super.c 42.5 KB
Newer Older
1
/*
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 * fs/f2fs/super.c
 *
 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 *             http://www.samsung.com/
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/statfs.h>
#include <linux/buffer_head.h>
#include <linux/backing-dev.h>
#include <linux/kthread.h>
#include <linux/parser.h>
#include <linux/mount.h>
#include <linux/seq_file.h>
21
#include <linux/proc_fs.h>
22 23
#include <linux/random.h>
#include <linux/exportfs.h>
24
#include <linux/blkdev.h>
25
#include <linux/f2fs_fs.h>
26
#include <linux/sysfs.h>
27 28 29

#include "f2fs.h"
#include "node.h"
30
#include "segment.h"
31
#include "xattr.h"
32
#include "gc.h"
33
#include "trace.h"
34

35 36 37
#define CREATE_TRACE_POINTS
#include <trace/events/f2fs.h>

38
static struct proc_dir_entry *f2fs_proc_root;
39
static struct kmem_cache *f2fs_inode_cachep;
40
static struct kset *f2fs_kset;
41

42 43 44 45 46 47 48
/* f2fs-wide shrinker description */
static struct shrinker f2fs_shrinker_info = {
	.scan_objects = f2fs_shrink_scan,
	.count_objects = f2fs_shrink_count,
	.seeks = DEFAULT_SEEKS,
};

49
enum {
50
	Opt_gc_background,
51
	Opt_disable_roll_forward,
52
	Opt_norecovery,
53 54
	Opt_discard,
	Opt_noheap,
55
	Opt_user_xattr,
56
	Opt_nouser_xattr,
57
	Opt_acl,
58 59 60
	Opt_noacl,
	Opt_active_logs,
	Opt_disable_ext_identify,
61
	Opt_inline_xattr,
62
	Opt_inline_data,
63
	Opt_inline_dentry,
64
	Opt_flush_merge,
65
	Opt_nobarrier,
66
	Opt_fastboot,
67
	Opt_extent_cache,
68
	Opt_noextent_cache,
69
	Opt_noinline_data,
70
	Opt_data_flush,
71 72 73 74
	Opt_err,
};

static match_table_t f2fs_tokens = {
75
	{Opt_gc_background, "background_gc=%s"},
76
	{Opt_disable_roll_forward, "disable_roll_forward"},
77
	{Opt_norecovery, "norecovery"},
78 79
	{Opt_discard, "discard"},
	{Opt_noheap, "no_heap"},
80
	{Opt_user_xattr, "user_xattr"},
81
	{Opt_nouser_xattr, "nouser_xattr"},
82
	{Opt_acl, "acl"},
83 84 85
	{Opt_noacl, "noacl"},
	{Opt_active_logs, "active_logs=%u"},
	{Opt_disable_ext_identify, "disable_ext_identify"},
86
	{Opt_inline_xattr, "inline_xattr"},
87
	{Opt_inline_data, "inline_data"},
88
	{Opt_inline_dentry, "inline_dentry"},
89
	{Opt_flush_merge, "flush_merge"},
90
	{Opt_nobarrier, "nobarrier"},
91
	{Opt_fastboot, "fastboot"},
92
	{Opt_extent_cache, "extent_cache"},
93
	{Opt_noextent_cache, "noextent_cache"},
94
	{Opt_noinline_data, "noinline_data"},
95
	{Opt_data_flush, "data_flush"},
96 97 98
	{Opt_err, NULL},
};

99
/* Sysfs support for f2fs */
100 101 102
enum {
	GC_THREAD,	/* struct f2fs_gc_thread */
	SM_INFO,	/* struct f2fs_sm_info */
103
	NM_INFO,	/* struct f2fs_nm_info */
104
	F2FS_SBI,	/* struct f2fs_sb_info */
105 106
};

107 108 109 110 111
struct f2fs_attr {
	struct attribute attr;
	ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
	ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
			 const char *, size_t);
112
	int struct_type;
113 114 115
	int offset;
};

116 117 118 119 120 121
static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
{
	if (struct_type == GC_THREAD)
		return (unsigned char *)sbi->gc_thread;
	else if (struct_type == SM_INFO)
		return (unsigned char *)SM_I(sbi);
122 123
	else if (struct_type == NM_INFO)
		return (unsigned char *)NM_I(sbi);
124 125
	else if (struct_type == F2FS_SBI)
		return (unsigned char *)sbi;
126 127 128
	return NULL;
}

129 130 131 132 133 134 135 136 137 138 139 140 141
static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
		struct f2fs_sb_info *sbi, char *buf)
{
	struct super_block *sb = sbi->sb;

	if (!sb->s_bdev->bd_part)
		return snprintf(buf, PAGE_SIZE, "0\n");

	return snprintf(buf, PAGE_SIZE, "%llu\n",
		(unsigned long long)(sbi->kbytes_written +
			BD_PART_WRITTEN(sbi)));
}

142 143 144
static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
			struct f2fs_sb_info *sbi, char *buf)
{
145
	unsigned char *ptr = NULL;
146 147
	unsigned int *ui;

148 149
	ptr = __struct_ptr(sbi, a->struct_type);
	if (!ptr)
150 151
		return -EINVAL;

152
	ui = (unsigned int *)(ptr + a->offset);
153 154 155 156 157 158 159 160

	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
}

static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
			struct f2fs_sb_info *sbi,
			const char *buf, size_t count)
{
161
	unsigned char *ptr;
162 163 164 165
	unsigned long t;
	unsigned int *ui;
	ssize_t ret;

166 167
	ptr = __struct_ptr(sbi, a->struct_type);
	if (!ptr)
168 169
		return -EINVAL;

170
	ui = (unsigned int *)(ptr + a->offset);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

	ret = kstrtoul(skip_spaces(buf), 0, &t);
	if (ret < 0)
		return ret;
	*ui = t;
	return count;
}

static ssize_t f2fs_attr_show(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
								s_kobj);
	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);

	return a->show ? a->show(a, sbi, buf) : 0;
}

static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
						const char *buf, size_t len)
{
	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
									s_kobj);
	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);

	return a->store ? a->store(a, sbi, buf, len) : 0;
}

static void f2fs_sb_release(struct kobject *kobj)
{
	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
								s_kobj);
	complete(&sbi->s_kobj_unregister);
}

206
#define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
207 208 209 210
static struct f2fs_attr f2fs_attr_##_name = {			\
	.attr = {.name = __stringify(_name), .mode = _mode },	\
	.show	= _show,					\
	.store	= _store,					\
211 212
	.struct_type = _struct_type,				\
	.offset = _offset					\
213 214
}

215 216 217 218
#define F2FS_RW_ATTR(struct_type, struct_name, name, elname)	\
	F2FS_ATTR_OFFSET(struct_type, name, 0644,		\
		f2fs_sbi_show, f2fs_sbi_store,			\
		offsetof(struct struct_name, elname))
219

220 221 222
#define F2FS_GENERAL_RO_ATTR(name) \
static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)

223 224 225 226 227
F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
228
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
229
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
230 231
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
232
F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
233
F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
234
F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
235
F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
236
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
237
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
238
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
239
F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
240
F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
241 242 243 244 245 246

#define ATTR_LIST(name) (&f2fs_attr_##name.attr)
static struct attribute *f2fs_attrs[] = {
	ATTR_LIST(gc_min_sleep_time),
	ATTR_LIST(gc_max_sleep_time),
	ATTR_LIST(gc_no_gc_sleep_time),
247
	ATTR_LIST(gc_idle),
248
	ATTR_LIST(reclaim_segments),
249
	ATTR_LIST(max_small_discards),
250
	ATTR_LIST(batched_trim_sections),
251 252
	ATTR_LIST(ipu_policy),
	ATTR_LIST(min_ipu_util),
253
	ATTR_LIST(min_fsync_blocks),
254
	ATTR_LIST(max_victim_search),
255
	ATTR_LIST(dir_level),
256
	ATTR_LIST(ram_thresh),
257
	ATTR_LIST(ra_nid_pages),
258
	ATTR_LIST(dirty_nats_ratio),
259
	ATTR_LIST(cp_interval),
260
	ATTR_LIST(idle_interval),
261
	ATTR_LIST(lifetime_write_kbytes),
262 263 264 265 266 267 268 269 270 271 272 273 274 275
	NULL,
};

static const struct sysfs_ops f2fs_attr_ops = {
	.show	= f2fs_attr_show,
	.store	= f2fs_attr_store,
};

static struct kobj_type f2fs_ktype = {
	.default_attrs	= f2fs_attrs,
	.sysfs_ops	= &f2fs_attr_ops,
	.release	= f2fs_sb_release,
};

276 277 278 279 280 281 282 283 284 285 286 287
void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
{
	struct va_format vaf;
	va_list args;

	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
	va_end(args);
}

288 289 290 291 292 293 294
static void init_once(void *foo)
{
	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;

	inode_init_once(&fi->vfs_inode);
}

295 296 297
static int parse_options(struct super_block *sb, char *options)
{
	struct f2fs_sb_info *sbi = F2FS_SB(sb);
298
	struct request_queue *q;
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
	substring_t args[MAX_OPT_ARGS];
	char *p, *name;
	int arg = 0;

	if (!options)
		return 0;

	while ((p = strsep(&options, ",")) != NULL) {
		int token;
		if (!*p)
			continue;
		/*
		 * Initialize args struct so we know whether arg was
		 * found; some options take optional arguments.
		 */
		args[0].to = args[0].from = NULL;
		token = match_token(p, f2fs_tokens, args);

		switch (token) {
		case Opt_gc_background:
			name = match_strdup(&args[0]);

			if (!name)
				return -ENOMEM;
323
			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
324
				set_opt(sbi, BG_GC);
325 326
				clear_opt(sbi, FORCE_FG_GC);
			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
327
				clear_opt(sbi, BG_GC);
328 329 330 331 332
				clear_opt(sbi, FORCE_FG_GC);
			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
				set_opt(sbi, BG_GC);
				set_opt(sbi, FORCE_FG_GC);
			} else {
333 334 335 336 337 338 339 340
				kfree(name);
				return -EINVAL;
			}
			kfree(name);
			break;
		case Opt_disable_roll_forward:
			set_opt(sbi, DISABLE_ROLL_FORWARD);
			break;
341 342 343 344 345 346
		case Opt_norecovery:
			/* this option mounts f2fs with ro */
			set_opt(sbi, DISABLE_ROLL_FORWARD);
			if (!f2fs_readonly(sb))
				return -EINVAL;
			break;
347
		case Opt_discard:
348 349 350 351 352 353 354 355
			q = bdev_get_queue(sb->s_bdev);
			if (blk_queue_discard(q)) {
				set_opt(sbi, DISCARD);
			} else {
				f2fs_msg(sb, KERN_WARNING,
					"mounting with \"discard\" option, but "
					"the device does not support discard");
			}
356 357 358 359 360
			break;
		case Opt_noheap:
			set_opt(sbi, NOHEAP);
			break;
#ifdef CONFIG_F2FS_FS_XATTR
361 362 363
		case Opt_user_xattr:
			set_opt(sbi, XATTR_USER);
			break;
364 365 366
		case Opt_nouser_xattr:
			clear_opt(sbi, XATTR_USER);
			break;
367 368 369
		case Opt_inline_xattr:
			set_opt(sbi, INLINE_XATTR);
			break;
370
#else
371 372 373 374
		case Opt_user_xattr:
			f2fs_msg(sb, KERN_INFO,
				"user_xattr options not supported");
			break;
375 376 377 378
		case Opt_nouser_xattr:
			f2fs_msg(sb, KERN_INFO,
				"nouser_xattr options not supported");
			break;
379 380 381 382
		case Opt_inline_xattr:
			f2fs_msg(sb, KERN_INFO,
				"inline_xattr options not supported");
			break;
383 384
#endif
#ifdef CONFIG_F2FS_FS_POSIX_ACL
385 386 387
		case Opt_acl:
			set_opt(sbi, POSIX_ACL);
			break;
388 389 390 391
		case Opt_noacl:
			clear_opt(sbi, POSIX_ACL);
			break;
#else
392 393 394
		case Opt_acl:
			f2fs_msg(sb, KERN_INFO, "acl options not supported");
			break;
395 396 397 398 399 400 401 402 403 404 405 406 407 408
		case Opt_noacl:
			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
			break;
#endif
		case Opt_active_logs:
			if (args->from && match_int(args, &arg))
				return -EINVAL;
			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
				return -EINVAL;
			sbi->active_logs = arg;
			break;
		case Opt_disable_ext_identify:
			set_opt(sbi, DISABLE_EXT_IDENTIFY);
			break;
409 410 411
		case Opt_inline_data:
			set_opt(sbi, INLINE_DATA);
			break;
412 413 414
		case Opt_inline_dentry:
			set_opt(sbi, INLINE_DENTRY);
			break;
415 416 417
		case Opt_flush_merge:
			set_opt(sbi, FLUSH_MERGE);
			break;
418 419 420
		case Opt_nobarrier:
			set_opt(sbi, NOBARRIER);
			break;
421 422 423
		case Opt_fastboot:
			set_opt(sbi, FASTBOOT);
			break;
424 425 426
		case Opt_extent_cache:
			set_opt(sbi, EXTENT_CACHE);
			break;
427 428 429
		case Opt_noextent_cache:
			clear_opt(sbi, EXTENT_CACHE);
			break;
430 431 432
		case Opt_noinline_data:
			clear_opt(sbi, INLINE_DATA);
			break;
433 434 435
		case Opt_data_flush:
			set_opt(sbi, DATA_FLUSH);
			break;
436 437 438 439 440 441 442 443 444 445
		default:
			f2fs_msg(sb, KERN_ERR,
				"Unrecognized mount option \"%s\" or missing value",
				p);
			return -EINVAL;
		}
	}
	return 0;
}

446 447 448 449
static struct inode *f2fs_alloc_inode(struct super_block *sb)
{
	struct f2fs_inode_info *fi;

450
	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
451 452 453 454 455
	if (!fi)
		return NULL;

	init_once((void *) fi);

456
	/* Initialize f2fs-specific inode info */
457
	fi->vfs_inode.i_version = 1;
458
	atomic_set(&fi->dirty_pages, 0);
459 460
	fi->i_current_depth = 1;
	fi->i_advise = 0;
461
	init_rwsem(&fi->i_sem);
462
	INIT_LIST_HEAD(&fi->dirty_list);
J
Jaegeuk Kim 已提交
463 464
	INIT_LIST_HEAD(&fi->inmem_pages);
	mutex_init(&fi->inmem_lock);
465 466 467

	set_inode_flag(fi, FI_NEW_INODE);

468 469 470
	if (test_opt(F2FS_SB(sb), INLINE_XATTR))
		set_inode_flag(fi, FI_INLINE_XATTR);

471 472 473
	/* Will be used by directory only */
	fi->i_dir_level = F2FS_SB(sb)->dir_level;

474 475 476
#ifdef CONFIG_F2FS_FS_ENCRYPTION
	fi->i_crypt_info = NULL;
#endif
477 478 479
	return &fi->vfs_inode;
}

480 481 482 483 484 485 486 487 488
static int f2fs_drop_inode(struct inode *inode)
{
	/*
	 * This is to avoid a deadlock condition like below.
	 * writeback_single_inode(inode)
	 *  - f2fs_write_data_page
	 *    - f2fs_gc -> iput -> evict
	 *       - inode_wait_for_writeback(inode)
	 */
489 490
	if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
		if (!inode->i_nlink && !is_bad_inode(inode)) {
491 492
			/* to avoid evict_inode call simultaneously */
			atomic_inc(&inode->i_count);
493 494 495 496
			spin_unlock(&inode->i_lock);

			/* some remained atomic pages should discarded */
			if (f2fs_is_atomic_file(inode))
497
				drop_inmem_pages(inode);
498

499 500 501
			/* should remain fi->extent_tree for writepage */
			f2fs_destroy_extent_node(inode);

502 503 504 505
			sb_start_intwrite(inode->i_sb);
			i_size_write(inode, 0);

			if (F2FS_HAS_BLOCKS(inode))
506
				f2fs_truncate(inode, true);
507 508 509 510 511

			sb_end_intwrite(inode->i_sb);

#ifdef CONFIG_F2FS_FS_ENCRYPTION
			if (F2FS_I(inode)->i_crypt_info)
512 513
				f2fs_free_encryption_info(inode,
					F2FS_I(inode)->i_crypt_info);
514 515
#endif
			spin_lock(&inode->i_lock);
516
			atomic_dec(&inode->i_count);
517
		}
518
		return 0;
519
	}
520 521 522
	return generic_drop_inode(inode);
}

523 524 525 526 527 528 529 530 531 532
/*
 * f2fs_dirty_inode() is called from __mark_inode_dirty()
 *
 * We should call set_dirty_inode to write the dirty inode through write_inode.
 */
static void f2fs_dirty_inode(struct inode *inode, int flags)
{
	set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
}

533 534 535 536 537 538
static void f2fs_i_callback(struct rcu_head *head)
{
	struct inode *inode = container_of(head, struct inode, i_rcu);
	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
}

539
static void f2fs_destroy_inode(struct inode *inode)
540 541 542 543 544 545 546 547
{
	call_rcu(&inode->i_rcu, f2fs_i_callback);
}

static void f2fs_put_super(struct super_block *sb)
{
	struct f2fs_sb_info *sbi = F2FS_SB(sb);

548 549 550 551
	if (sbi->s_proc) {
		remove_proc_entry("segment_info", sbi->s_proc);
		remove_proc_entry(sb->s_id, f2fs_proc_root);
	}
552
	kobject_del(&sbi->s_kobj);
553

554 555
	stop_gc_thread(sbi);

556 557 558
	/* prevent remaining shrinker jobs */
	mutex_lock(&sbi->umount_mutex);

559 560 561 562 563
	/*
	 * We don't need to do checkpoint when superblock is clean.
	 * But, the previous checkpoint was not done by umount, it needs to do
	 * clean checkpoint again.
	 */
564
	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
565
			!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
566 567 568 569 570
		struct cp_control cpc = {
			.reason = CP_UMOUNT,
		};
		write_checkpoint(sbi, &cpc);
	}
571

572 573 574
	/* write_checkpoint can update stat informaion */
	f2fs_destroy_stats(sbi);

575 576 577 578
	/*
	 * normally superblock is clean, so we need to release this.
	 * In addition, EIO will skip do checkpoint, we need this as well.
	 */
579
	release_ino_entry(sbi);
580
	release_discard_addrs(sbi);
581

582 583 584
	f2fs_leave_shrinker(sbi);
	mutex_unlock(&sbi->umount_mutex);

585 586 587 588 589 590 591
	/* our cp_error case, we can wait for any writeback page */
	if (get_pages(sbi, F2FS_WRITEBACK)) {
		f2fs_submit_merged_bio(sbi, DATA, WRITE);
		f2fs_submit_merged_bio(sbi, NODE, WRITE);
		f2fs_submit_merged_bio(sbi, META, WRITE);
	}

592 593 594 595 596 597 598 599
	iput(sbi->node_inode);
	iput(sbi->meta_inode);

	/* destroy f2fs internal modules */
	destroy_node_manager(sbi);
	destroy_segment_manager(sbi);

	kfree(sbi->ckpt);
600 601
	kobject_put(&sbi->s_kobj);
	wait_for_completion(&sbi->s_kobj_unregister);
602 603

	sb->s_fs_info = NULL;
604
	kfree(sbi->raw_super);
605 606 607 608 609 610
	kfree(sbi);
}

int f2fs_sync_fs(struct super_block *sb, int sync)
{
	struct f2fs_sb_info *sbi = F2FS_SB(sb);
611
	int err = 0;
612

613 614
	trace_f2fs_sync_fs(sb, sync);

615
	if (sync) {
616 617
		struct cp_control cpc;

618 619
		cpc.reason = __get_cp_reason(sbi);

620
		mutex_lock(&sbi->gc_mutex);
621
		err = write_checkpoint(sbi, &cpc);
622 623
		mutex_unlock(&sbi->gc_mutex);
	}
624
	f2fs_trace_ios(NULL, 1);
625

626
	return err;
627 628
}

629 630 631 632
static int f2fs_freeze(struct super_block *sb)
{
	int err;

J
Jaegeuk Kim 已提交
633
	if (f2fs_readonly(sb))
634 635 636 637 638 639 640 641 642 643 644
		return 0;

	err = f2fs_sync_fs(sb, 1);
	return err;
}

static int f2fs_unfreeze(struct super_block *sb)
{
	return 0;
}

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
	struct super_block *sb = dentry->d_sb;
	struct f2fs_sb_info *sbi = F2FS_SB(sb);
	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
	block_t total_count, user_block_count, start_count, ovp_count;

	total_count = le64_to_cpu(sbi->raw_super->block_count);
	user_block_count = sbi->user_block_count;
	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
	buf->f_type = F2FS_SUPER_MAGIC;
	buf->f_bsize = sbi->blocksize;

	buf->f_blocks = total_count - start_count;
	buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
	buf->f_bavail = user_block_count - valid_user_blocks(sbi);

663 664
	buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
	buf->f_ffree = buf->f_files - valid_inode_count(sbi);
665

666
	buf->f_namelen = F2FS_NAME_LEN;
667 668 669 670 671 672 673 674 675 676
	buf->f_fsid.val[0] = (u32)id;
	buf->f_fsid.val[1] = (u32)(id >> 32);

	return 0;
}

static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
{
	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);

677 678 679 680 681 682
	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
		if (test_opt(sbi, FORCE_FG_GC))
			seq_printf(seq, ",background_gc=%s", "sync");
		else
			seq_printf(seq, ",background_gc=%s", "on");
	} else {
683
		seq_printf(seq, ",background_gc=%s", "off");
684
	}
685 686 687 688 689 690 691 692 693 694 695
	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
		seq_puts(seq, ",disable_roll_forward");
	if (test_opt(sbi, DISCARD))
		seq_puts(seq, ",discard");
	if (test_opt(sbi, NOHEAP))
		seq_puts(seq, ",no_heap_alloc");
#ifdef CONFIG_F2FS_FS_XATTR
	if (test_opt(sbi, XATTR_USER))
		seq_puts(seq, ",user_xattr");
	else
		seq_puts(seq, ",nouser_xattr");
696 697
	if (test_opt(sbi, INLINE_XATTR))
		seq_puts(seq, ",inline_xattr");
698 699 700 701 702 703 704 705
#endif
#ifdef CONFIG_F2FS_FS_POSIX_ACL
	if (test_opt(sbi, POSIX_ACL))
		seq_puts(seq, ",acl");
	else
		seq_puts(seq, ",noacl");
#endif
	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
706
		seq_puts(seq, ",disable_ext_identify");
707 708
	if (test_opt(sbi, INLINE_DATA))
		seq_puts(seq, ",inline_data");
709 710
	else
		seq_puts(seq, ",noinline_data");
711 712
	if (test_opt(sbi, INLINE_DENTRY))
		seq_puts(seq, ",inline_dentry");
713
	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
714
		seq_puts(seq, ",flush_merge");
715 716
	if (test_opt(sbi, NOBARRIER))
		seq_puts(seq, ",nobarrier");
717 718
	if (test_opt(sbi, FASTBOOT))
		seq_puts(seq, ",fastboot");
719 720
	if (test_opt(sbi, EXTENT_CACHE))
		seq_puts(seq, ",extent_cache");
721 722
	else
		seq_puts(seq, ",noextent_cache");
723 724
	if (test_opt(sbi, DATA_FLUSH))
		seq_puts(seq, ",data_flush");
725 726 727 728 729
	seq_printf(seq, ",active_logs=%u", sbi->active_logs);

	return 0;
}

730 731 732 733
static int segment_info_seq_show(struct seq_file *seq, void *offset)
{
	struct super_block *sb = seq->private;
	struct f2fs_sb_info *sbi = F2FS_SB(sb);
734 735
	unsigned int total_segs =
			le32_to_cpu(sbi->raw_super->segment_count_main);
736 737
	int i;

738 739 740
	seq_puts(seq, "format: segment_type|valid_blocks\n"
		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");

741
	for (i = 0; i < total_segs; i++) {
742 743 744
		struct seg_entry *se = get_seg_entry(sbi, i);

		if ((i % 10) == 0)
745
			seq_printf(seq, "%-10d", i);
746 747
		seq_printf(seq, "%d|%-3u", se->type,
					get_valid_blocks(sbi, i, 1));
748 749
		if ((i % 10) == 9 || i == (total_segs - 1))
			seq_putc(seq, '\n');
750
		else
751
			seq_putc(seq, ' ');
752
	}
753

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
	return 0;
}

static int segment_info_open_fs(struct inode *inode, struct file *file)
{
	return single_open(file, segment_info_seq_show, PDE_DATA(inode));
}

static const struct file_operations f2fs_seq_segment_info_fops = {
	.owner = THIS_MODULE,
	.open = segment_info_open_fs,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

770 771 772 773 774 775 776
static void default_options(struct f2fs_sb_info *sbi)
{
	/* init some FS parameters */
	sbi->active_logs = NR_CURSEG_TYPE;

	set_opt(sbi, BG_GC);
	set_opt(sbi, INLINE_DATA);
777
	set_opt(sbi, EXTENT_CACHE);
778 779 780 781 782 783 784 785 786

#ifdef CONFIG_F2FS_FS_XATTR
	set_opt(sbi, XATTR_USER);
#endif
#ifdef CONFIG_F2FS_FS_POSIX_ACL
	set_opt(sbi, POSIX_ACL);
#endif
}

787 788 789 790 791
static int f2fs_remount(struct super_block *sb, int *flags, char *data)
{
	struct f2fs_sb_info *sbi = F2FS_SB(sb);
	struct f2fs_mount_info org_mount_opt;
	int err, active_logs;
792 793
	bool need_restart_gc = false;
	bool need_stop_gc = false;
794
	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
795 796 797 798 799 800 801 802

	/*
	 * Save the old mount options in case we
	 * need to restore them.
	 */
	org_mount_opt = sbi->mount_opt;
	active_logs = sbi->active_logs;

803 804 805 806 807 808 809
	if (*flags & MS_RDONLY) {
		set_opt(sbi, FASTBOOT);
		set_sbi_flag(sbi, SBI_IS_DIRTY);
	}

	sync_filesystem(sb);

810
	sbi->mount_opt.opt = 0;
811
	default_options(sbi);
812

813 814 815 816 817 818 819
	/* parse mount options */
	err = parse_options(sb, data);
	if (err)
		goto restore_opts;

	/*
	 * Previous and new state of filesystem is RO,
820
	 * so skip checking GC and FLUSH_MERGE conditions.
821
	 */
822
	if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
823 824
		goto skip;

825 826 827 828 829 830 831 832
	/* disallow enable/disable extent_cache dynamically */
	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
		err = -EINVAL;
		f2fs_msg(sbi->sb, KERN_WARNING,
				"switch extent_cache option is not allowed");
		goto restore_opts;
	}

833 834 835 836 837 838 839 840 841
	/*
	 * We stop the GC thread if FS is mounted as RO
	 * or if background_gc = off is passed in mount
	 * option. Also sync the filesystem.
	 */
	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
		if (sbi->gc_thread) {
			stop_gc_thread(sbi);
			f2fs_sync_fs(sb, 1);
842
			need_restart_gc = true;
843
		}
844
	} else if (!sbi->gc_thread) {
845 846 847
		err = start_gc_thread(sbi);
		if (err)
			goto restore_opts;
848 849 850 851 852 853 854 855
		need_stop_gc = true;
	}

	/*
	 * We stop issue flush thread if FS is mounted as RO
	 * or if flush_merge is not passed in mount option.
	 */
	if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
856
		destroy_flush_cmd_control(sbi);
857
	} else if (!SM_I(sbi)->cmd_control_info) {
858 859
		err = create_flush_cmd_control(sbi);
		if (err)
860
			goto restore_gc;
861 862 863 864 865 866
	}
skip:
	/* Update the POSIXACL Flag */
	 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
	return 0;
867 868 869 870
restore_gc:
	if (need_restart_gc) {
		if (start_gc_thread(sbi))
			f2fs_msg(sbi->sb, KERN_WARNING,
A
arter97 已提交
871
				"background gc thread has stopped");
872 873 874
	} else if (need_stop_gc) {
		stop_gc_thread(sbi);
	}
875 876 877 878 879 880
restore_opts:
	sbi->mount_opt = org_mount_opt;
	sbi->active_logs = active_logs;
	return err;
}

881 882
static struct super_operations f2fs_sops = {
	.alloc_inode	= f2fs_alloc_inode,
883
	.drop_inode	= f2fs_drop_inode,
884 885
	.destroy_inode	= f2fs_destroy_inode,
	.write_inode	= f2fs_write_inode,
886
	.dirty_inode	= f2fs_dirty_inode,
887 888 889 890
	.show_options	= f2fs_show_options,
	.evict_inode	= f2fs_evict_inode,
	.put_super	= f2fs_put_super,
	.sync_fs	= f2fs_sync_fs,
891 892
	.freeze_fs	= f2fs_freeze,
	.unfreeze_fs	= f2fs_unfreeze,
893
	.statfs		= f2fs_statfs,
894
	.remount_fs	= f2fs_remount,
895 896 897 898 899 900 901 902
};

static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
		u64 ino, u32 generation)
{
	struct f2fs_sb_info *sbi = F2FS_SB(sb);
	struct inode *inode;

903
	if (check_nid_range(sbi, ino))
904
		return ERR_PTR(-ESTALE);
905 906 907 908 909 910 911 912 913

	/*
	 * f2fs_iget isn't quite right if the inode is currently unallocated!
	 * However f2fs_iget currently does appropriate checks to handle stale
	 * inodes so everything is OK.
	 */
	inode = f2fs_iget(sb, ino);
	if (IS_ERR(inode))
		return ERR_CAST(inode);
914
	if (unlikely(generation && inode->i_generation != generation)) {
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
		/* we didn't find the right inode.. */
		iput(inode);
		return ERR_PTR(-ESTALE);
	}
	return inode;
}

static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
		int fh_len, int fh_type)
{
	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
				    f2fs_nfs_get_inode);
}

static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
		int fh_len, int fh_type)
{
	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
				    f2fs_nfs_get_inode);
}

static const struct export_operations f2fs_export_ops = {
	.fh_to_dentry = f2fs_fh_to_dentry,
	.fh_to_parent = f2fs_fh_to_parent,
	.get_parent = f2fs_get_parent,
};

942
static loff_t max_file_blocks(void)
943
{
944
	loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	loff_t leaf_count = ADDRS_PER_BLOCK;

	/* two direct node blocks */
	result += (leaf_count * 2);

	/* two indirect node blocks */
	leaf_count *= NIDS_PER_BLOCK;
	result += (leaf_count * 2);

	/* one double indirect node block */
	leaf_count *= NIDS_PER_BLOCK;
	result += leaf_count;

	return result;
}

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
static inline bool sanity_check_area_boundary(struct super_block *sb,
					struct f2fs_super_block *raw_super)
{
	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
	u32 segment_count = le32_to_cpu(raw_super->segment_count);
	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);

	if (segment0_blkaddr != cp_blkaddr) {
		f2fs_msg(sb, KERN_INFO,
			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
			segment0_blkaddr, cp_blkaddr);
		return true;
	}

	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
							sit_blkaddr) {
		f2fs_msg(sb, KERN_INFO,
			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
			cp_blkaddr, sit_blkaddr,
			segment_count_ckpt << log_blocks_per_seg);
		return true;
	}

	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
							nat_blkaddr) {
		f2fs_msg(sb, KERN_INFO,
			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
			sit_blkaddr, nat_blkaddr,
			segment_count_sit << log_blocks_per_seg);
		return true;
	}

	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
							ssa_blkaddr) {
		f2fs_msg(sb, KERN_INFO,
			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
			nat_blkaddr, ssa_blkaddr,
			segment_count_nat << log_blocks_per_seg);
		return true;
	}

	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
							main_blkaddr) {
		f2fs_msg(sb, KERN_INFO,
			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
			ssa_blkaddr, main_blkaddr,
			segment_count_ssa << log_blocks_per_seg);
		return true;
	}

	if (main_blkaddr + (segment_count_main << log_blocks_per_seg) !=
		segment0_blkaddr + (segment_count << log_blocks_per_seg)) {
		f2fs_msg(sb, KERN_INFO,
			"Wrong MAIN_AREA boundary, start(%u) end(%u) blocks(%u)",
			main_blkaddr,
			segment0_blkaddr + (segment_count << log_blocks_per_seg),
			segment_count_main << log_blocks_per_seg);
		return true;
	}

	return false;
}

1034 1035
static int sanity_check_raw_super(struct super_block *sb,
			struct f2fs_super_block *raw_super)
1036 1037 1038
{
	unsigned int blocksize;

1039 1040 1041 1042
	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
		f2fs_msg(sb, KERN_INFO,
			"Magic Mismatch, valid(0x%x) - read(0x%x)",
			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1043
		return 1;
1044
	}
1045

1046 1047 1048
	/* Currently, support only 4KB page cache size */
	if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
		f2fs_msg(sb, KERN_INFO,
1049
			"Invalid page_cache_size (%lu), supports only 4KB\n",
1050 1051 1052 1053
			PAGE_CACHE_SIZE);
		return 1;
	}

1054 1055
	/* Currently, support only 4KB block size */
	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1056
	if (blocksize != F2FS_BLKSIZE) {
1057 1058 1059
		f2fs_msg(sb, KERN_INFO,
			"Invalid blocksize (%u), supports only 4KB\n",
			blocksize);
1060
		return 1;
1061
	}
1062

1063 1064 1065 1066 1067 1068 1069 1070
	/* check log blocks per segment */
	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
		f2fs_msg(sb, KERN_INFO,
			"Invalid log blocks per segment (%u)\n",
			le32_to_cpu(raw_super->log_blocks_per_seg));
		return 1;
	}

C
Chao Yu 已提交
1071 1072 1073 1074 1075 1076 1077
	/* Currently, support 512/1024/2048/4096 bytes sector size */
	if (le32_to_cpu(raw_super->log_sectorsize) >
				F2FS_MAX_LOG_SECTOR_SIZE ||
		le32_to_cpu(raw_super->log_sectorsize) <
				F2FS_MIN_LOG_SECTOR_SIZE) {
		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
			le32_to_cpu(raw_super->log_sectorsize));
1078
		return 1;
1079
	}
C
Chao Yu 已提交
1080 1081 1082 1083 1084 1085 1086
	if (le32_to_cpu(raw_super->log_sectors_per_block) +
		le32_to_cpu(raw_super->log_sectorsize) !=
			F2FS_MAX_LOG_SECTOR_SIZE) {
		f2fs_msg(sb, KERN_INFO,
			"Invalid log sectors per block(%u) log sectorsize(%u)",
			le32_to_cpu(raw_super->log_sectors_per_block),
			le32_to_cpu(raw_super->log_sectorsize));
1087
		return 1;
1088
	}
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

	/* check reserved ino info */
	if (le32_to_cpu(raw_super->node_ino) != 1 ||
		le32_to_cpu(raw_super->meta_ino) != 2 ||
		le32_to_cpu(raw_super->root_ino) != 3) {
		f2fs_msg(sb, KERN_INFO,
			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
			le32_to_cpu(raw_super->node_ino),
			le32_to_cpu(raw_super->meta_ino),
			le32_to_cpu(raw_super->root_ino));
		return 1;
	}

	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
	if (sanity_check_area_boundary(sb, raw_super))
		return 1;

1106 1107 1108
	return 0;
}

1109
int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1110 1111
{
	unsigned int total, fsmeta;
1112 1113
	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1114 1115 1116 1117 1118 1119 1120 1121

	total = le32_to_cpu(raw_super->segment_count);
	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);

1122
	if (unlikely(fsmeta >= total))
1123
		return 1;
1124

1125
	if (unlikely(f2fs_cp_error(sbi))) {
1126 1127 1128
		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
		return 1;
	}
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	return 0;
}

static void init_sb_info(struct f2fs_sb_info *sbi)
{
	struct f2fs_super_block *raw_super = sbi->raw_super;
	int i;

	sbi->log_sectors_per_block =
		le32_to_cpu(raw_super->log_sectors_per_block);
	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
	sbi->blocksize = 1 << sbi->log_blocksize;
	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
	sbi->total_sections = le32_to_cpu(raw_super->section_count);
	sbi->total_node_count =
		(le32_to_cpu(raw_super->segment_count_nat) / 2)
			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1152
	sbi->cur_victim_sec = NULL_SECNO;
1153
	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1154 1155 1156

	for (i = 0; i < NR_COUNT_TYPE; i++)
		atomic_set(&sbi->nr_pages[i], 0);
1157 1158

	sbi->dir_level = DEF_DIR_LEVEL;
1159
	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1160
	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1161
	clear_sbi_flag(sbi, SBI_NEED_FSCK);
1162 1163 1164

	INIT_LIST_HEAD(&sbi->s_list);
	mutex_init(&sbi->umount_mutex);
1165 1166
}

1167 1168
/*
 * Read f2fs raw super block.
1169 1170 1171
 * Because we have two copies of super block, so read both of them
 * to get the first valid one. If any one of them is broken, we pass
 * them recovery flag back to the caller.
1172 1173 1174
 */
static int read_raw_super_block(struct super_block *sb,
			struct f2fs_super_block **raw_super,
1175
			int *valid_super_block, int *recovery)
1176
{
1177
	int block;
1178 1179
	struct buffer_head *bh;
	struct f2fs_super_block *super, *buf;
1180
	int err = 0;
1181

1182 1183 1184
	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
	if (!super)
		return -ENOMEM;
1185 1186 1187 1188 1189

	for (block = 0; block < 2; block++) {
		bh = sb_bread(sb, block);
		if (!bh) {
			f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1190
				block + 1);
1191 1192 1193
			err = -EIO;
			continue;
		}
1194

1195 1196
		buf = (struct f2fs_super_block *)
				(bh->b_data + F2FS_SUPER_OFFSET);
1197

1198 1199 1200 1201 1202 1203 1204 1205 1206
		/* sanity checking of raw super */
		if (sanity_check_raw_super(sb, buf)) {
			f2fs_msg(sb, KERN_ERR,
				"Can't find valid F2FS filesystem in %dth superblock",
				block + 1);
			err = -EINVAL;
			brelse(bh);
			continue;
		}
1207

1208 1209 1210 1211 1212 1213
		if (!*raw_super) {
			memcpy(super, buf, sizeof(*super));
			*valid_super_block = block;
			*raw_super = super;
		}
		brelse(bh);
1214 1215
	}

1216 1217 1218
	/* Fail to read any one of the superblocks*/
	if (err < 0)
		*recovery = 1;
1219 1220

	/* No valid superblock */
1221
	if (!*raw_super)
1222
		kfree(super);
1223 1224
	else
		err = 0;
1225

1226
	return err;
1227 1228
}

1229
static int __f2fs_commit_super(struct f2fs_sb_info *sbi, int block)
1230
{
1231
	struct f2fs_super_block *super = F2FS_RAW_SUPER(sbi);
1232
	struct buffer_head *bh;
1233 1234
	int err;

1235
	bh = sb_getblk(sbi->sb, block);
1236 1237
	if (!bh)
		return -EIO;
1238

1239
	lock_buffer(bh);
1240
	memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1241 1242 1243 1244 1245 1246 1247
	set_buffer_uptodate(bh);
	set_buffer_dirty(bh);
	unlock_buffer(bh);

	/* it's rare case, we can do fua all the time */
	err = __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
	brelse(bh);
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	return err;
}

int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
{
	int err;

	/* write back-up superblock first */
	err = __f2fs_commit_super(sbi, sbi->valid_super_block ? 0 : 1);

1259 1260
	/* if we are in recovery path, skip writing valid superblock */
	if (recover || err)
1261
		return err;
1262 1263

	/* write current valid superblock */
1264
	return __f2fs_commit_super(sbi, sbi->valid_super_block);
1265 1266
}

1267 1268 1269
static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
{
	struct f2fs_sb_info *sbi;
1270
	struct f2fs_super_block *raw_super;
1271
	struct inode *root;
1272
	long err;
1273
	bool retry = true, need_fsck = false;
1274
	char *options = NULL;
1275
	int recovery, i, valid_super_block;
1276
	struct curseg_info *seg_i;
1277

1278
try_onemore:
1279 1280
	err = -EINVAL;
	raw_super = NULL;
1281
	valid_super_block = -1;
1282 1283
	recovery = 0;

1284 1285 1286 1287 1288
	/* allocate memory for f2fs-specific super block info */
	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
	if (!sbi)
		return -ENOMEM;

1289
	/* set a block size */
1290
	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1291
		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1292
		goto free_sbi;
1293
	}
1294

1295 1296
	err = read_raw_super_block(sb, &raw_super, &valid_super_block,
								&recovery);
1297 1298 1299
	if (err)
		goto free_sbi;

1300
	sb->s_fs_info = sbi;
1301
	default_options(sbi);
1302
	/* parse mount options */
1303 1304 1305
	options = kstrdup((const char *)data, GFP_KERNEL);
	if (data && !options) {
		err = -ENOMEM;
1306
		goto free_sb_buf;
1307 1308 1309 1310 1311
	}

	err = parse_options(sb, options);
	if (err)
		goto free_options;
1312

1313 1314 1315
	sbi->max_file_blocks = max_file_blocks();
	sb->s_maxbytes = sbi->max_file_blocks <<
				le32_to_cpu(raw_super->log_blocksize);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	sb->s_max_links = F2FS_LINK_MAX;
	get_random_bytes(&sbi->s_next_generation, sizeof(u32));

	sb->s_op = &f2fs_sops;
	sb->s_xattr = f2fs_xattr_handlers;
	sb->s_export_op = &f2fs_export_ops;
	sb->s_magic = F2FS_SUPER_MAGIC;
	sb->s_time_gran = 1;
	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));

	/* init f2fs-specific super block info */
	sbi->sb = sb;
	sbi->raw_super = raw_super;
1331
	sbi->valid_super_block = valid_super_block;
1332
	mutex_init(&sbi->gc_mutex);
1333
	mutex_init(&sbi->writepages);
1334
	mutex_init(&sbi->cp_mutex);
1335
	init_rwsem(&sbi->node_write);
1336 1337 1338

	/* disallow all the data/node/meta page writes */
	set_sbi_flag(sbi, SBI_POR_DOING);
1339
	spin_lock_init(&sbi->stat_lock);
1340

1341
	init_rwsem(&sbi->read_io.io_rwsem);
1342 1343 1344
	sbi->read_io.sbi = sbi;
	sbi->read_io.bio = NULL;
	for (i = 0; i < NR_PAGE_TYPE; i++) {
1345
		init_rwsem(&sbi->write_io[i].io_rwsem);
1346 1347 1348
		sbi->write_io[i].sbi = sbi;
		sbi->write_io[i].bio = NULL;
	}
1349

1350
	init_rwsem(&sbi->cp_rwsem);
1351
	init_waitqueue_head(&sbi->cp_wait);
1352 1353 1354 1355 1356
	init_sb_info(sbi);

	/* get an inode for meta space */
	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
	if (IS_ERR(sbi->meta_inode)) {
1357
		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1358
		err = PTR_ERR(sbi->meta_inode);
1359
		goto free_options;
1360 1361 1362
	}

	err = get_valid_checkpoint(sbi);
1363 1364
	if (err) {
		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1365
		goto free_meta_inode;
1366
	}
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

	sbi->total_valid_node_count =
				le32_to_cpu(sbi->ckpt->valid_node_count);
	sbi->total_valid_inode_count =
				le32_to_cpu(sbi->ckpt->valid_inode_count);
	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
	sbi->total_valid_block_count =
				le64_to_cpu(sbi->ckpt->valid_block_count);
	sbi->last_valid_block_count = sbi->total_valid_block_count;
	sbi->alloc_valid_block_count = 0;
1377 1378 1379 1380
	for (i = 0; i < NR_INODE_TYPE; i++) {
		INIT_LIST_HEAD(&sbi->inode_list[i]);
		spin_lock_init(&sbi->inode_lock[i]);
	}
1381

1382 1383
	init_extent_cache_info(sbi);

1384
	init_ino_entry_info(sbi);
1385 1386 1387

	/* setup f2fs internal modules */
	err = build_segment_manager(sbi);
1388 1389 1390
	if (err) {
		f2fs_msg(sb, KERN_ERR,
			"Failed to initialize F2FS segment manager");
1391
		goto free_sm;
1392
	}
1393
	err = build_node_manager(sbi);
1394 1395 1396
	if (err) {
		f2fs_msg(sb, KERN_ERR,
			"Failed to initialize F2FS node manager");
1397
		goto free_nm;
1398
	}
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408
	/* For write statistics */
	if (sb->s_bdev->bd_part)
		sbi->sectors_written_start =
			(u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);

	/* Read accumulated write IO statistics if exists */
	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
	if (__exist_node_summaries(sbi))
		sbi->kbytes_written =
1409
			le64_to_cpu(seg_i->sum_blk->journal.info.kbytes_written);
1410

1411 1412 1413 1414 1415
	build_gc_manager(sbi);

	/* get an inode for node space */
	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
	if (IS_ERR(sbi->node_inode)) {
1416
		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1417 1418 1419 1420
		err = PTR_ERR(sbi->node_inode);
		goto free_nm;
	}

1421 1422
	f2fs_join_shrinker(sbi);

1423
	/* if there are nt orphan nodes free them */
1424 1425 1426
	err = recover_orphan_inodes(sbi);
	if (err)
		goto free_node_inode;
1427 1428 1429 1430

	/* read root inode and dentry */
	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
	if (IS_ERR(root)) {
1431
		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1432 1433 1434
		err = PTR_ERR(root);
		goto free_node_inode;
	}
1435
	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1436
		iput(root);
1437
		err = -EINVAL;
1438
		goto free_node_inode;
1439
	}
1440 1441 1442 1443 1444 1445 1446 1447 1448

	sb->s_root = d_make_root(root); /* allocate root dentry */
	if (!sb->s_root) {
		err = -ENOMEM;
		goto free_root_inode;
	}

	err = f2fs_build_stats(sbi);
	if (err)
1449
		goto free_root_inode;
1450

1451 1452 1453 1454 1455 1456 1457
	if (f2fs_proc_root)
		sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);

	if (sbi->s_proc)
		proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
				 &f2fs_seq_segment_info_fops, sb);

1458 1459 1460 1461 1462
	sbi->s_kobj.kset = f2fs_kset;
	init_completion(&sbi->s_kobj_unregister);
	err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
							"%s", sb->s_id);
	if (err)
1463
		goto free_proc;
1464

1465 1466
	/* recover fsynced data */
	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1467 1468 1469 1470 1471 1472 1473 1474 1475
		/*
		 * mount should be failed, when device has readonly mode, and
		 * previous checkpoint was not done by clean system shutdown.
		 */
		if (bdev_read_only(sb->s_bdev) &&
				!is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
			err = -EROFS;
			goto free_kobj;
		}
1476 1477 1478 1479

		if (need_fsck)
			set_sbi_flag(sbi, SBI_NEED_FSCK);

1480
		err = recover_fsync_data(sbi);
1481
		if (err) {
1482
			need_fsck = true;
1483 1484
			f2fs_msg(sb, KERN_ERR,
				"Cannot recover all fsync data errno=%ld", err);
1485 1486
			goto free_kobj;
		}
1487
	}
1488 1489
	/* recover_fsync_data() cleared this already */
	clear_sbi_flag(sbi, SBI_POR_DOING);
1490

1491 1492 1493 1494
	/*
	 * If filesystem is not mounted as read-only then
	 * do start the gc_thread.
	 */
1495
	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1496 1497 1498 1499 1500
		/* After POR, we can run background GC thread.*/
		err = start_gc_thread(sbi);
		if (err)
			goto free_kobj;
	}
1501
	kfree(options);
1502 1503 1504 1505

	/* recover broken superblock */
	if (recovery && !f2fs_readonly(sb) && !bdev_read_only(sb->s_bdev)) {
		f2fs_msg(sb, KERN_INFO, "Recover invalid superblock");
1506
		f2fs_commit_super(sbi, true);
1507 1508
	}

1509
	f2fs_update_time(sbi, CP_TIME);
1510
	f2fs_update_time(sbi, REQ_TIME);
1511
	return 0;
1512 1513 1514

free_kobj:
	kobject_del(&sbi->s_kobj);
1515 1516
	kobject_put(&sbi->s_kobj);
	wait_for_completion(&sbi->s_kobj_unregister);
1517
free_proc:
1518 1519 1520 1521 1522
	if (sbi->s_proc) {
		remove_proc_entry("segment_info", sbi->s_proc);
		remove_proc_entry(sb->s_id, f2fs_proc_root);
	}
	f2fs_destroy_stats(sbi);
1523 1524 1525 1526
free_root_inode:
	dput(sb->s_root);
	sb->s_root = NULL;
free_node_inode:
1527 1528
	mutex_lock(&sbi->umount_mutex);
	f2fs_leave_shrinker(sbi);
1529
	iput(sbi->node_inode);
1530
	mutex_unlock(&sbi->umount_mutex);
1531 1532 1533 1534 1535 1536 1537 1538
free_nm:
	destroy_node_manager(sbi);
free_sm:
	destroy_segment_manager(sbi);
	kfree(sbi->ckpt);
free_meta_inode:
	make_bad_inode(sbi->meta_inode);
	iput(sbi->meta_inode);
1539 1540
free_options:
	kfree(options);
1541
free_sb_buf:
1542
	kfree(raw_super);
1543 1544
free_sbi:
	kfree(sbi);
1545 1546 1547

	/* give only one another chance */
	if (retry) {
1548
		retry = false;
1549 1550 1551
		shrink_dcache_sb(sb);
		goto try_onemore;
	}
1552 1553 1554 1555 1556 1557 1558 1559 1560
	return err;
}

static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
			const char *dev_name, void *data)
{
	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
}

1561 1562 1563
static void kill_f2fs_super(struct super_block *sb)
{
	if (sb->s_root)
1564
		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1565 1566 1567
	kill_block_super(sb);
}

1568 1569 1570 1571
static struct file_system_type f2fs_fs_type = {
	.owner		= THIS_MODULE,
	.name		= "f2fs",
	.mount		= f2fs_mount,
1572
	.kill_sb	= kill_f2fs_super,
1573 1574
	.fs_flags	= FS_REQUIRES_DEV,
};
1575
MODULE_ALIAS_FS("f2fs");
1576

1577
static int __init init_inodecache(void)
1578
{
1579 1580 1581
	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
			sizeof(struct f2fs_inode_info), 0,
			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1582
	if (!f2fs_inode_cachep)
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
		return -ENOMEM;
	return 0;
}

static void destroy_inodecache(void)
{
	/*
	 * Make sure all delayed rcu free inodes are flushed before we
	 * destroy cache.
	 */
	rcu_barrier();
	kmem_cache_destroy(f2fs_inode_cachep);
}

static int __init init_f2fs_fs(void)
{
	int err;

1601 1602
	f2fs_build_trace_ios();

1603 1604 1605 1606 1607
	err = init_inodecache();
	if (err)
		goto fail;
	err = create_node_manager_caches();
	if (err)
1608
		goto free_inodecache;
1609
	err = create_segment_manager_caches();
1610
	if (err)
1611
		goto free_node_manager_caches;
1612 1613
	err = create_checkpoint_caches();
	if (err)
1614
		goto free_segment_manager_caches;
1615 1616 1617
	err = create_extent_cache();
	if (err)
		goto free_checkpoint_caches;
1618
	f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1619 1620
	if (!f2fs_kset) {
		err = -ENOMEM;
1621
		goto free_extent_cache;
1622
	}
1623
	err = f2fs_init_crypto();
1624
	if (err)
1625
		goto free_kset;
1626 1627

	err = register_shrinker(&f2fs_shrinker_info);
1628 1629
	if (err)
		goto free_crypto;
1630 1631 1632 1633

	err = register_filesystem(&f2fs_fs_type);
	if (err)
		goto free_shrinker;
1634 1635 1636
	err = f2fs_create_root_stats();
	if (err)
		goto free_filesystem;
1637
	f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1638 1639
	return 0;

1640 1641
free_filesystem:
	unregister_filesystem(&f2fs_fs_type);
1642 1643
free_shrinker:
	unregister_shrinker(&f2fs_shrinker_info);
1644 1645
free_crypto:
	f2fs_exit_crypto();
1646 1647
free_kset:
	kset_unregister(f2fs_kset);
1648 1649
free_extent_cache:
	destroy_extent_cache();
1650 1651
free_checkpoint_caches:
	destroy_checkpoint_caches();
1652 1653
free_segment_manager_caches:
	destroy_segment_manager_caches();
1654 1655 1656 1657
free_node_manager_caches:
	destroy_node_manager_caches();
free_inodecache:
	destroy_inodecache();
1658 1659 1660 1661 1662 1663
fail:
	return err;
}

static void __exit exit_f2fs_fs(void)
{
1664
	remove_proc_entry("fs/f2fs", NULL);
1665
	f2fs_destroy_root_stats();
1666
	unregister_shrinker(&f2fs_shrinker_info);
1667
	unregister_filesystem(&f2fs_fs_type);
1668
	f2fs_exit_crypto();
1669
	destroy_extent_cache();
1670
	destroy_checkpoint_caches();
1671
	destroy_segment_manager_caches();
1672 1673
	destroy_node_manager_caches();
	destroy_inodecache();
1674
	kset_unregister(f2fs_kset);
1675
	f2fs_destroy_trace_ios();
1676 1677 1678 1679 1680 1681 1682 1683
}

module_init(init_f2fs_fs)
module_exit(exit_f2fs_fs)

MODULE_AUTHOR("Samsung Electronics's Praesto Team");
MODULE_DESCRIPTION("Flash Friendly File System");
MODULE_LICENSE("GPL");
新手
引导
客服 返回
顶部