; s++)
			deltas[s] += (u64)times[s] * nonidle;
	}

	/*
	 * Integrate the sample into the running statistics that are
	 * reported to userspace: the cumulative stall times and the
	 * decaying averages.
	 *
	 * Pressure percentages are sampled at PSI_FREQ. We might be
	 * called more often when the user polls more frequently than
	 * that; we might be called less often when there is no task
	 * activity, thus no data, and clock ticks are sporadic. The
	 * below handles both.
	 */

	/* total= */
	for (s = 0; s < NR_PSI_STATES - 1; s++)
S
Suren Baghdasaryan 已提交
349 350
		group->total[aggregator][s] +=
				div_u64(deltas[s], max(nonidle_total, 1UL));
351

S
Suren Baghdasaryan 已提交
352 353
	if (pchanged_states)
		*pchanged_states = changed_states;
354 355 356 357 358 359 360 361 362
}

static u64 update_averages(struct psi_group *group, u64 now)
{
	unsigned long missed_periods = 0;
	u64 expires, period;
	u64 avg_next_update;
	int s;

363
	/* avgX= */
364
	expires = group->avg_next_update;
365
	if (now - expires >= psi_period)
366 367 368 369 370 371 372 373 374
		missed_periods = div_u64(now - expires, psi_period);

	/*
	 * The periodic clock tick can get delayed for various
	 * reasons, especially on loaded systems. To avoid clock
	 * drift, we schedule the clock in fixed psi_period intervals.
	 * But the deltas we sample out of the per-cpu buckets above
	 * are based on the actual time elapsing between clock ticks.
	 */
375
	avg_next_update = expires + ((1 + missed_periods) * psi_period);
376 377
	period = now - (group->avg_last_update + (missed_periods * psi_period));
	group->avg_last_update = now;
378 379 380 381

	for (s = 0; s < NR_PSI_STATES - 1; s++) {
		u32 sample;

S
Suren Baghdasaryan 已提交
382
		sample = group->total[PSI_AVGS][s] - group->avg_total[s];
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
		/*
		 * Due to the lockless sampling of the time buckets,
		 * recorded time deltas can slip into the next period,
		 * which under full pressure can result in samples in
		 * excess of the period length.
		 *
		 * We don't want to report non-sensical pressures in
		 * excess of 100%, nor do we want to drop such events
		 * on the floor. Instead we punt any overage into the
		 * future until pressure subsides. By doing this we
		 * don't underreport the occurring pressure curve, we
		 * just report it delayed by one period length.
		 *
		 * The error isn't cumulative. As soon as another
		 * delta slips from a period P to P+1, by definition
		 * it frees up its time T in P.
		 */
		if (sample > period)
			sample = period;
402
		group->avg_total[s] += sample;
403 404
		calc_avgs(group->avg[s], missed_periods, sample, period);
	}
405 406

	return avg_next_update;
407 408
}

409
static void psi_avgs_work(struct work_struct *work)
410 411 412
{
	struct delayed_work *dwork;
	struct psi_group *group;
S
Suren Baghdasaryan 已提交
413
	u32 changed_states;
414
	bool nonidle;
415
	u64 now;
416 417

	dwork = to_delayed_work(work);
418
	group = container_of(dwork, struct psi_group, avgs_work);
419

420 421 422 423
	mutex_lock(&group->avgs_lock);

	now = sched_clock();

S
Suren Baghdasaryan 已提交
424
	collect_percpu_times(group, PSI_AVGS, &changed_states);
S
Suren Baghdasaryan 已提交
425
	nonidle = changed_states & (1 << PSI_NONIDLE);
426 427 428 429 430 431 432
	/*
	 * If there is task activity, periodically fold the per-cpu
	 * times and feed samples into the running averages. If things
	 * are idle and there is no data to process, stop the clock.
	 * Once restarted, we'll catch up the running averages in one
	 * go - see calc_avgs() and missed_periods.
	 */
433 434
	if (now >= group->avg_next_update)
		group->avg_next_update = update_averages(group, now);
435 436

	if (nonidle) {
437 438
		schedule_delayed_work(dwork, nsecs_to_jiffies(
				group->avg_next_update - now) + 1);
439
	}
440 441

	mutex_unlock(&group->avgs_lock);
442 443
}

S
Suren Baghdasaryan 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
/* Trigger tracking window manupulations */
static void window_reset(struct psi_window *win, u64 now, u64 value,
			 u64 prev_growth)
{
	win->start_time = now;
	win->start_value = value;
	win->prev_growth = prev_growth;
}

/*
 * PSI growth tracking window update and growth calculation routine.
 *
 * This approximates a sliding tracking window by interpolating
 * partially elapsed windows using historical growth data from the
 * previous intervals. This minimizes memory requirements (by not storing
 * all the intermediate values in the previous window) and simplifies
 * the calculations. It works well because PSI signal changes only in
 * positive direction and over relatively small window sizes the growth
 * is close to linear.
 */
static u64 window_update(struct psi_window *win, u64 now, u64 value)
{
	u64 elapsed;
	u64 growth;

	elapsed = now - win->start_time;
	growth = value - win->start_value;
	/*
	 * After each tracking window passes win->start_value and
	 * win->start_time get reset and win->prev_growth stores
	 * the average per-window growth of the previous window.
	 * win->prev_growth is then used to interpolate additional
	 * growth from the previous window assuming it was linear.
	 */
	if (elapsed > win->size)
		window_reset(win, now, value, growth);
	else {
		u32 remaining;

		remaining = win->size - elapsed;
		growth += div_u64(win->prev_growth * remaining, win->size);
	}

	return growth;
}

static void init_triggers(struct psi_group *group, u64 now)
{
	struct psi_trigger *t;

	list_for_each_entry(t, &group->triggers, node)
		window_reset(&t->win, now,
				group->total[PSI_POLL][t->state], 0);
	memcpy(group->polling_total, group->total[PSI_POLL],
		   sizeof(group->polling_total));
	group->polling_next_update = now + group->poll_min_period;
}

static u64 update_triggers(struct psi_group *group, u64 now)
{
	struct psi_trigger *t;
	bool new_stall = false;
	u64 *total = group->total[PSI_POLL];

	/*
	 * On subsequent updates, calculate growth deltas and let
	 * watchers know when their specified thresholds are exceeded.
	 */
	list_for_each_entry(t, &group->triggers, node) {
		u64 growth;

		/* Check for stall activity */
		if (group->polling_total[t->state] == total[t->state])
			continue;

		/*
		 * Multiple triggers might be looking at the same state,
		 * remember to update group->polling_total[] once we've
		 * been through all of them. Also remember to extend the
		 * polling time if we see new stall activity.
		 */
		new_stall = true;

		/* Calculate growth since last update */
		growth = window_update(&t->win, now, total[t->state]);
		if (growth < t->threshold)
			continue;

		/* Limit event signaling to once per window */
		if (now < t->last_event_time + t->win.size)
			continue;

		/* Generate an event */
		if (cmpxchg(&t->event, 0, 1) == 0)
			wake_up_interruptible(&t->event_wait);
		t->last_event_time = now;
	}

	if (new_stall)
		memcpy(group->polling_total, total,
				sizeof(group->polling_total));

	return now + group->poll_min_period;
}

/*
 * Schedule polling if it's not already scheduled. It's safe to call even from
 * hotpath because even though kthread_queue_delayed_work takes worker->lock
 * spinlock that spinlock is never contended due to poll_scheduled atomic
 * preventing such competition.
 */
static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
{
	struct kthread_worker *kworker;

	/* Do not reschedule if already scheduled */
	if (atomic_cmpxchg(&group->poll_scheduled, 0, 1) != 0)
		return;

	rcu_read_lock();

	kworker = rcu_dereference(group->poll_kworker);
	/*
	 * kworker might be NULL in case psi_trigger_destroy races with
	 * psi_task_change (hotpath) which can't use locks
	 */
	if (likely(kworker))
		kthread_queue_delayed_work(kworker, &group->poll_work, delay);
	else
		atomic_set(&group->poll_scheduled, 0);

	rcu_read_unlock();
}

static void psi_poll_work(struct kthread_work *work)
{
	struct kthread_delayed_work *dwork;
	struct psi_group *group;
	u32 changed_states;
	u64 now;

	dwork = container_of(work, struct kthread_delayed_work, work);
	group = container_of(dwork, struct psi_group, poll_work);

	atomic_set(&group->poll_scheduled, 0);

	mutex_lock(&group->trigger_lock);

	now = sched_clock();

	collect_percpu_times(group, PSI_POLL, &changed_states);

	if (changed_states & group->poll_states) {
		/* Initialize trigger windows when entering polling mode */
		if (now > group->polling_until)
			init_triggers(group, now);

		/*
		 * Keep the monitor active for at least the duration of the
		 * minimum tracking window as long as monitor states are
		 * changing.
		 */
		group->polling_until = now +
			group->poll_min_period * UPDATES_PER_WINDOW;
	}

	if (now > group->polling_until) {
		group->polling_next_update = ULLONG_MAX;
		goto out;
	}

	if (now >= group->polling_next_update)
		group->polling_next_update = update_triggers(group, now);

	psi_schedule_poll_work(group,
		nsecs_to_jiffies(group->polling_next_update - now) + 1);

out:
	mutex_unlock(&group->trigger_lock);
}

625 626 627 628 629 630 631 632 633 634
static void record_times(struct psi_group_cpu *groupc, int cpu,
			 bool memstall_tick)
{
	u32 delta;
	u64 now;

	now = cpu_clock(cpu);
	delta = now - groupc->state_start;
	groupc->state_start = now;

635
	if (groupc->state_mask & (1 << PSI_IO_SOME)) {
636
		groupc->times[PSI_IO_SOME] += delta;
637
		if (groupc->state_mask & (1 << PSI_IO_FULL))
638 639 640
			groupc->times[PSI_IO_FULL] += delta;
	}

641
	if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
642
		groupc->times[PSI_MEM_SOME] += delta;
643
		if (groupc->state_mask & (1 << PSI_MEM_FULL))
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
			groupc->times[PSI_MEM_FULL] += delta;
		else if (memstall_tick) {
			u32 sample;
			/*
			 * Since we care about lost potential, a
			 * memstall is FULL when there are no other
			 * working tasks, but also when the CPU is
			 * actively reclaiming and nothing productive
			 * could run even if it were runnable.
			 *
			 * When the timer tick sees a reclaiming CPU,
			 * regardless of runnable tasks, sample a FULL
			 * tick (or less if it hasn't been a full tick
			 * since the last state change).
			 */
			sample = min(delta, (u32)jiffies_to_nsecs(1));
			groupc->times[PSI_MEM_FULL] += sample;
		}
	}

664
	if (groupc->state_mask & (1 << PSI_CPU_SOME))
665 666
		groupc->times[PSI_CPU_SOME] += delta;

667
	if (groupc->state_mask & (1 << PSI_NONIDLE))
668 669 670
		groupc->times[PSI_NONIDLE] += delta;
}

S
Suren Baghdasaryan 已提交
671 672
static u32 psi_group_change(struct psi_group *group, int cpu,
			    unsigned int clear, unsigned int set)
673 674 675
{
	struct psi_group_cpu *groupc;
	unsigned int t, m;
676 677
	enum psi_states s;
	u32 state_mask = 0;
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

	groupc = per_cpu_ptr(group->pcpu, cpu);

	/*
	 * First we assess the aggregate resource states this CPU's
	 * tasks have been in since the last change, and account any
	 * SOME and FULL time these may have resulted in.
	 *
	 * Then we update the task counts according to the state
	 * change requested through the @clear and @set bits.
	 */
	write_seqcount_begin(&groupc->seq);

	record_times(groupc, cpu, false);

	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
		if (!(m & (1 << t)))
			continue;
		if (groupc->tasks[t] == 0 && !psi_bug) {
			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n",
					cpu, t, groupc->tasks[0],
					groupc->tasks[1], groupc->tasks[2],
					clear, set);
			psi_bug = 1;
		}
		groupc->tasks[t]--;
	}

	for (t = 0; set; set &= ~(1 << t), t++)
		if (set & (1 << t))
			groupc->tasks[t]++;

710 711 712 713 714 715 716
	/* Calculate state mask representing active states */
	for (s = 0; s < NR_PSI_STATES; s++) {
		if (test_state(groupc->tasks, s))
			state_mask |= (1 << s);
	}
	groupc->state_mask = state_mask;

717
	write_seqcount_end(&groupc->seq);
S
Suren Baghdasaryan 已提交
718 719

	return state_mask;
720 721
}

J
Johannes Weiner 已提交
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
{
#ifdef CONFIG_CGROUPS
	struct cgroup *cgroup = NULL;

	if (!*iter)
		cgroup = task->cgroups->dfl_cgrp;
	else if (*iter == &psi_system)
		return NULL;
	else
		cgroup = cgroup_parent(*iter);

	if (cgroup && cgroup_parent(cgroup)) {
		*iter = cgroup;
		return cgroup_psi(cgroup);
	}
#else
	if (*iter)
		return NULL;
#endif
	*iter = &psi_system;
	return &psi_system;
}

746 747 748
void psi_task_change(struct task_struct *task, int clear, int set)
{
	int cpu = task_cpu(task);
J
Johannes Weiner 已提交
749
	struct psi_group *group;
750
	bool wake_clock = true;
J
Johannes Weiner 已提交
751
	void *iter = NULL;
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767

	if (!task->pid)
		return;

	if (((task->psi_flags & set) ||
	     (task->psi_flags & clear) != clear) &&
	    !psi_bug) {
		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
				task->pid, task->comm, cpu,
				task->psi_flags, clear, set);
		psi_bug = 1;
	}

	task->psi_flags &= ~clear;
	task->psi_flags |= set;

768 769 770 771 772 773 774 775
	/*
	 * Periodic aggregation shuts off if there is a period of no
	 * task changes, so we wake it back up if necessary. However,
	 * don't do this if the task change is the aggregation worker
	 * itself going to sleep, or we'll ping-pong forever.
	 */
	if (unlikely((clear & TSK_RUNNING) &&
		     (task->flags & PF_WQ_WORKER) &&
776
		     wq_worker_last_func(task) == psi_avgs_work))
777 778 779
		wake_clock = false;

	while ((group = iterate_groups(task, &iter))) {
S
Suren Baghdasaryan 已提交
780 781 782 783 784
		u32 state_mask = psi_group_change(group, cpu, clear, set);

		if (state_mask & group->poll_states)
			psi_schedule_poll_work(group, 1);

785 786
		if (wake_clock && !delayed_work_pending(&group->avgs_work))
			schedule_delayed_work(&group->avgs_work, PSI_FREQ);
787
	}
788 789 790 791
}

void psi_memstall_tick(struct task_struct *task, int cpu)
{
J
Johannes Weiner 已提交
792 793
	struct psi_group *group;
	void *iter = NULL;
794

J
Johannes Weiner 已提交
795 796 797 798 799 800 801 802
	while ((group = iterate_groups(task, &iter))) {
		struct psi_group_cpu *groupc;

		groupc = per_cpu_ptr(group->pcpu, cpu);
		write_seqcount_begin(&groupc->seq);
		record_times(groupc, cpu, true);
		write_seqcount_end(&groupc->seq);
	}
803 804 805 806 807 808 809 810 811 812 813 814 815 816
}

/**
 * psi_memstall_enter - mark the beginning of a memory stall section
 * @flags: flags to handle nested sections
 *
 * Marks the calling task as being stalled due to a lack of memory,
 * such as waiting for a refault or performing reclaim.
 */
void psi_memstall_enter(unsigned long *flags)
{
	struct rq_flags rf;
	struct rq *rq;

817
	if (static_branch_likely(&psi_disabled))
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
		return;

	*flags = current->flags & PF_MEMSTALL;
	if (*flags)
		return;
	/*
	 * PF_MEMSTALL setting & accounting needs to be atomic wrt
	 * changes to the task's scheduling state, otherwise we can
	 * race with CPU migration.
	 */
	rq = this_rq_lock_irq(&rf);

	current->flags |= PF_MEMSTALL;
	psi_task_change(current, 0, TSK_MEMSTALL);

	rq_unlock_irq(rq, &rf);
}

/**
 * psi_memstall_leave - mark the end of an memory stall section
 * @flags: flags to handle nested memdelay sections
 *
 * Marks the calling task as no longer stalled due to lack of memory.
 */
void psi_memstall_leave(unsigned long *flags)
{
	struct rq_flags rf;
	struct rq *rq;

847
	if (static_branch_likely(&psi_disabled))
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
		return;

	if (*flags)
		return;
	/*
	 * PF_MEMSTALL clearing & accounting needs to be atomic wrt
	 * changes to the task's scheduling state, otherwise we could
	 * race with CPU migration.
	 */
	rq = this_rq_lock_irq(&rf);

	current->flags &= ~PF_MEMSTALL;
	psi_task_change(current, TSK_MEMSTALL, 0);

	rq_unlock_irq(rq, &rf);
}

J
Johannes Weiner 已提交
865 866 867
#ifdef CONFIG_CGROUPS
int psi_cgroup_alloc(struct cgroup *cgroup)
{
868
	if (static_branch_likely(&psi_disabled))
J
Johannes Weiner 已提交
869 870 871 872 873 874 875 876 877 878 879
		return 0;

	cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
	if (!cgroup->psi.pcpu)
		return -ENOMEM;
	group_init(&cgroup->psi);
	return 0;
}

void psi_cgroup_free(struct cgroup *cgroup)
{
880
	if (static_branch_likely(&psi_disabled))
J
Johannes Weiner 已提交
881 882
		return;

883
	cancel_delayed_work_sync(&cgroup->psi.avgs_work);
J
Johannes Weiner 已提交
884
	free_percpu(cgroup->psi.pcpu);
S
Suren Baghdasaryan 已提交
885 886
	/* All triggers must be removed by now */
	WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
J
Johannes Weiner 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
}

/**
 * cgroup_move_task - move task to a different cgroup
 * @task: the task
 * @to: the target css_set
 *
 * Move task to a new cgroup and safely migrate its associated stall
 * state between the different groups.
 *
 * This function acquires the task's rq lock to lock out concurrent
 * changes to the task's scheduling state and - in case the task is
 * running - concurrent changes to its stall state.
 */
void cgroup_move_task(struct task_struct *task, struct css_set *to)
{
	unsigned int task_flags = 0;
	struct rq_flags rf;
	struct rq *rq;

907
	if (static_branch_likely(&psi_disabled)) {
908 909 910 911 912 913 914
		/*
		 * Lame to do this here, but the scheduler cannot be locked
		 * from the outside, so we move cgroups from inside sched/.
		 */
		rcu_assign_pointer(task->cgroups, to);
		return;
	}
J
Johannes Weiner 已提交
915

916
	rq = task_rq_lock(task, &rf);
J
Johannes Weiner 已提交
917

918 919 920 921
	if (task_on_rq_queued(task))
		task_flags = TSK_RUNNING;
	else if (task->in_iowait)
		task_flags = TSK_IOWAIT;
J
Johannes Weiner 已提交
922

923 924
	if (task->flags & PF_MEMSTALL)
		task_flags |= TSK_MEMSTALL;
J
Johannes Weiner 已提交
925

926 927 928 929
	if (task_flags)
		psi_task_change(task, task_flags, 0);

	/* See comment above */
J
Johannes Weiner 已提交
930 931
	rcu_assign_pointer(task->cgroups, to);

932 933
	if (task_flags)
		psi_task_change(task, 0, task_flags);
J
Johannes Weiner 已提交
934

935
	task_rq_unlock(rq, task, &rf);
J
Johannes Weiner 已提交
936 937 938 939
}
#endif /* CONFIG_CGROUPS */

int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
940 941
{
	int full;
942
	u64 now;
943

944
	if (static_branch_likely(&psi_disabled))
945 946
		return -EOPNOTSUPP;

947 948 949
	/* Update averages before reporting them */
	mutex_lock(&group->avgs_lock);
	now = sched_clock();
S
Suren Baghdasaryan 已提交
950
	collect_percpu_times(group, PSI_AVGS, NULL);
951 952 953
	if (now >= group->avg_next_update)
		group->avg_next_update = update_averages(group, now);
	mutex_unlock(&group->avgs_lock);
954 955 956 957 958 959 960 961

	for (full = 0; full < 2 - (res == PSI_CPU); full++) {
		unsigned long avg[3];
		u64 total;
		int w;

		for (w = 0; w < 3; w++)
			avg[w] = group->avg[res * 2 + full][w];
S
Suren Baghdasaryan 已提交
962 963
		total = div_u64(group->total[PSI_AVGS][res * 2 + full],
				NSEC_PER_USEC);
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005

		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
			   full ? "full" : "some",
			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
			   total);
	}

	return 0;
}

static int psi_io_show(struct seq_file *m, void *v)
{
	return psi_show(m, &psi_system, PSI_IO);
}

static int psi_memory_show(struct seq_file *m, void *v)
{
	return psi_show(m, &psi_system, PSI_MEM);
}

static int psi_cpu_show(struct seq_file *m, void *v)
{
	return psi_show(m, &psi_system, PSI_CPU);
}

static int psi_io_open(struct inode *inode, struct file *file)
{
	return single_open(file, psi_io_show, NULL);
}

static int psi_memory_open(struct inode *inode, struct file *file)
{
	return single_open(file, psi_memory_show, NULL);
}

static int psi_cpu_open(struct inode *inode, struct file *file)
{
	return single_open(file, psi_cpu_show, NULL);
}

S
Suren Baghdasaryan 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
struct psi_trigger *psi_trigger_create(struct psi_group *group,
			char *buf, size_t nbytes, enum psi_res res)
{
	struct psi_trigger *t;
	enum psi_states state;
	u32 threshold_us;
	u32 window_us;

	if (static_branch_likely(&psi_disabled))
		return ERR_PTR(-EOPNOTSUPP);

	if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
		state = PSI_IO_SOME + res * 2;
	else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
		state = PSI_IO_FULL + res * 2;
	else
		return ERR_PTR(-EINVAL);

	if (state >= PSI_NONIDLE)
		return ERR_PTR(-EINVAL);

	if (window_us < WINDOW_MIN_US ||
		window_us > WINDOW_MAX_US)
		return ERR_PTR(-EINVAL);

	/* Check threshold */
	if (threshold_us == 0 || threshold_us > window_us)
		return ERR_PTR(-EINVAL);

	t = kmalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		return ERR_PTR(-ENOMEM);

	t->group = group;
	t->state = state;
	t->threshold = threshold_us * NSEC_PER_USEC;
	t->win.size = window_us * NSEC_PER_USEC;
	window_reset(&t->win, 0, 0, 0);

	t->event = 0;
	t->last_event_time = 0;
	init_waitqueue_head(&t->event_wait);
	kref_init(&t->refcount);

	mutex_lock(&group->trigger_lock);

	if (!rcu_access_pointer(group->poll_kworker)) {
		struct sched_param param = {
			.sched_priority = MAX_RT_PRIO - 1,
		};
		struct kthread_worker *kworker;

		kworker = kthread_create_worker(0, "psimon");
		if (IS_ERR(kworker)) {
			kfree(t);
			mutex_unlock(&group->trigger_lock);
			return ERR_CAST(kworker);
		}
		sched_setscheduler(kworker->task, SCHED_FIFO, &param);
		kthread_init_delayed_work(&group->poll_work,
				psi_poll_work);
		rcu_assign_pointer(group->poll_kworker, kworker);
	}

	list_add(&t->node, &group->triggers);
	group->poll_min_period = min(group->poll_min_period,
		div_u64(t->win.size, UPDATES_PER_WINDOW));
	group->nr_triggers[t->state]++;
	group->poll_states |= (1 << t->state);

	mutex_unlock(&group->trigger_lock);

	return t;
}

static void psi_trigger_destroy(struct kref *ref)
{
	struct psi_trigger *t = container_of(ref, struct psi_trigger, refcount);
	struct psi_group *group = t->group;
	struct kthread_worker *kworker_to_destroy = NULL;

	if (static_branch_likely(&psi_disabled))
		return;

	/*
	 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
	 * from under a polling process.
	 */
	wake_up_interruptible(&t->event_wait);

	mutex_lock(&group->trigger_lock);

	if (!list_empty(&t->node)) {
		struct psi_trigger *tmp;
		u64 period = ULLONG_MAX;

		list_del(&t->node);
		group->nr_triggers[t->state]--;
		if (!group->nr_triggers[t->state])
			group->poll_states &= ~(1 << t->state);
		/* reset min update period for the remaining triggers */
		list_for_each_entry(tmp, &group->triggers, node)
			period = min(period, div_u64(tmp->win.size,
					UPDATES_PER_WINDOW));
		group->poll_min_period = period;
		/* Destroy poll_kworker when the last trigger is destroyed */
		if (group->poll_states == 0) {
			group->polling_until = 0;
			kworker_to_destroy = rcu_dereference_protected(
					group->poll_kworker,
					lockdep_is_held(&group->trigger_lock));
			rcu_assign_pointer(group->poll_kworker, NULL);
		}
	}

	mutex_unlock(&group->trigger_lock);

	/*
	 * Wait for both *trigger_ptr from psi_trigger_replace and
	 * poll_kworker RCUs to complete their read-side critical sections
	 * before destroying the trigger and optionally the poll_kworker
	 */
	synchronize_rcu();
	/*
	 * Destroy the kworker after releasing trigger_lock to prevent a
	 * deadlock while waiting for psi_poll_work to acquire trigger_lock
	 */
	if (kworker_to_destroy) {
1134 1135 1136 1137 1138 1139
		/*
		 * After the RCU grace period has expired, the worker
		 * can no longer be found through group->poll_kworker.
		 * But it might have been already scheduled before
		 * that - deschedule it cleanly before destroying it.
		 */
S
Suren Baghdasaryan 已提交
1140
		kthread_cancel_delayed_work_sync(&group->poll_work);
1141 1142
		atomic_set(&group->poll_scheduled, 0);

S
Suren Baghdasaryan 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
		kthread_destroy_worker(kworker_to_destroy);
	}
	kfree(t);
}

void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *new)
{
	struct psi_trigger *old = *trigger_ptr;

	if (static_branch_likely(&psi_disabled))
		return;

	rcu_assign_pointer(*trigger_ptr, new);
	if (old)
		kref_put(&old->refcount, psi_trigger_destroy);
}

__poll_t psi_trigger_poll(void **trigger_ptr,
				struct file *file, poll_table *wait)
{
	__poll_t ret = DEFAULT_POLLMASK;
	struct psi_trigger *t;

	if (static_branch_likely(&psi_disabled))
		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;

	rcu_read_lock();

	t = rcu_dereference(*(void __rcu __force **)trigger_ptr);
	if (!t) {
		rcu_read_unlock();
		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
	}
	kref_get(&t->refcount);

	rcu_read_unlock();

	poll_wait(file, &t->event_wait, wait);

	if (cmpxchg(&t->event, 1, 0) == 1)
		ret |= EPOLLPRI;

	kref_put(&t->refcount, psi_trigger_destroy);

	return ret;
}

static ssize_t psi_write(struct file *file, const char __user *user_buf,
			 size_t nbytes, enum psi_res res)
{
	char buf[32];
	size_t buf_size;
	struct seq_file *seq;
	struct psi_trigger *new;

	if (static_branch_likely(&psi_disabled))
		return -EOPNOTSUPP;

	buf_size = min(nbytes, (sizeof(buf) - 1));
	if (copy_from_user(buf, user_buf, buf_size))
		return -EFAULT;

	buf[buf_size - 1] = '\0';

	new = psi_trigger_create(&psi_system, buf, nbytes, res);
	if (IS_ERR(new))
		return PTR_ERR(new);

	seq = file->private_data;
	/* Take seq->lock to protect seq->private from concurrent writes */
	mutex_lock(&seq->lock);
	psi_trigger_replace(&seq->private, new);
	mutex_unlock(&seq->lock);

	return nbytes;
}

static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
			    size_t nbytes, loff_t *ppos)
{
	return psi_write(file, user_buf, nbytes, PSI_IO);
}

static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
				size_t nbytes, loff_t *ppos)
{
	return psi_write(file, user_buf, nbytes, PSI_MEM);
}

static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
			     size_t nbytes, loff_t *ppos)
{
	return psi_write(file, user_buf, nbytes, PSI_CPU);
}

static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
{
	struct seq_file *seq = file->private_data;

	return psi_trigger_poll(&seq->private, file, wait);
}

static int psi_fop_release(struct inode *inode, struct file *file)
{
	struct seq_file *seq = file->private_data;

	psi_trigger_replace(&seq->private, NULL);
	return single_release(inode, file);
}

1253 1254 1255 1256
static const struct file_operations psi_io_fops = {
	.open           = psi_io_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
S
Suren Baghdasaryan 已提交
1257 1258 1259
	.write          = psi_io_write,
	.poll           = psi_fop_poll,
	.release        = psi_fop_release,
1260 1261 1262 1263 1264 1265
};

static const struct file_operations psi_memory_fops = {
	.open           = psi_memory_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
S
Suren Baghdasaryan 已提交
1266 1267 1268
	.write          = psi_memory_write,
	.poll           = psi_fop_poll,
	.release        = psi_fop_release,
1269 1270 1271 1272 1273 1274
};

static const struct file_operations psi_cpu_fops = {
	.open           = psi_cpu_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
S
Suren Baghdasaryan 已提交
1275 1276 1277
	.write          = psi_cpu_write,
	.poll           = psi_fop_poll,
	.release        = psi_fop_release,
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
};

static int __init psi_proc_init(void)
{
	proc_mkdir("pressure", NULL);
	proc_create("pressure/io", 0, NULL, &psi_io_fops);
	proc_create("pressure/memory", 0, NULL, &psi_memory_fops);
	proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops);
	return 0;
}
module_init(psi_proc_init);