pgtable.c 13.3 KB
Newer Older
1
#include <linux/mm.h>
2
#include <linux/gfp.h>
3
#include <asm/pgalloc.h>
4
#include <asm/pgtable.h>
5
#include <asm/tlb.h>
I
Ingo Molnar 已提交
6
#include <asm/fixmap.h>
7

8 9
#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO

10 11 12 13 14 15 16 17
#ifdef CONFIG_HIGHPTE
#define PGALLOC_USER_GFP __GFP_HIGHMEM
#else
#define PGALLOC_USER_GFP 0
#endif

gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;

18 19
pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
{
20
	return (pte_t *)__get_free_page(PGALLOC_GFP);
21 22 23 24 25 26
}

pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
{
	struct page *pte;

27
	pte = alloc_pages(__userpte_alloc_gfp, 0);
28 29 30 31 32 33
	if (!pte)
		return NULL;
	if (!pgtable_page_ctor(pte)) {
		__free_page(pte);
		return NULL;
	}
34 35 36
	return pte;
}

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
static int __init setup_userpte(char *arg)
{
	if (!arg)
		return -EINVAL;

	/*
	 * "userpte=nohigh" disables allocation of user pagetables in
	 * high memory.
	 */
	if (strcmp(arg, "nohigh") == 0)
		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
	else
		return -EINVAL;
	return 0;
}
early_param("userpte", setup_userpte);

54
void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
55 56
{
	pgtable_page_dtor(pte);
57
	paravirt_release_pte(page_to_pfn(pte));
58 59 60
	tlb_remove_page(tlb, pte);
}

61
#if CONFIG_PGTABLE_LEVELS > 2
62
void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
63
{
64
	struct page *page = virt_to_page(pmd);
65
	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
66 67 68 69 70 71 72
	/*
	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
	 * entries need a full cr3 reload to flush.
	 */
#ifdef CONFIG_X86_PAE
	tlb->need_flush_all = 1;
#endif
73 74
	pgtable_pmd_page_dtor(page);
	tlb_remove_page(tlb, page);
75
}
76

77
#if CONFIG_PGTABLE_LEVELS > 3
78
void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
79
{
80
	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
81 82
	tlb_remove_page(tlb, virt_to_page(pud));
}
83 84
#endif	/* CONFIG_PGTABLE_LEVELS > 3 */
#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
85

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
static inline void pgd_list_add(pgd_t *pgd)
{
	struct page *page = virt_to_page(pgd);

	list_add(&page->lru, &pgd_list);
}

static inline void pgd_list_del(pgd_t *pgd)
{
	struct page *page = virt_to_page(pgd);

	list_del(&page->lru);
}

#define UNSHARED_PTRS_PER_PGD				\
J
Jeremy Fitzhardinge 已提交
101
	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
102

103 104 105 106 107 108 109 110 111 112 113 114 115

static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
{
	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
	virt_to_page(pgd)->index = (pgoff_t)mm;
}

struct mm_struct *pgd_page_get_mm(struct page *page)
{
	return (struct mm_struct *)page->index;
}

static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
116 117 118 119
{
	/* If the pgd points to a shared pagetable level (either the
	   ptes in non-PAE, or shared PMD in PAE), then just copy the
	   references from swapper_pg_dir. */
120 121 122
	if (CONFIG_PGTABLE_LEVELS == 2 ||
	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
	    CONFIG_PGTABLE_LEVELS == 4) {
J
Jeremy Fitzhardinge 已提交
123 124
		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
125 126 127 128
				KERNEL_PGD_PTRS);
	}

	/* list required to sync kernel mapping updates */
129 130
	if (!SHARED_KERNEL_PMD) {
		pgd_set_mm(pgd, mm);
131
		pgd_list_add(pgd);
132
	}
133 134
}

J
Jan Beulich 已提交
135
static void pgd_dtor(pgd_t *pgd)
136 137 138 139
{
	if (SHARED_KERNEL_PMD)
		return;

A
Andrea Arcangeli 已提交
140
	spin_lock(&pgd_lock);
141
	pgd_list_del(pgd);
A
Andrea Arcangeli 已提交
142
	spin_unlock(&pgd_lock);
143 144
}

J
Jeremy Fitzhardinge 已提交
145 146 147 148 149 150 151 152
/*
 * List of all pgd's needed for non-PAE so it can invalidate entries
 * in both cached and uncached pgd's; not needed for PAE since the
 * kernel pmd is shared. If PAE were not to share the pmd a similar
 * tactic would be needed. This is essentially codepath-based locking
 * against pageattr.c; it is the unique case in which a valid change
 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
 * vmalloc faults work because attached pagetables are never freed.
153
 * -- nyc
J
Jeremy Fitzhardinge 已提交
154 155
 */

156
#ifdef CONFIG_X86_PAE
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/*
 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
 * updating the top-level pagetable entries to guarantee the
 * processor notices the update.  Since this is expensive, and
 * all 4 top-level entries are used almost immediately in a
 * new process's life, we just pre-populate them here.
 *
 * Also, if we're in a paravirt environment where the kernel pmd is
 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
 * and initialize the kernel pmds here.
 */
#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD

void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
{
	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);

	/* Note: almost everything apart from _PAGE_PRESENT is
	   reserved at the pmd (PDPT) level. */
	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));

	/*
	 * According to Intel App note "TLBs, Paging-Structure Caches,
	 * and Their Invalidation", April 2007, document 317080-001,
	 * section 8.1: in PAE mode we explicitly have to flush the
	 * TLB via cr3 if the top-level pgd is changed...
	 */
184
	flush_tlb_mm(mm);
185 186 187 188 189 190 191 192
}
#else  /* !CONFIG_X86_PAE */

/* No need to prepopulate any pagetable entries in non-PAE modes. */
#define PREALLOCATED_PMDS	0

#endif	/* CONFIG_X86_PAE */

193
static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
194 195 196 197
{
	int i;

	for(i = 0; i < PREALLOCATED_PMDS; i++)
198 199
		if (pmds[i]) {
			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
200
			free_page((unsigned long)pmds[i]);
201
			mm_dec_nr_pmds(mm);
202
		}
203 204
}

205
static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
206 207 208 209 210
{
	int i;
	bool failed = false;

	for(i = 0; i < PREALLOCATED_PMDS; i++) {
211
		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
212
		if (!pmd)
213
			failed = true;
214
		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
215
			free_page((unsigned long)pmd);
216 217 218
			pmd = NULL;
			failed = true;
		}
219 220
		if (pmd)
			mm_inc_nr_pmds(mm);
221 222 223 224
		pmds[i] = pmd;
	}

	if (failed) {
225
		free_pmds(mm, pmds);
226 227 228 229 230 231
		return -ENOMEM;
	}

	return 0;
}

232 233 234 235 236 237 238 239 240 241
/*
 * Mop up any pmd pages which may still be attached to the pgd.
 * Normally they will be freed by munmap/exit_mmap, but any pmd we
 * preallocate which never got a corresponding vma will need to be
 * freed manually.
 */
static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
{
	int i;

242
	for(i = 0; i < PREALLOCATED_PMDS; i++) {
243 244 245 246 247 248 249
		pgd_t pgd = pgdp[i];

		if (pgd_val(pgd) != 0) {
			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);

			pgdp[i] = native_make_pgd(0);

250
			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
251
			pmd_free(mm, pmd);
252
			mm_dec_nr_pmds(mm);
253 254 255 256
		}
	}
}

257
static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
258 259 260 261
{
	pud_t *pud;
	int i;

262 263 264
	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
		return;

265 266
	pud = pud_offset(pgd, 0);

267
	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
268
		pmd_t *pmd = pmds[i];
269

J
Jeremy Fitzhardinge 已提交
270
		if (i >= KERNEL_PGD_BOUNDARY)
271 272 273 274 275 276
			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
			       sizeof(pmd_t) * PTRS_PER_PMD);

		pud_populate(mm, pud, pmd);
	}
}
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/*
 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
 * assumes that pgd should be in one page.
 *
 * But kernel with PAE paging that is not running as a Xen domain
 * only needs to allocate 32 bytes for pgd instead of one page.
 */
#ifdef CONFIG_X86_PAE

#include <linux/slab.h>

#define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
#define PGD_ALIGN	32

static struct kmem_cache *pgd_cache;

static int __init pgd_cache_init(void)
{
	/*
	 * When PAE kernel is running as a Xen domain, it does not use
	 * shared kernel pmd. And this requires a whole page for pgd.
	 */
	if (!SHARED_KERNEL_PMD)
		return 0;

	/*
	 * when PAE kernel is not running as a Xen domain, it uses
	 * shared kernel pmd. Shared kernel pmd does not require a whole
	 * page for pgd. We are able to just allocate a 32-byte for pgd.
	 * During boot time, we create a 32-byte slab for pgd table allocation.
	 */
	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
				      SLAB_PANIC, NULL);
	if (!pgd_cache)
		return -ENOMEM;

	return 0;
}
core_initcall(pgd_cache_init);

static inline pgd_t *_pgd_alloc(void)
{
	/*
	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
	 * We allocate one page for pgd.
	 */
	if (!SHARED_KERNEL_PMD)
		return (pgd_t *)__get_free_page(PGALLOC_GFP);

	/*
	 * Now PAE kernel is not running as a Xen domain. We can allocate
	 * a 32-byte slab for pgd to save memory space.
	 */
	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
}

static inline void _pgd_free(pgd_t *pgd)
{
	if (!SHARED_KERNEL_PMD)
		free_page((unsigned long)pgd);
	else
		kmem_cache_free(pgd_cache, pgd);
}
#else
static inline pgd_t *_pgd_alloc(void)
{
	return (pgd_t *)__get_free_page(PGALLOC_GFP);
}

static inline void _pgd_free(pgd_t *pgd)
{
	free_page((unsigned long)pgd);
}
#endif /* CONFIG_X86_PAE */

353
pgd_t *pgd_alloc(struct mm_struct *mm)
354
{
355 356
	pgd_t *pgd;
	pmd_t *pmds[PREALLOCATED_PMDS];
357

358
	pgd = _pgd_alloc();
359 360 361 362 363 364

	if (pgd == NULL)
		goto out;

	mm->pgd = pgd;

365
	if (preallocate_pmds(mm, pmds) != 0)
366 367 368 369
		goto out_free_pgd;

	if (paravirt_pgd_alloc(mm) != 0)
		goto out_free_pmds;
370 371

	/*
372 373 374
	 * Make sure that pre-populating the pmds is atomic with
	 * respect to anything walking the pgd_list, so that they
	 * never see a partially populated pgd.
375
	 */
A
Andrea Arcangeli 已提交
376
	spin_lock(&pgd_lock);
377

378
	pgd_ctor(mm, pgd);
379
	pgd_prepopulate_pmd(mm, pgd, pmds);
380

A
Andrea Arcangeli 已提交
381
	spin_unlock(&pgd_lock);
382 383

	return pgd;
384 385

out_free_pmds:
386
	free_pmds(mm, pmds);
387
out_free_pgd:
388
	_pgd_free(pgd);
389 390
out:
	return NULL;
391 392 393 394 395 396
}

void pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
	pgd_mop_up_pmds(mm, pgd);
	pgd_dtor(pgd);
397
	paravirt_pgd_free(mm, pgd);
398
	_pgd_free(pgd);
399
}
400

401 402 403 404 405 406 407
/*
 * Used to set accessed or dirty bits in the page table entries
 * on other architectures. On x86, the accessed and dirty bits
 * are tracked by hardware. However, do_wp_page calls this function
 * to also make the pte writeable at the same time the dirty bit is
 * set. In that case we do actually need to write the PTE.
 */
408 409 410 411 412 413 414 415 416 417 418 419 420
int ptep_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pte_t *ptep,
			  pte_t entry, int dirty)
{
	int changed = !pte_same(*ptep, entry);

	if (changed && dirty) {
		*ptep = entry;
		pte_update_defer(vma->vm_mm, address, ptep);
	}

	return changed;
}
421

422 423 424 425 426 427 428 429 430 431 432 433
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pmd_t *pmdp,
			  pmd_t entry, int dirty)
{
	int changed = !pmd_same(*pmdp, entry);

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	if (changed && dirty) {
		*pmdp = entry;
		pmd_update_defer(vma->vm_mm, address, pmdp);
434 435 436 437 438 439
		/*
		 * We had a write-protection fault here and changed the pmd
		 * to to more permissive. No need to flush the TLB for that,
		 * #PF is architecturally guaranteed to do that and in the
		 * worst-case we'll generate a spurious fault.
		 */
440 441 442 443 444 445
	}

	return changed;
}
#endif

446 447 448 449 450 451 452
int ptep_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long addr, pte_t *ptep)
{
	int ret = 0;

	if (pte_young(*ptep))
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
453
					 (unsigned long *) &ptep->pte);
454 455 456 457 458 459

	if (ret)
		pte_update(vma->vm_mm, addr, ptep);

	return ret;
}
460

461 462 463 464 465 466 467 468
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long addr, pmd_t *pmdp)
{
	int ret = 0;

	if (pmd_young(*pmdp))
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
J
Johannes Weiner 已提交
469
					 (unsigned long *)pmdp);
470 471 472 473 474 475 476 477

	if (ret)
		pmd_update(vma->vm_mm, addr, pmdp);

	return ret;
}
#endif

478 479 480
int ptep_clear_flush_young(struct vm_area_struct *vma,
			   unsigned long address, pte_t *ptep)
{
481 482 483 484 485 486 487 488 489 490 491 492 493 494
	/*
	 * On x86 CPUs, clearing the accessed bit without a TLB flush
	 * doesn't cause data corruption. [ It could cause incorrect
	 * page aging and the (mistaken) reclaim of hot pages, but the
	 * chance of that should be relatively low. ]
	 *
	 * So as a performance optimization don't flush the TLB when
	 * clearing the accessed bit, it will eventually be flushed by
	 * a context switch or a VM operation anyway. [ In the rare
	 * event of it not getting flushed for a long time the delay
	 * shouldn't really matter because there's no real memory
	 * pressure for swapout to react to. ]
	 */
	return ptep_test_and_clear_young(vma, address, ptep);
495
}
J
Jeremy Fitzhardinge 已提交
496

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_clear_flush_young(struct vm_area_struct *vma,
			   unsigned long address, pmd_t *pmdp)
{
	int young;

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	young = pmdp_test_and_clear_young(vma, address, pmdp);
	if (young)
		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);

	return young;
}

void pmdp_splitting_flush(struct vm_area_struct *vma,
			  unsigned long address, pmd_t *pmdp)
{
	int set;
	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
	set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
J
Johannes Weiner 已提交
518
				(unsigned long *)pmdp);
519 520 521 522 523 524 525 526
	if (set) {
		pmd_update(vma->vm_mm, address, pmdp);
		/* need tlb flush only to serialize against gup-fast */
		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
	}
}
#endif

527 528 529 530 531 532 533 534 535 536 537
/**
 * reserve_top_address - reserves a hole in the top of kernel address space
 * @reserve - size of hole to reserve
 *
 * Can be used to relocate the fixmap area and poke a hole in the top
 * of kernel address space to make room for a hypervisor.
 */
void __init reserve_top_address(unsigned long reserve)
{
#ifdef CONFIG_X86_32
	BUG_ON(fixmaps_set > 0);
538 539 540
	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
541 542 543
#endif
}

J
Jeremy Fitzhardinge 已提交
544 545
int fixmaps_set;

546
void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
J
Jeremy Fitzhardinge 已提交
547 548 549 550 551 552 553
{
	unsigned long address = __fix_to_virt(idx);

	if (idx >= __end_of_fixed_addresses) {
		BUG();
		return;
	}
554
	set_pte_vaddr(address, pte);
J
Jeremy Fitzhardinge 已提交
555 556
	fixmaps_set++;
}
557

558 559
void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
		       pgprot_t flags)
560 561 562
{
	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
}