tcp_bbr.c 32.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Bottleneck Bandwidth and RTT (BBR) congestion control
 *
 * BBR congestion control computes the sending rate based on the delivery
 * rate (throughput) estimated from ACKs. In a nutshell:
 *
 *   On each ACK, update our model of the network path:
 *      bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
 *      min_rtt = windowed_min(rtt, 10 seconds)
 *   pacing_rate = pacing_gain * bottleneck_bandwidth
 *   cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
 *
 * The core algorithm does not react directly to packet losses or delays,
 * although BBR may adjust the size of next send per ACK when loss is
 * observed, or adjust the sending rate if it estimates there is a
 * traffic policer, in order to keep the drop rate reasonable.
 *
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
 * Here is a state transition diagram for BBR:
 *
 *             |
 *             V
 *    +---> STARTUP  ----+
 *    |        |         |
 *    |        V         |
 *    |      DRAIN   ----+
 *    |        |         |
 *    |        V         |
 *    +---> PROBE_BW ----+
 *    |      ^    |      |
 *    |      |    |      |
 *    |      +----+      |
 *    |                  |
 *    +---- PROBE_RTT <--+
 *
 * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
 * When it estimates the pipe is full, it enters DRAIN to drain the queue.
 * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
 * A long-lived BBR flow spends the vast majority of its time remaining
 * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
 * in a fair manner, with a small, bounded queue. *If* a flow has been
 * continuously sending for the entire min_rtt window, and hasn't seen an RTT
 * sample that matches or decreases its min_rtt estimate for 10 seconds, then
 * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
 * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
 * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
 * otherwise we enter STARTUP to try to fill the pipe.
 *
47 48 49 50 51 52 53 54
 * BBR is described in detail in:
 *   "BBR: Congestion-Based Congestion Control",
 *   Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
 *   Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
 *
 * There is a public e-mail list for discussing BBR development and testing:
 *   https://groups.google.com/forum/#!forum/bbr-dev
 *
55 56 57
 * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
 * otherwise TCP stack falls back to an internal pacing using one high
 * resolution timer per TCP socket and may use more resources.
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
 */
#include <linux/module.h>
#include <net/tcp.h>
#include <linux/inet_diag.h>
#include <linux/inet.h>
#include <linux/random.h>
#include <linux/win_minmax.h>

/* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
 * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
 * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
 * Since the minimum window is >=4 packets, the lower bound isn't
 * an issue. The upper bound isn't an issue with existing technologies.
 */
#define BW_SCALE 24
#define BW_UNIT (1 << BW_SCALE)

#define BBR_SCALE 8	/* scaling factor for fractions in BBR (e.g. gains) */
#define BBR_UNIT (1 << BBR_SCALE)

/* BBR has the following modes for deciding how fast to send: */
enum bbr_mode {
	BBR_STARTUP,	/* ramp up sending rate rapidly to fill pipe */
	BBR_DRAIN,	/* drain any queue created during startup */
	BBR_PROBE_BW,	/* discover, share bw: pace around estimated bw */
83
	BBR_PROBE_RTT,	/* cut inflight to min to probe min_rtt */
84 85 86 87 88 89 90 91 92 93
};

/* BBR congestion control block */
struct bbr {
	u32	min_rtt_us;	        /* min RTT in min_rtt_win_sec window */
	u32	min_rtt_stamp;	        /* timestamp of min_rtt_us */
	u32	probe_rtt_done_stamp;   /* end time for BBR_PROBE_RTT mode */
	struct minmax bw;	/* Max recent delivery rate in pkts/uS << 24 */
	u32	rtt_cnt;	    /* count of packet-timed rounds elapsed */
	u32     next_rtt_delivered; /* scb->tx.delivered at end of round */
94
	u64	cycle_mstamp;	     /* time of this cycle phase start */
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	u32     mode:3,		     /* current bbr_mode in state machine */
		prev_ca_state:3,     /* CA state on previous ACK */
		packet_conservation:1,  /* use packet conservation? */
		restore_cwnd:1,	     /* decided to revert cwnd to old value */
		round_start:1,	     /* start of packet-timed tx->ack round? */
		tso_segs_goal:7,     /* segments we want in each skb we send */
		idle_restart:1,	     /* restarting after idle? */
		probe_rtt_round_done:1,  /* a BBR_PROBE_RTT round at 4 pkts? */
		unused:5,
		lt_is_sampling:1,    /* taking long-term ("LT") samples now? */
		lt_rtt_cnt:7,	     /* round trips in long-term interval */
		lt_use_bw:1;	     /* use lt_bw as our bw estimate? */
	u32	lt_bw;		     /* LT est delivery rate in pkts/uS << 24 */
	u32	lt_last_delivered;   /* LT intvl start: tp->delivered */
	u32	lt_last_stamp;	     /* LT intvl start: tp->delivered_mstamp */
	u32	lt_last_lost;	     /* LT intvl start: tp->lost */
	u32	pacing_gain:10,	/* current gain for setting pacing rate */
		cwnd_gain:10,	/* current gain for setting cwnd */
		full_bw_cnt:3,	/* number of rounds without large bw gains */
		cycle_idx:3,	/* current index in pacing_gain cycle array */
		unused_b:6;
	u32	prior_cwnd;	/* prior cwnd upon entering loss recovery */
	u32	full_bw;	/* recent bw, to estimate if pipe is full */
};

#define CYCLE_LEN	8	/* number of phases in a pacing gain cycle */

/* Window length of bw filter (in rounds): */
static const int bbr_bw_rtts = CYCLE_LEN + 2;
/* Window length of min_rtt filter (in sec): */
static const u32 bbr_min_rtt_win_sec = 10;
/* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
static const u32 bbr_probe_rtt_mode_ms = 200;
/* Skip TSO below the following bandwidth (bits/sec): */
static const int bbr_min_tso_rate = 1200000;

/* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
 * that will allow a smoothly increasing pacing rate that will double each RTT
 * and send the same number of packets per RTT that an un-paced, slow-starting
 * Reno or CUBIC flow would:
 */
static const int bbr_high_gain  = BBR_UNIT * 2885 / 1000 + 1;
/* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
 * the queue created in BBR_STARTUP in a single round:
 */
static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
/* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
static const int bbr_cwnd_gain  = BBR_UNIT * 2;
/* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
static const int bbr_pacing_gain[] = {
	BBR_UNIT * 5 / 4,	/* probe for more available bw */
	BBR_UNIT * 3 / 4,	/* drain queue and/or yield bw to other flows */
	BBR_UNIT, BBR_UNIT, BBR_UNIT,	/* cruise at 1.0*bw to utilize pipe, */
	BBR_UNIT, BBR_UNIT, BBR_UNIT	/* without creating excess queue... */
};
/* Randomize the starting gain cycling phase over N phases: */
static const u32 bbr_cycle_rand = 7;

/* Try to keep at least this many packets in flight, if things go smoothly. For
 * smooth functioning, a sliding window protocol ACKing every other packet
 * needs at least 4 packets in flight:
 */
static const u32 bbr_cwnd_min_target = 4;

/* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
/* If bw has increased significantly (1.25x), there may be more bw available: */
static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
/* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
static const u32 bbr_full_bw_cnt = 3;

/* "long-term" ("LT") bandwidth estimator parameters... */
/* The minimum number of rounds in an LT bw sampling interval: */
static const u32 bbr_lt_intvl_min_rtts = 4;
/* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
static const u32 bbr_lt_loss_thresh = 50;
/* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
/* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
static const u32 bbr_lt_bw_diff = 4000 / 8;
/* If we estimate we're policed, use lt_bw for this many round trips: */
static const u32 bbr_lt_bw_max_rtts = 48;

/* Do we estimate that STARTUP filled the pipe? */
static bool bbr_full_bw_reached(const struct sock *sk)
{
	const struct bbr *bbr = inet_csk_ca(sk);

	return bbr->full_bw_cnt >= bbr_full_bw_cnt;
}

/* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
static u32 bbr_max_bw(const struct sock *sk)
{
	struct bbr *bbr = inet_csk_ca(sk);

	return minmax_get(&bbr->bw);
}

/* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
static u32 bbr_bw(const struct sock *sk)
{
	struct bbr *bbr = inet_csk_ca(sk);

	return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
}

/* Return rate in bytes per second, optionally with a gain.
 * The order here is chosen carefully to avoid overflow of u64. This should
 * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
 */
static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
{
	rate *= tcp_mss_to_mtu(sk, tcp_sk(sk)->mss_cache);
	rate *= gain;
	rate >>= BBR_SCALE;
	rate *= USEC_PER_SEC;
	return rate >> BW_SCALE;
}

/* Pace using current bw estimate and a gain factor. In order to help drive the
 * network toward lower queues while maintaining high utilization and low
 * latency, the average pacing rate aims to be slightly (~1%) lower than the
 * estimated bandwidth. This is an important aspect of the design. In this
 * implementation this slightly lower pacing rate is achieved implicitly by not
 * including link-layer headers in the packet size used for the pacing rate.
 */
static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
{
	struct bbr *bbr = inet_csk_ca(sk);
	u64 rate = bw;

	rate = bbr_rate_bytes_per_sec(sk, rate, gain);
	rate = min_t(u64, rate, sk->sk_max_pacing_rate);
	if (bbr->mode != BBR_STARTUP || rate > sk->sk_pacing_rate)
		sk->sk_pacing_rate = rate;
}

/* Return count of segments we want in the skbs we send, or 0 for default. */
static u32 bbr_tso_segs_goal(struct sock *sk)
{
	struct bbr *bbr = inet_csk_ca(sk);

	return bbr->tso_segs_goal;
}

static void bbr_set_tso_segs_goal(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct bbr *bbr = inet_csk_ca(sk);
	u32 min_segs;

	min_segs = sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
	bbr->tso_segs_goal = min(tcp_tso_autosize(sk, tp->mss_cache, min_segs),
				 0x7FU);
}

/* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
static void bbr_save_cwnd(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct bbr *bbr = inet_csk_ca(sk);

	if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
		bbr->prior_cwnd = tp->snd_cwnd;  /* this cwnd is good enough */
	else  /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
		bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
}

static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct bbr *bbr = inet_csk_ca(sk);

	if (event == CA_EVENT_TX_START && tp->app_limited) {
		bbr->idle_restart = 1;
		/* Avoid pointless buffer overflows: pace at est. bw if we don't
		 * need more speed (we're restarting from idle and app-limited).
		 */
		if (bbr->mode == BBR_PROBE_BW)
			bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
	}
}

/* Find target cwnd. Right-size the cwnd based on min RTT and the
 * estimated bottleneck bandwidth:
 *
 * cwnd = bw * min_rtt * gain = BDP * gain
 *
 * The key factor, gain, controls the amount of queue. While a small gain
 * builds a smaller queue, it becomes more vulnerable to noise in RTT
 * measurements (e.g., delayed ACKs or other ACK compression effects). This
 * noise may cause BBR to under-estimate the rate.
 *
 * To achieve full performance in high-speed paths, we budget enough cwnd to
 * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
 *   - one skb in sending host Qdisc,
 *   - one skb in sending host TSO/GSO engine
 *   - one skb being received by receiver host LRO/GRO/delayed-ACK engine
 * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
 * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
 * which allows 2 outstanding 2-packet sequences, to try to keep pipe
 * full even with ACK-every-other-packet delayed ACKs.
 */
static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
{
	struct bbr *bbr = inet_csk_ca(sk);
	u32 cwnd;
	u64 w;

	/* If we've never had a valid RTT sample, cap cwnd at the initial
	 * default. This should only happen when the connection is not using TCP
	 * timestamps and has retransmitted all of the SYN/SYNACK/data packets
	 * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
	 * case we need to slow-start up toward something safe: TCP_INIT_CWND.
	 */
	if (unlikely(bbr->min_rtt_us == ~0U))	 /* no valid RTT samples yet? */
		return TCP_INIT_CWND;  /* be safe: cap at default initial cwnd*/

	w = (u64)bw * bbr->min_rtt_us;

	/* Apply a gain to the given value, then remove the BW_SCALE shift. */
	cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;

	/* Allow enough full-sized skbs in flight to utilize end systems. */
	cwnd += 3 * bbr->tso_segs_goal;

	/* Reduce delayed ACKs by rounding up cwnd to the next even number. */
	cwnd = (cwnd + 1) & ~1U;

	return cwnd;
}

/* An optimization in BBR to reduce losses: On the first round of recovery, we
 * follow the packet conservation principle: send P packets per P packets acked.
 * After that, we slow-start and send at most 2*P packets per P packets acked.
 * After recovery finishes, or upon undo, we restore the cwnd we had when
 * recovery started (capped by the target cwnd based on estimated BDP).
 *
 * TODO(ycheng/ncardwell): implement a rate-based approach.
 */
static bool bbr_set_cwnd_to_recover_or_restore(
	struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct bbr *bbr = inet_csk_ca(sk);
	u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
	u32 cwnd = tp->snd_cwnd;

	/* An ACK for P pkts should release at most 2*P packets. We do this
	 * in two steps. First, here we deduct the number of lost packets.
	 * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
	 */
	if (rs->losses > 0)
		cwnd = max_t(s32, cwnd - rs->losses, 1);

	if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
		/* Starting 1st round of Recovery, so do packet conservation. */
		bbr->packet_conservation = 1;
		bbr->next_rtt_delivered = tp->delivered;  /* start round now */
		/* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
		cwnd = tcp_packets_in_flight(tp) + acked;
	} else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
		/* Exiting loss recovery; restore cwnd saved before recovery. */
		bbr->restore_cwnd = 1;
		bbr->packet_conservation = 0;
	}
	bbr->prev_ca_state = state;

	if (bbr->restore_cwnd) {
		/* Restore cwnd after exiting loss recovery or PROBE_RTT. */
		cwnd = max(cwnd, bbr->prior_cwnd);
		bbr->restore_cwnd = 0;
	}

	if (bbr->packet_conservation) {
		*new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
		return true;	/* yes, using packet conservation */
	}
	*new_cwnd = cwnd;
	return false;
}

/* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
 * has drawn us down below target), or snap down to target if we're above it.
 */
static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
			 u32 acked, u32 bw, int gain)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct bbr *bbr = inet_csk_ca(sk);
	u32 cwnd = 0, target_cwnd = 0;

	if (!acked)
		return;

	if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
		goto done;

	/* If we're below target cwnd, slow start cwnd toward target cwnd. */
	target_cwnd = bbr_target_cwnd(sk, bw, gain);
	if (bbr_full_bw_reached(sk))  /* only cut cwnd if we filled the pipe */
		cwnd = min(cwnd + acked, target_cwnd);
	else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
		cwnd = cwnd + acked;
	cwnd = max(cwnd, bbr_cwnd_min_target);

done:
	tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp);	/* apply global cap */
	if (bbr->mode == BBR_PROBE_RTT)  /* drain queue, refresh min_rtt */
		tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
}

/* End cycle phase if it's time and/or we hit the phase's in-flight target. */
static bool bbr_is_next_cycle_phase(struct sock *sk,
				    const struct rate_sample *rs)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct bbr *bbr = inet_csk_ca(sk);
	bool is_full_length =
414
		tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) >
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
		bbr->min_rtt_us;
	u32 inflight, bw;

	/* The pacing_gain of 1.0 paces at the estimated bw to try to fully
	 * use the pipe without increasing the queue.
	 */
	if (bbr->pacing_gain == BBR_UNIT)
		return is_full_length;		/* just use wall clock time */

	inflight = rs->prior_in_flight;  /* what was in-flight before ACK? */
	bw = bbr_max_bw(sk);

	/* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
	 * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
	 * small (e.g. on a LAN). We do not persist if packets are lost, since
	 * a path with small buffers may not hold that much.
	 */
	if (bbr->pacing_gain > BBR_UNIT)
		return is_full_length &&
			(rs->losses ||  /* perhaps pacing_gain*BDP won't fit */
			 inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));

	/* A pacing_gain < 1.0 tries to drain extra queue we added if bw
	 * probing didn't find more bw. If inflight falls to match BDP then we
	 * estimate queue is drained; persisting would underutilize the pipe.
	 */
	return is_full_length ||
		inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
}

static void bbr_advance_cycle_phase(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct bbr *bbr = inet_csk_ca(sk);

	bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
	bbr->cycle_mstamp = tp->delivered_mstamp;
	bbr->pacing_gain = bbr_pacing_gain[bbr->cycle_idx];
}

/* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
static void bbr_update_cycle_phase(struct sock *sk,
				   const struct rate_sample *rs)
{
	struct bbr *bbr = inet_csk_ca(sk);

	if ((bbr->mode == BBR_PROBE_BW) && !bbr->lt_use_bw &&
	    bbr_is_next_cycle_phase(sk, rs))
		bbr_advance_cycle_phase(sk);
}

static void bbr_reset_startup_mode(struct sock *sk)
{
	struct bbr *bbr = inet_csk_ca(sk);

	bbr->mode = BBR_STARTUP;
	bbr->pacing_gain = bbr_high_gain;
	bbr->cwnd_gain	 = bbr_high_gain;
}

static void bbr_reset_probe_bw_mode(struct sock *sk)
{
	struct bbr *bbr = inet_csk_ca(sk);

	bbr->mode = BBR_PROBE_BW;
	bbr->pacing_gain = BBR_UNIT;
	bbr->cwnd_gain = bbr_cwnd_gain;
	bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
	bbr_advance_cycle_phase(sk);	/* flip to next phase of gain cycle */
}

static void bbr_reset_mode(struct sock *sk)
{
	if (!bbr_full_bw_reached(sk))
		bbr_reset_startup_mode(sk);
	else
		bbr_reset_probe_bw_mode(sk);
}

/* Start a new long-term sampling interval. */
static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct bbr *bbr = inet_csk_ca(sk);

500
	bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC);
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	bbr->lt_last_delivered = tp->delivered;
	bbr->lt_last_lost = tp->lost;
	bbr->lt_rtt_cnt = 0;
}

/* Completely reset long-term bandwidth sampling. */
static void bbr_reset_lt_bw_sampling(struct sock *sk)
{
	struct bbr *bbr = inet_csk_ca(sk);

	bbr->lt_bw = 0;
	bbr->lt_use_bw = 0;
	bbr->lt_is_sampling = false;
	bbr_reset_lt_bw_sampling_interval(sk);
}

/* Long-term bw sampling interval is done. Estimate whether we're policed. */
static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
{
	struct bbr *bbr = inet_csk_ca(sk);
	u32 diff;

	if (bbr->lt_bw) {  /* do we have bw from a previous interval? */
		/* Is new bw close to the lt_bw from the previous interval? */
		diff = abs(bw - bbr->lt_bw);
		if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
		    (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
		     bbr_lt_bw_diff)) {
			/* All criteria are met; estimate we're policed. */
			bbr->lt_bw = (bw + bbr->lt_bw) >> 1;  /* avg 2 intvls */
			bbr->lt_use_bw = 1;
			bbr->pacing_gain = BBR_UNIT;  /* try to avoid drops */
			bbr->lt_rtt_cnt = 0;
			return;
		}
	}
	bbr->lt_bw = bw;
	bbr_reset_lt_bw_sampling_interval(sk);
}

/* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
 * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
 * explicitly models their policed rate, to reduce unnecessary losses. We
 * estimate that we're policed if we see 2 consecutive sampling intervals with
 * consistent throughput and high packet loss. If we think we're being policed,
 * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
 */
static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct bbr *bbr = inet_csk_ca(sk);
	u32 lost, delivered;
	u64 bw;
554
	u32 t;
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

	if (bbr->lt_use_bw) {	/* already using long-term rate, lt_bw? */
		if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
		    ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
			bbr_reset_lt_bw_sampling(sk);    /* stop using lt_bw */
			bbr_reset_probe_bw_mode(sk);  /* restart gain cycling */
		}
		return;
	}

	/* Wait for the first loss before sampling, to let the policer exhaust
	 * its tokens and estimate the steady-state rate allowed by the policer.
	 * Starting samples earlier includes bursts that over-estimate the bw.
	 */
	if (!bbr->lt_is_sampling) {
		if (!rs->losses)
			return;
		bbr_reset_lt_bw_sampling_interval(sk);
		bbr->lt_is_sampling = true;
	}

	/* To avoid underestimates, reset sampling if we run out of data. */
	if (rs->is_app_limited) {
		bbr_reset_lt_bw_sampling(sk);
		return;
	}

	if (bbr->round_start)
		bbr->lt_rtt_cnt++;	/* count round trips in this interval */
	if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
		return;		/* sampling interval needs to be longer */
	if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
		bbr_reset_lt_bw_sampling(sk);  /* interval is too long */
		return;
	}

	/* End sampling interval when a packet is lost, so we estimate the
	 * policer tokens were exhausted. Stopping the sampling before the
	 * tokens are exhausted under-estimates the policed rate.
	 */
	if (!rs->losses)
		return;

	/* Calculate packets lost and delivered in sampling interval. */
	lost = tp->lost - bbr->lt_last_lost;
	delivered = tp->delivered - bbr->lt_last_delivered;
	/* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
	if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
		return;

	/* Find average delivery rate in this sampling interval. */
606 607 608 609 610
	t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp;
	if ((s32)t < 1)
		return;		/* interval is less than one ms, so wait */
	/* Check if can multiply without overflow */
	if (t >= ~0U / USEC_PER_MSEC) {
611 612 613
		bbr_reset_lt_bw_sampling(sk);  /* interval too long; reset */
		return;
	}
614
	t *= USEC_PER_MSEC;
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	bw = (u64)delivered * BW_UNIT;
	do_div(bw, t);
	bbr_lt_bw_interval_done(sk, bw);
}

/* Estimate the bandwidth based on how fast packets are delivered */
static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct bbr *bbr = inet_csk_ca(sk);
	u64 bw;

	bbr->round_start = 0;
	if (rs->delivered < 0 || rs->interval_us <= 0)
		return; /* Not a valid observation */

	/* See if we've reached the next RTT */
	if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
		bbr->next_rtt_delivered = tp->delivered;
		bbr->rtt_cnt++;
		bbr->round_start = 1;
		bbr->packet_conservation = 0;
	}

	bbr_lt_bw_sampling(sk, rs);

	/* Divide delivered by the interval to find a (lower bound) bottleneck
	 * bandwidth sample. Delivered is in packets and interval_us in uS and
	 * ratio will be <<1 for most connections. So delivered is first scaled.
	 */
	bw = (u64)rs->delivered * BW_UNIT;
	do_div(bw, rs->interval_us);

	/* If this sample is application-limited, it is likely to have a very
	 * low delivered count that represents application behavior rather than
	 * the available network rate. Such a sample could drag down estimated
	 * bw, causing needless slow-down. Thus, to continue to send at the
	 * last measured network rate, we filter out app-limited samples unless
	 * they describe the path bw at least as well as our bw model.
	 *
	 * So the goal during app-limited phase is to proceed with the best
	 * network rate no matter how long. We automatically leave this
	 * phase when app writes faster than the network can deliver :)
	 */
	if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
		/* Incorporate new sample into our max bw filter. */
		minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
	}
}

/* Estimate when the pipe is full, using the change in delivery rate: BBR
 * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
 * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
 * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
 * higher rwin, 3: we get higher delivery rate samples. Or transient
 * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
 * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
 */
static void bbr_check_full_bw_reached(struct sock *sk,
				      const struct rate_sample *rs)
{
	struct bbr *bbr = inet_csk_ca(sk);
	u32 bw_thresh;

	if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
		return;

	bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
	if (bbr_max_bw(sk) >= bw_thresh) {
		bbr->full_bw = bbr_max_bw(sk);
		bbr->full_bw_cnt = 0;
		return;
	}
	++bbr->full_bw_cnt;
}

/* If pipe is probably full, drain the queue and then enter steady-state. */
static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
{
	struct bbr *bbr = inet_csk_ca(sk);

	if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
		bbr->mode = BBR_DRAIN;	/* drain queue we created */
		bbr->pacing_gain = bbr_drain_gain;	/* pace slow to drain */
		bbr->cwnd_gain = bbr_high_gain;	/* maintain cwnd */
	}	/* fall through to check if in-flight is already small: */
	if (bbr->mode == BBR_DRAIN &&
	    tcp_packets_in_flight(tcp_sk(sk)) <=
	    bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))
		bbr_reset_probe_bw_mode(sk);  /* we estimate queue is drained */
}

/* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
 * periodically drain the bottleneck queue, to converge to measure the true
 * min_rtt (unloaded propagation delay). This allows the flows to keep queues
 * small (reducing queuing delay and packet loss) and achieve fairness among
 * BBR flows.
 *
 * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
 * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
 * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
 * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
 * re-enter the previous mode. BBR uses 200ms to approximately bound the
 * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
 *
 * Note that flows need only pay 2% if they are busy sending over the last 10
 * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
 * natural silences or low-rate periods within 10 seconds where the rate is low
 * enough for long enough to drain its queue in the bottleneck. We pick up
 * these min RTT measurements opportunistically with our min_rtt filter. :-)
 */
static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct bbr *bbr = inet_csk_ca(sk);
	bool filter_expired;

	/* Track min RTT seen in the min_rtt_win_sec filter window: */
733
	filter_expired = after(tcp_jiffies32,
734 735 736 737
			       bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
	if (rs->rtt_us >= 0 &&
	    (rs->rtt_us <= bbr->min_rtt_us || filter_expired)) {
		bbr->min_rtt_us = rs->rtt_us;
738
		bbr->min_rtt_stamp = tcp_jiffies32;
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	}

	if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
	    !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
		bbr->mode = BBR_PROBE_RTT;  /* dip, drain queue */
		bbr->pacing_gain = BBR_UNIT;
		bbr->cwnd_gain = BBR_UNIT;
		bbr_save_cwnd(sk);  /* note cwnd so we can restore it */
		bbr->probe_rtt_done_stamp = 0;
	}

	if (bbr->mode == BBR_PROBE_RTT) {
		/* Ignore low rate samples during this mode. */
		tp->app_limited =
			(tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
		/* Maintain min packets in flight for max(200 ms, 1 round). */
		if (!bbr->probe_rtt_done_stamp &&
		    tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
757
			bbr->probe_rtt_done_stamp = tcp_jiffies32 +
758 759 760 761 762 763 764
				msecs_to_jiffies(bbr_probe_rtt_mode_ms);
			bbr->probe_rtt_round_done = 0;
			bbr->next_rtt_delivered = tp->delivered;
		} else if (bbr->probe_rtt_done_stamp) {
			if (bbr->round_start)
				bbr->probe_rtt_round_done = 1;
			if (bbr->probe_rtt_round_done &&
765 766
			    after(tcp_jiffies32, bbr->probe_rtt_done_stamp)) {
				bbr->min_rtt_stamp = tcp_jiffies32;
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
				bbr->restore_cwnd = 1;  /* snap to prior_cwnd */
				bbr_reset_mode(sk);
			}
		}
	}
	bbr->idle_restart = 0;
}

static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
{
	bbr_update_bw(sk, rs);
	bbr_update_cycle_phase(sk, rs);
	bbr_check_full_bw_reached(sk, rs);
	bbr_check_drain(sk, rs);
	bbr_update_min_rtt(sk, rs);
}

static void bbr_main(struct sock *sk, const struct rate_sample *rs)
{
	struct bbr *bbr = inet_csk_ca(sk);
	u32 bw;

	bbr_update_model(sk, rs);

	bw = bbr_bw(sk);
	bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
	bbr_set_tso_segs_goal(sk);
	bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
}

static void bbr_init(struct sock *sk)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct bbr *bbr = inet_csk_ca(sk);
	u64 bw;

	bbr->prior_cwnd = 0;
	bbr->tso_segs_goal = 0;	 /* default segs per skb until first ACK */
	bbr->rtt_cnt = 0;
	bbr->next_rtt_delivered = 0;
	bbr->prev_ca_state = TCP_CA_Open;
	bbr->packet_conservation = 0;

	bbr->probe_rtt_done_stamp = 0;
	bbr->probe_rtt_round_done = 0;
	bbr->min_rtt_us = tcp_min_rtt(tp);
813
	bbr->min_rtt_stamp = tcp_jiffies32;
814 815 816 817 818 819 820 821 822 823 824 825 826 827

	minmax_reset(&bbr->bw, bbr->rtt_cnt, 0);  /* init max bw to 0 */

	/* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
	bw = (u64)tp->snd_cwnd * BW_UNIT;
	do_div(bw, (tp->srtt_us >> 3) ? : USEC_PER_MSEC);
	sk->sk_pacing_rate = 0;		/* force an update of sk_pacing_rate */
	bbr_set_pacing_rate(sk, bw, bbr_high_gain);

	bbr->restore_cwnd = 0;
	bbr->round_start = 0;
	bbr->idle_restart = 0;
	bbr->full_bw = 0;
	bbr->full_bw_cnt = 0;
828
	bbr->cycle_mstamp = 0;
829 830 831
	bbr->cycle_idx = 0;
	bbr_reset_lt_bw_sampling(sk);
	bbr_reset_startup_mode(sk);
832 833

	cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
}

static u32 bbr_sndbuf_expand(struct sock *sk)
{
	/* Provision 3 * cwnd since BBR may slow-start even during recovery. */
	return 3;
}

/* In theory BBR does not need to undo the cwnd since it does not
 * always reduce cwnd on losses (see bbr_main()). Keep it for now.
 */
static u32 bbr_undo_cwnd(struct sock *sk)
{
	return tcp_sk(sk)->snd_cwnd;
}

/* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
static u32 bbr_ssthresh(struct sock *sk)
{
	bbr_save_cwnd(sk);
	return TCP_INFINITE_SSTHRESH;	 /* BBR does not use ssthresh */
}

static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
			   union tcp_cc_info *info)
{
	if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
	    ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
		struct tcp_sock *tp = tcp_sk(sk);
		struct bbr *bbr = inet_csk_ca(sk);
		u64 bw = bbr_bw(sk);

		bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
		memset(&info->bbr, 0, sizeof(info->bbr));
		info->bbr.bbr_bw_lo		= (u32)bw;
		info->bbr.bbr_bw_hi		= (u32)(bw >> 32);
		info->bbr.bbr_min_rtt		= bbr->min_rtt_us;
		info->bbr.bbr_pacing_gain	= bbr->pacing_gain;
		info->bbr.bbr_cwnd_gain		= bbr->cwnd_gain;
		*attr = INET_DIAG_BBRINFO;
		return sizeof(info->bbr);
	}
	return 0;
}

static void bbr_set_state(struct sock *sk, u8 new_state)
{
	struct bbr *bbr = inet_csk_ca(sk);

	if (new_state == TCP_CA_Loss) {
		struct rate_sample rs = { .losses = 1 };

		bbr->prev_ca_state = TCP_CA_Loss;
		bbr->full_bw = 0;
		bbr->round_start = 1;	/* treat RTO like end of a round */
		bbr_lt_bw_sampling(sk, &rs);
	}
}

static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
	.flags		= TCP_CONG_NON_RESTRICTED,
	.name		= "bbr",
	.owner		= THIS_MODULE,
	.init		= bbr_init,
	.cong_control	= bbr_main,
	.sndbuf_expand	= bbr_sndbuf_expand,
	.undo_cwnd	= bbr_undo_cwnd,
	.cwnd_event	= bbr_cwnd_event,
	.ssthresh	= bbr_ssthresh,
	.tso_segs_goal	= bbr_tso_segs_goal,
	.get_info	= bbr_get_info,
	.set_state	= bbr_set_state,
};

static int __init bbr_register(void)
{
	BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
	return tcp_register_congestion_control(&tcp_bbr_cong_ops);
}

static void __exit bbr_unregister(void)
{
	tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
}

module_init(bbr_register);
module_exit(bbr_unregister);

MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");