cpu.c 53.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9
/* CPU control.
 * (C) 2001, 2002, 2003, 2004 Rusty Russell
 *
 * This code is licenced under the GPL.
 */
#include <linux/proc_fs.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/notifier.h>
10
#include <linux/sched/signal.h>
11
#include <linux/sched/hotplug.h>
12
#include <linux/sched/task.h>
13
#include <linux/sched/smt.h>
L
Linus Torvalds 已提交
14 15
#include <linux/unistd.h>
#include <linux/cpu.h>
16 17
#include <linux/oom.h>
#include <linux/rcupdate.h>
18
#include <linux/export.h>
19
#include <linux/bug.h>
L
Linus Torvalds 已提交
20 21
#include <linux/kthread.h>
#include <linux/stop_machine.h>
22
#include <linux/mutex.h>
23
#include <linux/gfp.h>
24
#include <linux/suspend.h>
25
#include <linux/lockdep.h>
26
#include <linux/tick.h>
27
#include <linux/irq.h>
28
#include <linux/nmi.h>
29
#include <linux/smpboot.h>
30
#include <linux/relay.h>
31
#include <linux/slab.h>
32
#include <linux/percpu-rwsem.h>
33

34
#include <trace/events/power.h>
35 36
#define CREATE_TRACE_POINTS
#include <trace/events/cpuhp.h>
L
Linus Torvalds 已提交
37

38 39
#include "smpboot.h"

40 41 42 43
/**
 * cpuhp_cpu_state - Per cpu hotplug state storage
 * @state:	The current cpu state
 * @target:	The target state
44 45
 * @thread:	Pointer to the hotplug thread
 * @should_run:	Thread should execute
46
 * @rollback:	Perform a rollback
47 48 49
 * @single:	Single callback invocation
 * @bringup:	Single callback bringup or teardown selector
 * @cb_state:	The state for a single callback (install/uninstall)
50
 * @result:	Result of the operation
51 52
 * @done_up:	Signal completion to the issuer of the task for cpu-up
 * @done_down:	Signal completion to the issuer of the task for cpu-down
53 54 55 56
 */
struct cpuhp_cpu_state {
	enum cpuhp_state	state;
	enum cpuhp_state	target;
57
	enum cpuhp_state	fail;
58 59 60
#ifdef CONFIG_SMP
	struct task_struct	*thread;
	bool			should_run;
61
	bool			rollback;
62 63
	bool			single;
	bool			bringup;
64
	bool			booted_once;
65
	struct hlist_node	*node;
66
	struct hlist_node	*last;
67 68
	enum cpuhp_state	cb_state;
	int			result;
69 70
	struct completion	done_up;
	struct completion	done_down;
71
#endif
72 73
};

74 75 76
static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
	.fail = CPUHP_INVALID,
};
77

78
#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
79 80 81 82 83 84
static struct lockdep_map cpuhp_state_up_map =
	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
static struct lockdep_map cpuhp_state_down_map =
	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);


85
static inline void cpuhp_lock_acquire(bool bringup)
86 87 88 89
{
	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
}

90
static inline void cpuhp_lock_release(bool bringup)
91 92 93 94 95
{
	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
}
#else

96 97
static inline void cpuhp_lock_acquire(bool bringup) { }
static inline void cpuhp_lock_release(bool bringup) { }
98

99 100
#endif

101 102 103 104 105
/**
 * cpuhp_step - Hotplug state machine step
 * @name:	Name of the step
 * @startup:	Startup function of the step
 * @teardown:	Teardown function of the step
106
 * @cant_stop:	Bringup/teardown can't be stopped at this step
107 108
 */
struct cpuhp_step {
109 110
	const char		*name;
	union {
111 112 113 114
		int		(*single)(unsigned int cpu);
		int		(*multi)(unsigned int cpu,
					 struct hlist_node *node);
	} startup;
115
	union {
116 117 118 119
		int		(*single)(unsigned int cpu);
		int		(*multi)(unsigned int cpu,
					 struct hlist_node *node);
	} teardown;
120 121 122
	struct hlist_head	list;
	bool			cant_stop;
	bool			multi_instance;
123 124
};

125
static DEFINE_MUTEX(cpuhp_state_mutex);
126
static struct cpuhp_step cpuhp_hp_states[];
127

128 129
static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
{
130
	return cpuhp_hp_states + state;
131 132
}

133 134 135
/**
 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
 * @cpu:	The cpu for which the callback should be invoked
136
 * @state:	The state to do callbacks for
137
 * @bringup:	True if the bringup callback should be invoked
138 139
 * @node:	For multi-instance, do a single entry callback for install/remove
 * @lastp:	For multi-instance rollback, remember how far we got
140
 *
141
 * Called from cpu hotplug and from the state register machinery.
142
 */
143
static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
144 145
				 bool bringup, struct hlist_node *node,
				 struct hlist_node **lastp)
146 147
{
	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
148
	struct cpuhp_step *step = cpuhp_get_step(state);
149 150 151 152
	int (*cbm)(unsigned int cpu, struct hlist_node *node);
	int (*cb)(unsigned int cpu);
	int ret, cnt;

153 154 155 156 157 158 159 160 161
	if (st->fail == state) {
		st->fail = CPUHP_INVALID;

		if (!(bringup ? step->startup.single : step->teardown.single))
			return 0;

		return -EAGAIN;
	}

162
	if (!step->multi_instance) {
163
		WARN_ON_ONCE(lastp && *lastp);
164
		cb = bringup ? step->startup.single : step->teardown.single;
165 166
		if (!cb)
			return 0;
167
		trace_cpuhp_enter(cpu, st->target, state, cb);
168
		ret = cb(cpu);
169
		trace_cpuhp_exit(cpu, st->state, state, ret);
170 171
		return ret;
	}
172
	cbm = bringup ? step->startup.multi : step->teardown.multi;
173 174 175 176 177
	if (!cbm)
		return 0;

	/* Single invocation for instance add/remove */
	if (node) {
178
		WARN_ON_ONCE(lastp && *lastp);
179 180 181 182 183 184 185 186 187
		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
		ret = cbm(cpu, node);
		trace_cpuhp_exit(cpu, st->state, state, ret);
		return ret;
	}

	/* State transition. Invoke on all instances */
	cnt = 0;
	hlist_for_each(node, &step->list) {
188 189 190
		if (lastp && node == *lastp)
			break;

191 192 193
		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
		ret = cbm(cpu, node);
		trace_cpuhp_exit(cpu, st->state, state, ret);
194 195 196 197 198 199 200
		if (ret) {
			if (!lastp)
				goto err;

			*lastp = node;
			return ret;
		}
201 202
		cnt++;
	}
203 204
	if (lastp)
		*lastp = NULL;
205 206 207
	return 0;
err:
	/* Rollback the instances if one failed */
208
	cbm = !bringup ? step->startup.multi : step->teardown.multi;
209 210 211 212 213 214
	if (!cbm)
		return ret;

	hlist_for_each(node, &step->list) {
		if (!cnt--)
			break;
215 216 217 218 219 220 221 222

		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
		ret = cbm(cpu, node);
		trace_cpuhp_exit(cpu, st->state, state, ret);
		/*
		 * Rollback must not fail,
		 */
		WARN_ON_ONCE(ret);
223 224 225 226
	}
	return ret;
}

227
#ifdef CONFIG_SMP
228 229 230 231 232 233 234 235 236
static bool cpuhp_is_ap_state(enum cpuhp_state state)
{
	/*
	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
	 * purposes as that state is handled explicitly in cpu_down.
	 */
	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
{
	struct completion *done = bringup ? &st->done_up : &st->done_down;
	wait_for_completion(done);
}

static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
{
	struct completion *done = bringup ? &st->done_up : &st->done_down;
	complete(done);
}

/*
 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
 */
static bool cpuhp_is_atomic_state(enum cpuhp_state state)
{
	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
}

257
/* Serializes the updates to cpu_online_mask, cpu_present_mask */
258
static DEFINE_MUTEX(cpu_add_remove_lock);
259 260
bool cpuhp_tasks_frozen;
EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
L
Linus Torvalds 已提交
261

262
/*
263 264
 * The following two APIs (cpu_maps_update_begin/done) must be used when
 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
265 266 267 268 269 270 271 272 273 274
 */
void cpu_maps_update_begin(void)
{
	mutex_lock(&cpu_add_remove_lock);
}

void cpu_maps_update_done(void)
{
	mutex_unlock(&cpu_add_remove_lock);
}
L
Linus Torvalds 已提交
275

276 277
/*
 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
278 279 280 281
 * Should always be manipulated under cpu_add_remove_lock
 */
static int cpu_hotplug_disabled;

282 283
#ifdef CONFIG_HOTPLUG_CPU

284
DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
285

286
void cpus_read_lock(void)
287
{
288
	percpu_down_read(&cpu_hotplug_lock);
289
}
290
EXPORT_SYMBOL_GPL(cpus_read_lock);
291

292 293 294 295 296 297
int cpus_read_trylock(void)
{
	return percpu_down_read_trylock(&cpu_hotplug_lock);
}
EXPORT_SYMBOL_GPL(cpus_read_trylock);

298
void cpus_read_unlock(void)
299
{
300
	percpu_up_read(&cpu_hotplug_lock);
301
}
302
EXPORT_SYMBOL_GPL(cpus_read_unlock);
303

304
void cpus_write_lock(void)
305
{
306
	percpu_down_write(&cpu_hotplug_lock);
307
}
308

309
void cpus_write_unlock(void)
310
{
311
	percpu_up_write(&cpu_hotplug_lock);
312 313
}

314
void lockdep_assert_cpus_held(void)
315
{
316
	percpu_rwsem_assert_held(&cpu_hotplug_lock);
317
}
318

319 320 321 322 323 324 325 326 327 328
/*
 * Wait for currently running CPU hotplug operations to complete (if any) and
 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 * hotplug path before performing hotplug operations. So acquiring that lock
 * guarantees mutual exclusion from any currently running hotplug operations.
 */
void cpu_hotplug_disable(void)
{
	cpu_maps_update_begin();
329
	cpu_hotplug_disabled++;
330 331
	cpu_maps_update_done();
}
332
EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
333

334 335 336 337 338 339 340
static void __cpu_hotplug_enable(void)
{
	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
		return;
	cpu_hotplug_disabled--;
}

341 342 343
void cpu_hotplug_enable(void)
{
	cpu_maps_update_begin();
344
	__cpu_hotplug_enable();
345 346
	cpu_maps_update_done();
}
347
EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
348
#endif	/* CONFIG_HOTPLUG_CPU */
349

350 351 352 353 354 355
/*
 * Architectures that need SMT-specific errata handling during SMT hotplug
 * should override this.
 */
void __weak arch_smt_update(void) { }

356 357
#ifdef CONFIG_HOTPLUG_SMT
enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
358

359
void __init cpu_smt_disable(bool force)
360
{
361 362 363 364 365
	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
		cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
		return;

	if (force) {
366 367
		pr_info("SMT: Force disabled\n");
		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
368 369
	} else {
		cpu_smt_control = CPU_SMT_DISABLED;
370
	}
371 372
}

373 374
/*
 * The decision whether SMT is supported can only be done after the full
375
 * CPU identification. Called from architecture code.
376 377 378
 */
void __init cpu_smt_check_topology(void)
{
379
	if (!topology_smt_supported())
380 381 382
		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
}

383 384 385
static int __init smt_cmdline_disable(char *str)
{
	cpu_smt_disable(str && !strcmp(str, "force"));
386 387 388 389 390 391
	return 0;
}
early_param("nosmt", smt_cmdline_disable);

static inline bool cpu_smt_allowed(unsigned int cpu)
{
392
	if (cpu_smt_control == CPU_SMT_ENABLED)
393 394
		return true;

395
	if (topology_is_primary_thread(cpu))
396 397 398 399 400 401 402 403 404 405 406 407 408 409
		return true;

	/*
	 * On x86 it's required to boot all logical CPUs at least once so
	 * that the init code can get a chance to set CR4.MCE on each
	 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
	 * core will shutdown the machine.
	 */
	return !per_cpu(cpuhp_state, cpu).booted_once;
}
#else
static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
#endif

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
static inline enum cpuhp_state
cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
{
	enum cpuhp_state prev_state = st->state;

	st->rollback = false;
	st->last = NULL;

	st->target = target;
	st->single = false;
	st->bringup = st->state < target;

	return prev_state;
}

static inline void
cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
{
	st->rollback = true;

	/*
	 * If we have st->last we need to undo partial multi_instance of this
	 * state first. Otherwise start undo at the previous state.
	 */
	if (!st->last) {
		if (st->bringup)
			st->state--;
		else
			st->state++;
	}

	st->target = prev_state;
	st->bringup = !st->bringup;
}

/* Regular hotplug invocation of the AP hotplug thread */
static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
{
	if (!st->single && st->state == st->target)
		return;

	st->result = 0;
	/*
	 * Make sure the above stores are visible before should_run becomes
	 * true. Paired with the mb() above in cpuhp_thread_fun()
	 */
	smp_mb();
	st->should_run = true;
	wake_up_process(st->thread);
459
	wait_for_ap_thread(st, st->bringup);
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
}

static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
{
	enum cpuhp_state prev_state;
	int ret;

	prev_state = cpuhp_set_state(st, target);
	__cpuhp_kick_ap(st);
	if ((ret = st->result)) {
		cpuhp_reset_state(st, prev_state);
		__cpuhp_kick_ap(st);
	}

	return ret;
}
476

477 478 479 480
static int bringup_wait_for_ap(unsigned int cpu)
{
	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);

481
	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
482
	wait_for_ap_thread(st, true);
483 484
	if (WARN_ON_ONCE((!cpu_online(cpu))))
		return -ECANCELED;
485 486 487 488 489

	/* Unpark the stopper thread and the hotplug thread of the target cpu */
	stop_machine_unpark(cpu);
	kthread_unpark(st->thread);

490 491 492 493 494 495 496 497 498 499
	/*
	 * SMT soft disabling on X86 requires to bring the CPU out of the
	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
	 * CPU marked itself as booted_once in cpu_notify_starting() so the
	 * cpu_smt_allowed() check will now return false if this is not the
	 * primary sibling.
	 */
	if (!cpu_smt_allowed(cpu))
		return -ECANCELED;

500 501 502 503
	if (st->target <= CPUHP_AP_ONLINE_IDLE)
		return 0;

	return cpuhp_kick_ap(st, st->target);
504 505
}

506 507 508 509 510
static int bringup_cpu(unsigned int cpu)
{
	struct task_struct *idle = idle_thread_get(cpu);
	int ret;

511 512 513 514 515 516 517
	/*
	 * Some architectures have to walk the irq descriptors to
	 * setup the vector space for the cpu which comes online.
	 * Prevent irq alloc/free across the bringup.
	 */
	irq_lock_sparse();

518 519
	/* Arch-specific enabling code. */
	ret = __cpu_up(cpu, idle);
520
	irq_unlock_sparse();
521
	if (ret)
522
		return ret;
523
	return bringup_wait_for_ap(cpu);
524 525
}

526 527 528 529
/*
 * Hotplug state machine related functions
 */

530
static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
531
{
532 533
	for (st->state--; st->state > st->target; st->state--)
		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
534 535 536
}

static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
537
			      enum cpuhp_state target)
538 539 540 541 542 543
{
	enum cpuhp_state prev_state = st->state;
	int ret = 0;

	while (st->state < target) {
		st->state++;
544
		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
545 546
		if (ret) {
			st->target = prev_state;
547
			undo_cpu_up(cpu, st);
548 549 550 551 552 553
			break;
		}
	}
	return ret;
}

554 555 556 557 558 559 560
/*
 * The cpu hotplug threads manage the bringup and teardown of the cpus
 */
static void cpuhp_create(unsigned int cpu)
{
	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);

561 562
	init_completion(&st->done_up);
	init_completion(&st->done_down);
563 564 565 566 567 568 569 570 571 572 573 574
}

static int cpuhp_should_run(unsigned int cpu)
{
	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);

	return st->should_run;
}

/*
 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
 * callbacks when a state gets [un]installed at runtime.
575 576 577 578 579 580 581 582 583 584
 *
 * Each invocation of this function by the smpboot thread does a single AP
 * state callback.
 *
 * It has 3 modes of operation:
 *  - single: runs st->cb_state
 *  - up:     runs ++st->state, while st->state < st->target
 *  - down:   runs st->state--, while st->state > st->target
 *
 * When complete or on error, should_run is cleared and the completion is fired.
585 586 587 588
 */
static void cpuhp_thread_fun(unsigned int cpu)
{
	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
589 590
	bool bringup = st->bringup;
	enum cpuhp_state state;
591

592 593 594
	if (WARN_ON_ONCE(!st->should_run))
		return;

595
	/*
596 597
	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
	 * that if we see ->should_run we also see the rest of the state.
598 599 600
	 */
	smp_mb();

601
	cpuhp_lock_acquire(bringup);
602

603
	if (st->single) {
604 605 606 607 608 609 610 611
		state = st->cb_state;
		st->should_run = false;
	} else {
		if (bringup) {
			st->state++;
			state = st->state;
			st->should_run = (st->state < st->target);
			WARN_ON_ONCE(st->state > st->target);
612
		} else {
613 614 615 616
			state = st->state;
			st->state--;
			st->should_run = (st->state > st->target);
			WARN_ON_ONCE(st->state < st->target);
617
		}
618 619 620 621 622 623 624 625
	}

	WARN_ON_ONCE(!cpuhp_is_ap_state(state));

	if (cpuhp_is_atomic_state(state)) {
		local_irq_disable();
		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
		local_irq_enable();
626

627 628 629 630
		/*
		 * STARTING/DYING must not fail!
		 */
		WARN_ON_ONCE(st->result);
631
	} else {
632 633 634 635 636 637 638 639 640 641 642
		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
	}

	if (st->result) {
		/*
		 * If we fail on a rollback, we're up a creek without no
		 * paddle, no way forward, no way back. We loose, thanks for
		 * playing.
		 */
		WARN_ON_ONCE(st->rollback);
		st->should_run = false;
643
	}
644

645
	cpuhp_lock_release(bringup);
646 647

	if (!st->should_run)
648
		complete_ap_thread(st, bringup);
649 650 651
}

/* Invoke a single callback on a remote cpu */
652
static int
653 654
cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
			 struct hlist_node *node)
655 656
{
	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
657
	int ret;
658 659 660 661

	if (!cpu_online(cpu))
		return 0;

662 663 664 665 666
	cpuhp_lock_acquire(false);
	cpuhp_lock_release(false);

	cpuhp_lock_acquire(true);
	cpuhp_lock_release(true);
667

668 669 670 671 672
	/*
	 * If we are up and running, use the hotplug thread. For early calls
	 * we invoke the thread function directly.
	 */
	if (!st->thread)
673
		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
674

675 676 677 678 679
	st->rollback = false;
	st->last = NULL;

	st->node = node;
	st->bringup = bringup;
680
	st->cb_state = state;
681 682
	st->single = true;

683
	__cpuhp_kick_ap(st);
684 685

	/*
686
	 * If we failed and did a partial, do a rollback.
687
	 */
688 689 690 691 692 693 694
	if ((ret = st->result) && st->last) {
		st->rollback = true;
		st->bringup = !bringup;

		__cpuhp_kick_ap(st);
	}

695 696 697 698 699
	/*
	 * Clean up the leftovers so the next hotplug operation wont use stale
	 * data.
	 */
	st->node = st->last = NULL;
700
	return ret;
701 702 703 704 705
}

static int cpuhp_kick_ap_work(unsigned int cpu)
{
	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
706 707
	enum cpuhp_state prev_state = st->state;
	int ret;
708

709 710 711 712 713
	cpuhp_lock_acquire(false);
	cpuhp_lock_release(false);

	cpuhp_lock_acquire(true);
	cpuhp_lock_release(true);
714 715 716 717 718 719

	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
	ret = cpuhp_kick_ap(st, st->target);
	trace_cpuhp_exit(cpu, st->state, prev_state, ret);

	return ret;
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
}

static struct smp_hotplug_thread cpuhp_threads = {
	.store			= &cpuhp_state.thread,
	.create			= &cpuhp_create,
	.thread_should_run	= cpuhp_should_run,
	.thread_fn		= cpuhp_thread_fun,
	.thread_comm		= "cpuhp/%u",
	.selfparking		= true,
};

void __init cpuhp_threads_init(void)
{
	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
	kthread_unpark(this_cpu_read(cpuhp_state.thread));
}

737
#ifdef CONFIG_HOTPLUG_CPU
738 739 740 741 742 743 744 745 746 747 748 749
/**
 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 * @cpu: a CPU id
 *
 * This function walks all processes, finds a valid mm struct for each one and
 * then clears a corresponding bit in mm's cpumask.  While this all sounds
 * trivial, there are various non-obvious corner cases, which this function
 * tries to solve in a safe manner.
 *
 * Also note that the function uses a somewhat relaxed locking scheme, so it may
 * be called only for an already offlined CPU.
 */
750 751 752 753 754 755 756 757 758 759 760
void clear_tasks_mm_cpumask(int cpu)
{
	struct task_struct *p;

	/*
	 * This function is called after the cpu is taken down and marked
	 * offline, so its not like new tasks will ever get this cpu set in
	 * their mm mask. -- Peter Zijlstra
	 * Thus, we may use rcu_read_lock() here, instead of grabbing
	 * full-fledged tasklist_lock.
	 */
761
	WARN_ON(cpu_online(cpu));
762 763 764 765
	rcu_read_lock();
	for_each_process(p) {
		struct task_struct *t;

766 767 768 769
		/*
		 * Main thread might exit, but other threads may still have
		 * a valid mm. Find one.
		 */
770 771 772 773 774 775 776 777 778
		t = find_lock_task_mm(p);
		if (!t)
			continue;
		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
		task_unlock(t);
	}
	rcu_read_unlock();
}

L
Linus Torvalds 已提交
779
/* Take this CPU down. */
780
static int take_cpu_down(void *_param)
L
Linus Torvalds 已提交
781
{
782 783
	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
784
	int err, cpu = smp_processor_id();
785
	int ret;
L
Linus Torvalds 已提交
786 787 788 789

	/* Ensure this CPU doesn't handle any more interrupts. */
	err = __cpu_disable();
	if (err < 0)
Z
Zwane Mwaikambo 已提交
790
		return err;
L
Linus Torvalds 已提交
791

792 793 794 795 796 797
	/*
	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
	 * do this step again.
	 */
	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
	st->state--;
798
	/* Invoke the former CPU_DYING callbacks */
799 800 801 802 803 804 805
	for (; st->state > target; st->state--) {
		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
		/*
		 * DYING must not fail!
		 */
		WARN_ON_ONCE(ret);
	}
806

807 808
	/* Give up timekeeping duties */
	tick_handover_do_timer();
809
	/* Park the stopper thread */
810
	stop_machine_park(cpu);
Z
Zwane Mwaikambo 已提交
811
	return 0;
L
Linus Torvalds 已提交
812 813
}

814
static int takedown_cpu(unsigned int cpu)
L
Linus Torvalds 已提交
815
{
816
	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
817
	int err;
L
Linus Torvalds 已提交
818

819
	/* Park the smpboot threads */
820 821
	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);

822
	/*
823 824
	 * Prevent irq alloc/free while the dying cpu reorganizes the
	 * interrupt affinities.
825
	 */
826
	irq_lock_sparse();
827

828 829 830
	/*
	 * So now all preempt/rcu users must observe !cpu_active().
	 */
831
	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
832
	if (err) {
833
		/* CPU refused to die */
834
		irq_unlock_sparse();
835 836
		/* Unpark the hotplug thread so we can rollback there */
		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
837
		return err;
838
	}
839
	BUG_ON(cpu_online(cpu));
L
Linus Torvalds 已提交
840

841
	/*
842 843
	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
	 * all runnable tasks from the CPU, there's only the idle task left now
844
	 * that the migration thread is done doing the stop_machine thing.
P
Peter Zijlstra 已提交
845 846
	 *
	 * Wait for the stop thread to go away.
847
	 */
848
	wait_for_ap_thread(st, false);
849
	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
L
Linus Torvalds 已提交
850

851 852 853
	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
	irq_unlock_sparse();

854
	hotplug_cpu__broadcast_tick_pull(cpu);
L
Linus Torvalds 已提交
855 856 857
	/* This actually kills the CPU. */
	__cpu_die(cpu);

858
	tick_cleanup_dead_cpu(cpu);
859
	rcutree_migrate_callbacks(cpu);
860 861
	return 0;
}
L
Linus Torvalds 已提交
862

863 864 865 866
static void cpuhp_complete_idle_dead(void *arg)
{
	struct cpuhp_cpu_state *st = arg;

867
	complete_ap_thread(st, false);
868 869
}

870 871 872 873 874
void cpuhp_report_idle_dead(void)
{
	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);

	BUG_ON(st->state != CPUHP_AP_OFFLINE);
875
	rcu_report_dead(smp_processor_id());
876 877 878 879 880 881 882
	st->state = CPUHP_AP_IDLE_DEAD;
	/*
	 * We cannot call complete after rcu_report_dead() so we delegate it
	 * to an online cpu.
	 */
	smp_call_function_single(cpumask_first(cpu_online_mask),
				 cpuhp_complete_idle_dead, st, 0);
883 884
}

885 886
static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
{
887 888
	for (st->state++; st->state < st->target; st->state++)
		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
889 890 891 892 893 894 895 896 897 898 899 900
}

static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
				enum cpuhp_state target)
{
	enum cpuhp_state prev_state = st->state;
	int ret = 0;

	for (; st->state > target; st->state--) {
		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
		if (ret) {
			st->target = prev_state;
901 902
			if (st->state < prev_state)
				undo_cpu_down(cpu, st);
903 904 905 906 907
			break;
		}
	}
	return ret;
}
908

909
/* Requires cpu_add_remove_lock to be held */
910 911
static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
			   enum cpuhp_state target)
912
{
913 914
	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
	int prev_state, ret = 0;
915 916 917 918

	if (num_online_cpus() == 1)
		return -EBUSY;

919
	if (!cpu_present(cpu))
920 921
		return -EINVAL;

922
	cpus_write_lock();
923 924 925

	cpuhp_tasks_frozen = tasks_frozen;

926
	prev_state = cpuhp_set_state(st, target);
927 928 929 930
	/*
	 * If the current CPU state is in the range of the AP hotplug thread,
	 * then we need to kick the thread.
	 */
931
	if (st->state > CPUHP_TEARDOWN_CPU) {
932
		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
933 934 935 936 937 938 939 940 941 942 943 944
		ret = cpuhp_kick_ap_work(cpu);
		/*
		 * The AP side has done the error rollback already. Just
		 * return the error code..
		 */
		if (ret)
			goto out;

		/*
		 * We might have stopped still in the range of the AP hotplug
		 * thread. Nothing to do anymore.
		 */
945
		if (st->state > CPUHP_TEARDOWN_CPU)
946
			goto out;
947 948

		st->target = target;
949 950
	}
	/*
951
	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
952 953
	 * to do the further cleanups.
	 */
954
	ret = cpuhp_down_callbacks(cpu, st, target);
955
	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
956 957
		cpuhp_reset_state(st, prev_state);
		__cpuhp_kick_ap(st);
958
	}
959

960
out:
961
	cpus_write_unlock();
962 963 964 965 966
	/*
	 * Do post unplug cleanup. This is still protected against
	 * concurrent CPU hotplug via cpu_add_remove_lock.
	 */
	lockup_detector_cleanup();
967
	arch_smt_update();
968
	return ret;
969 970
}

971 972 973 974 975 976 977
static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
{
	if (cpu_hotplug_disabled)
		return -EBUSY;
	return _cpu_down(cpu, 0, target);
}

978
static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
979
{
980
	int err;
981

982
	cpu_maps_update_begin();
983
	err = cpu_down_maps_locked(cpu, target);
984
	cpu_maps_update_done();
L
Linus Torvalds 已提交
985 986
	return err;
}
987

988 989 990 991
int cpu_down(unsigned int cpu)
{
	return do_cpu_down(cpu, CPUHP_OFFLINE);
}
992
EXPORT_SYMBOL(cpu_down);
993 994 995

#else
#define takedown_cpu		NULL
L
Linus Torvalds 已提交
996 997
#endif /*CONFIG_HOTPLUG_CPU*/

998
/**
999
 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1000 1001 1002 1003 1004 1005 1006 1007 1008
 * @cpu: cpu that just started
 *
 * It must be called by the arch code on the new cpu, before the new cpu
 * enables interrupts and before the "boot" cpu returns from __cpu_up().
 */
void notify_cpu_starting(unsigned int cpu)
{
	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1009
	int ret;
1010

1011
	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1012
	st->booted_once = true;
1013 1014
	while (st->state < target) {
		st->state++;
1015 1016 1017 1018 1019
		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
		/*
		 * STARTING must not fail!
		 */
		WARN_ON_ONCE(ret);
1020 1021 1022
	}
}

1023
/*
1024 1025 1026
 * Called from the idle task. Wake up the controlling task which brings the
 * stopper and the hotplug thread of the upcoming CPU up and then delegates
 * the rest of the online bringup to the hotplug thread.
1027
 */
1028
void cpuhp_online_idle(enum cpuhp_state state)
1029
{
1030 1031 1032 1033 1034 1035 1036
	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);

	/* Happens for the boot cpu */
	if (state != CPUHP_AP_ONLINE_IDLE)
		return;

	st->state = CPUHP_AP_ONLINE_IDLE;
1037
	complete_ap_thread(st, true);
1038 1039
}

1040
/* Requires cpu_add_remove_lock to be held */
1041
static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
L
Linus Torvalds 已提交
1042
{
1043
	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1044
	struct task_struct *idle;
1045
	int ret = 0;
L
Linus Torvalds 已提交
1046

1047
	cpus_write_lock();
1048

1049
	if (!cpu_present(cpu)) {
1050 1051 1052 1053
		ret = -EINVAL;
		goto out;
	}

1054 1055 1056 1057 1058
	/*
	 * The caller of do_cpu_up might have raced with another
	 * caller. Ignore it for now.
	 */
	if (st->state >= target)
1059
		goto out;
1060 1061 1062 1063 1064 1065 1066 1067

	if (st->state == CPUHP_OFFLINE) {
		/* Let it fail before we try to bring the cpu up */
		idle = idle_thread_get(cpu);
		if (IS_ERR(idle)) {
			ret = PTR_ERR(idle);
			goto out;
		}
1068
	}
1069

1070 1071
	cpuhp_tasks_frozen = tasks_frozen;

1072
	cpuhp_set_state(st, target);
1073 1074 1075 1076
	/*
	 * If the current CPU state is in the range of the AP hotplug thread,
	 * then we need to kick the thread once more.
	 */
1077
	if (st->state > CPUHP_BRINGUP_CPU) {
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		ret = cpuhp_kick_ap_work(cpu);
		/*
		 * The AP side has done the error rollback already. Just
		 * return the error code..
		 */
		if (ret)
			goto out;
	}

	/*
	 * Try to reach the target state. We max out on the BP at
1089
	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1090 1091
	 * responsible for bringing it up to the target state.
	 */
1092
	target = min((int)target, CPUHP_BRINGUP_CPU);
1093
	ret = cpuhp_up_callbacks(cpu, st, target);
1094
out:
1095
	cpus_write_unlock();
1096
	arch_smt_update();
1097 1098 1099
	return ret;
}

1100
static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1101 1102
{
	int err = 0;
1103

R
Rusty Russell 已提交
1104
	if (!cpu_possible(cpu)) {
1105 1106
		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
		       cpu);
1107
#if defined(CONFIG_IA64)
1108
		pr_err("please check additional_cpus= boot parameter\n");
1109 1110 1111
#endif
		return -EINVAL;
	}
1112

1113 1114 1115
	err = try_online_node(cpu_to_node(cpu));
	if (err)
		return err;
1116

1117
	cpu_maps_update_begin();
1118 1119

	if (cpu_hotplug_disabled) {
1120
		err = -EBUSY;
1121 1122
		goto out;
	}
1123 1124 1125 1126
	if (!cpu_smt_allowed(cpu)) {
		err = -EPERM;
		goto out;
	}
1127

1128
	err = _cpu_up(cpu, 0, target);
1129
out:
1130
	cpu_maps_update_done();
1131 1132
	return err;
}
1133 1134 1135 1136 1137

int cpu_up(unsigned int cpu)
{
	return do_cpu_up(cpu, CPUHP_ONLINE);
}
P
Paul E. McKenney 已提交
1138
EXPORT_SYMBOL_GPL(cpu_up);
1139

1140
#ifdef CONFIG_PM_SLEEP_SMP
R
Rusty Russell 已提交
1141
static cpumask_var_t frozen_cpus;
1142

1143
int freeze_secondary_cpus(int primary)
1144
{
1145
	int cpu, error = 0;
1146

1147
	cpu_maps_update_begin();
1148 1149
	if (!cpu_online(primary))
		primary = cpumask_first(cpu_online_mask);
1150 1151
	/*
	 * We take down all of the non-boot CPUs in one shot to avoid races
1152 1153
	 * with the userspace trying to use the CPU hotplug at the same time
	 */
R
Rusty Russell 已提交
1154
	cpumask_clear(frozen_cpus);
1155

1156
	pr_info("Disabling non-boot CPUs ...\n");
1157
	for_each_online_cpu(cpu) {
1158
		if (cpu == primary)
1159
			continue;
1160
		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1161
		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1162
		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1163
		if (!error)
R
Rusty Russell 已提交
1164
			cpumask_set_cpu(cpu, frozen_cpus);
1165
		else {
1166
			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1167 1168 1169
			break;
		}
	}
1170

1171
	if (!error)
1172
		BUG_ON(num_online_cpus() > 1);
1173
	else
1174
		pr_err("Non-boot CPUs are not disabled\n");
1175 1176 1177 1178 1179 1180 1181 1182

	/*
	 * Make sure the CPUs won't be enabled by someone else. We need to do
	 * this even in case of failure as all disable_nonboot_cpus() users are
	 * supposed to do enable_nonboot_cpus() on the failure path.
	 */
	cpu_hotplug_disabled++;

1183
	cpu_maps_update_done();
1184 1185 1186
	return error;
}

1187 1188 1189 1190 1191 1192 1193 1194
void __weak arch_enable_nonboot_cpus_begin(void)
{
}

void __weak arch_enable_nonboot_cpus_end(void)
{
}

1195
void enable_nonboot_cpus(void)
1196 1197 1198 1199
{
	int cpu, error;

	/* Allow everyone to use the CPU hotplug again */
1200
	cpu_maps_update_begin();
1201
	__cpu_hotplug_enable();
R
Rusty Russell 已提交
1202
	if (cpumask_empty(frozen_cpus))
1203
		goto out;
1204

1205
	pr_info("Enabling non-boot CPUs ...\n");
1206 1207 1208

	arch_enable_nonboot_cpus_begin();

R
Rusty Russell 已提交
1209
	for_each_cpu(cpu, frozen_cpus) {
1210
		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1211
		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1212
		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1213
		if (!error) {
1214
			pr_info("CPU%d is up\n", cpu);
1215 1216
			continue;
		}
1217
		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1218
	}
1219 1220 1221

	arch_enable_nonboot_cpus_end();

R
Rusty Russell 已提交
1222
	cpumask_clear(frozen_cpus);
1223
out:
1224
	cpu_maps_update_done();
L
Linus Torvalds 已提交
1225
}
R
Rusty Russell 已提交
1226

1227
static int __init alloc_frozen_cpus(void)
R
Rusty Russell 已提交
1228 1229 1230 1231 1232 1233
{
	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
		return -ENOMEM;
	return 0;
}
core_initcall(alloc_frozen_cpus);
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

/*
 * When callbacks for CPU hotplug notifications are being executed, we must
 * ensure that the state of the system with respect to the tasks being frozen
 * or not, as reported by the notification, remains unchanged *throughout the
 * duration* of the execution of the callbacks.
 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
 *
 * This synchronization is implemented by mutually excluding regular CPU
 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
 * Hibernate notifications.
 */
static int
cpu_hotplug_pm_callback(struct notifier_block *nb,
			unsigned long action, void *ptr)
{
	switch (action) {

	case PM_SUSPEND_PREPARE:
	case PM_HIBERNATION_PREPARE:
1254
		cpu_hotplug_disable();
1255 1256 1257 1258
		break;

	case PM_POST_SUSPEND:
	case PM_POST_HIBERNATION:
1259
		cpu_hotplug_enable();
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
}


1270
static int __init cpu_hotplug_pm_sync_init(void)
1271
{
1272 1273 1274 1275 1276
	/*
	 * cpu_hotplug_pm_callback has higher priority than x86
	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
	 * to disable cpu hotplug to avoid cpu hotplug race.
	 */
1277 1278 1279 1280 1281
	pm_notifier(cpu_hotplug_pm_callback, 0);
	return 0;
}
core_initcall(cpu_hotplug_pm_sync_init);

1282
#endif /* CONFIG_PM_SLEEP_SMP */
1283

1284 1285
int __boot_cpu_id;

1286
#endif /* CONFIG_SMP */
1287

1288
/* Boot processor state steps */
1289
static struct cpuhp_step cpuhp_hp_states[] = {
1290 1291
	[CPUHP_OFFLINE] = {
		.name			= "offline",
1292 1293
		.startup.single		= NULL,
		.teardown.single	= NULL,
1294 1295 1296
	},
#ifdef CONFIG_SMP
	[CPUHP_CREATE_THREADS]= {
1297
		.name			= "threads:prepare",
1298 1299
		.startup.single		= smpboot_create_threads,
		.teardown.single	= NULL,
1300
		.cant_stop		= true,
1301
	},
1302
	[CPUHP_PERF_PREPARE] = {
1303 1304 1305
		.name			= "perf:prepare",
		.startup.single		= perf_event_init_cpu,
		.teardown.single	= perf_event_exit_cpu,
1306
	},
1307
	[CPUHP_WORKQUEUE_PREP] = {
1308 1309 1310
		.name			= "workqueue:prepare",
		.startup.single		= workqueue_prepare_cpu,
		.teardown.single	= NULL,
1311
	},
1312
	[CPUHP_HRTIMERS_PREPARE] = {
1313 1314 1315
		.name			= "hrtimers:prepare",
		.startup.single		= hrtimers_prepare_cpu,
		.teardown.single	= hrtimers_dead_cpu,
1316
	},
1317
	[CPUHP_SMPCFD_PREPARE] = {
1318
		.name			= "smpcfd:prepare",
1319 1320
		.startup.single		= smpcfd_prepare_cpu,
		.teardown.single	= smpcfd_dead_cpu,
1321
	},
1322 1323 1324 1325 1326
	[CPUHP_RELAY_PREPARE] = {
		.name			= "relay:prepare",
		.startup.single		= relay_prepare_cpu,
		.teardown.single	= NULL,
	},
1327 1328 1329 1330
	[CPUHP_SLAB_PREPARE] = {
		.name			= "slab:prepare",
		.startup.single		= slab_prepare_cpu,
		.teardown.single	= slab_dead_cpu,
1331
	},
1332
	[CPUHP_RCUTREE_PREP] = {
1333
		.name			= "RCU/tree:prepare",
1334 1335
		.startup.single		= rcutree_prepare_cpu,
		.teardown.single	= rcutree_dead_cpu,
1336
	},
1337 1338 1339 1340 1341
	/*
	 * On the tear-down path, timers_dead_cpu() must be invoked
	 * before blk_mq_queue_reinit_notify() from notify_dead(),
	 * otherwise a RCU stall occurs.
	 */
1342
	[CPUHP_TIMERS_PREPARE] = {
1343
		.name			= "timers:prepare",
1344
		.startup.single		= timers_prepare_cpu,
1345
		.teardown.single	= timers_dead_cpu,
1346
	},
1347
	/* Kicks the plugged cpu into life */
1348 1349
	[CPUHP_BRINGUP_CPU] = {
		.name			= "cpu:bringup",
1350 1351
		.startup.single		= bringup_cpu,
		.teardown.single	= NULL,
1352
		.cant_stop		= true,
1353
	},
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	/* Final state before CPU kills itself */
	[CPUHP_AP_IDLE_DEAD] = {
		.name			= "idle:dead",
	},
	/*
	 * Last state before CPU enters the idle loop to die. Transient state
	 * for synchronization.
	 */
	[CPUHP_AP_OFFLINE] = {
		.name			= "ap:offline",
		.cant_stop		= true,
	},
1366 1367 1368
	/* First state is scheduler control. Interrupts are disabled */
	[CPUHP_AP_SCHED_STARTING] = {
		.name			= "sched:starting",
1369 1370
		.startup.single		= sched_cpu_starting,
		.teardown.single	= sched_cpu_dying,
1371
	},
1372
	[CPUHP_AP_RCUTREE_DYING] = {
1373
		.name			= "RCU/tree:dying",
1374 1375
		.startup.single		= NULL,
		.teardown.single	= rcutree_dying_cpu,
1376
	},
1377 1378 1379 1380 1381
	[CPUHP_AP_SMPCFD_DYING] = {
		.name			= "smpcfd:dying",
		.startup.single		= NULL,
		.teardown.single	= smpcfd_dying_cpu,
	},
1382 1383 1384 1385 1386
	/* Entry state on starting. Interrupts enabled from here on. Transient
	 * state for synchronsization */
	[CPUHP_AP_ONLINE] = {
		.name			= "ap:online",
	},
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	/*
	 * Handled on controll processor until the plugged processor manages
	 * this itself.
	 */
	[CPUHP_TEARDOWN_CPU] = {
		.name			= "cpu:teardown",
		.startup.single		= NULL,
		.teardown.single	= takedown_cpu,
		.cant_stop		= true,
	},
1397
	/* Handle smpboot threads park/unpark */
1398
	[CPUHP_AP_SMPBOOT_THREADS] = {
1399
		.name			= "smpboot/threads:online",
1400
		.startup.single		= smpboot_unpark_threads,
1401
		.teardown.single	= smpboot_park_threads,
1402
	},
1403 1404 1405 1406 1407
	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
		.name			= "irq/affinity:online",
		.startup.single		= irq_affinity_online_cpu,
		.teardown.single	= NULL,
	},
1408
	[CPUHP_AP_PERF_ONLINE] = {
1409 1410 1411
		.name			= "perf:online",
		.startup.single		= perf_event_init_cpu,
		.teardown.single	= perf_event_exit_cpu,
1412
	},
1413 1414 1415 1416 1417
	[CPUHP_AP_WATCHDOG_ONLINE] = {
		.name			= "lockup_detector:online",
		.startup.single		= lockup_detector_online_cpu,
		.teardown.single	= lockup_detector_offline_cpu,
	},
1418
	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1419 1420 1421
		.name			= "workqueue:online",
		.startup.single		= workqueue_online_cpu,
		.teardown.single	= workqueue_offline_cpu,
1422
	},
1423
	[CPUHP_AP_RCUTREE_ONLINE] = {
1424
		.name			= "RCU/tree:online",
1425 1426
		.startup.single		= rcutree_online_cpu,
		.teardown.single	= rcutree_offline_cpu,
1427
	},
1428
#endif
1429 1430 1431 1432
	/*
	 * The dynamically registered state space is here
	 */

1433 1434 1435 1436
#ifdef CONFIG_SMP
	/* Last state is scheduler control setting the cpu active */
	[CPUHP_AP_ACTIVE] = {
		.name			= "sched:active",
1437 1438
		.startup.single		= sched_cpu_activate,
		.teardown.single	= sched_cpu_deactivate,
1439 1440 1441
	},
#endif

1442
	/* CPU is fully up and running. */
1443 1444
	[CPUHP_ONLINE] = {
		.name			= "online",
1445 1446
		.startup.single		= NULL,
		.teardown.single	= NULL,
1447 1448 1449
	},
};

1450 1451 1452 1453 1454 1455 1456 1457
/* Sanity check for callbacks */
static int cpuhp_cb_check(enum cpuhp_state state)
{
	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
		return -EINVAL;
	return 0;
}

1458 1459 1460 1461 1462 1463 1464
/*
 * Returns a free for dynamic slot assignment of the Online state. The states
 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
 * by having no name assigned.
 */
static int cpuhp_reserve_state(enum cpuhp_state state)
{
1465 1466
	enum cpuhp_state i, end;
	struct cpuhp_step *step;
1467

1468 1469
	switch (state) {
	case CPUHP_AP_ONLINE_DYN:
1470
		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1471 1472 1473
		end = CPUHP_AP_ONLINE_DYN_END;
		break;
	case CPUHP_BP_PREPARE_DYN:
1474
		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1475 1476 1477 1478 1479 1480 1481 1482
		end = CPUHP_BP_PREPARE_DYN_END;
		break;
	default:
		return -EINVAL;
	}

	for (i = state; i <= end; i++, step++) {
		if (!step->name)
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
			return i;
	}
	WARN(1, "No more dynamic states available for CPU hotplug\n");
	return -ENOSPC;
}

static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
				 int (*startup)(unsigned int cpu),
				 int (*teardown)(unsigned int cpu),
				 bool multi_instance)
1493 1494 1495
{
	/* (Un)Install the callbacks for further cpu hotplug operations */
	struct cpuhp_step *sp;
1496
	int ret = 0;
1497

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	/*
	 * If name is NULL, then the state gets removed.
	 *
	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
	 * the first allocation from these dynamic ranges, so the removal
	 * would trigger a new allocation and clear the wrong (already
	 * empty) state, leaving the callbacks of the to be cleared state
	 * dangling, which causes wreckage on the next hotplug operation.
	 */
	if (name && (state == CPUHP_AP_ONLINE_DYN ||
		     state == CPUHP_BP_PREPARE_DYN)) {
1509 1510
		ret = cpuhp_reserve_state(state);
		if (ret < 0)
1511
			return ret;
1512 1513
		state = ret;
	}
1514
	sp = cpuhp_get_step(state);
1515 1516 1517
	if (name && sp->name)
		return -EBUSY;

1518 1519
	sp->startup.single = startup;
	sp->teardown.single = teardown;
1520
	sp->name = name;
1521 1522
	sp->multi_instance = multi_instance;
	INIT_HLIST_HEAD(&sp->list);
1523
	return ret;
1524 1525 1526 1527
}

static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
{
1528
	return cpuhp_get_step(state)->teardown.single;
1529 1530 1531 1532 1533 1534
}

/*
 * Call the startup/teardown function for a step either on the AP or
 * on the current CPU.
 */
1535 1536
static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
			    struct hlist_node *node)
1537
{
1538
	struct cpuhp_step *sp = cpuhp_get_step(state);
1539 1540
	int ret;

1541 1542 1543 1544
	/*
	 * If there's nothing to do, we done.
	 * Relies on the union for multi_instance.
	 */
1545 1546
	if ((bringup && !sp->startup.single) ||
	    (!bringup && !sp->teardown.single))
1547 1548 1549 1550 1551
		return 0;
	/*
	 * The non AP bound callbacks can fail on bringup. On teardown
	 * e.g. module removal we crash for now.
	 */
1552 1553
#ifdef CONFIG_SMP
	if (cpuhp_is_ap_state(state))
1554
		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1555
	else
1556
		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1557
#else
1558
	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1559
#endif
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	BUG_ON(ret && !bringup);
	return ret;
}

/*
 * Called from __cpuhp_setup_state on a recoverable failure.
 *
 * Note: The teardown callbacks for rollback are not allowed to fail!
 */
static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1570
				   struct hlist_node *node)
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
{
	int cpu;

	/* Roll back the already executed steps on the other cpus */
	for_each_present_cpu(cpu) {
		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
		int cpustate = st->state;

		if (cpu >= failedcpu)
			break;

		/* Did we invoke the startup call on that cpu ? */
		if (cpustate >= state)
1584
			cpuhp_issue_call(cpu, state, false, node);
1585 1586 1587
	}
}

1588 1589 1590
int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
					  struct hlist_node *node,
					  bool invoke)
1591 1592 1593 1594 1595
{
	struct cpuhp_step *sp;
	int cpu;
	int ret;

1596 1597
	lockdep_assert_cpus_held();

1598 1599 1600 1601
	sp = cpuhp_get_step(state);
	if (sp->multi_instance == false)
		return -EINVAL;

1602
	mutex_lock(&cpuhp_state_mutex);
1603

1604
	if (!invoke || !sp->startup.multi)
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
		goto add_node;

	/*
	 * Try to call the startup callback for each present cpu
	 * depending on the hotplug state of the cpu.
	 */
	for_each_present_cpu(cpu) {
		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
		int cpustate = st->state;

		if (cpustate < state)
			continue;

		ret = cpuhp_issue_call(cpu, state, true, node);
		if (ret) {
1620
			if (sp->teardown.multi)
1621
				cpuhp_rollback_install(cpu, state, node);
1622
			goto unlock;
1623 1624 1625 1626 1627
		}
	}
add_node:
	ret = 0;
	hlist_add_head(node, &sp->list);
1628
unlock:
1629
	mutex_unlock(&cpuhp_state_mutex);
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
	return ret;
}

int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
			       bool invoke)
{
	int ret;

	cpus_read_lock();
	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1640
	cpus_read_unlock();
1641 1642 1643 1644
	return ret;
}
EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);

1645
/**
1646
 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1647 1648 1649 1650 1651 1652 1653
 * @state:		The state to setup
 * @invoke:		If true, the startup function is invoked for cpus where
 *			cpu state >= @state
 * @startup:		startup callback function
 * @teardown:		teardown callback function
 * @multi_instance:	State is set up for multiple instances which get
 *			added afterwards.
1654
 *
1655
 * The caller needs to hold cpus read locked while calling this function.
1656 1657 1658 1659 1660
 * Returns:
 *   On success:
 *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
 *      0 for all other states
 *   On failure: proper (negative) error code
1661
 */
1662 1663 1664 1665 1666
int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
				   const char *name, bool invoke,
				   int (*startup)(unsigned int cpu),
				   int (*teardown)(unsigned int cpu),
				   bool multi_instance)
1667 1668
{
	int cpu, ret = 0;
1669
	bool dynstate;
1670

1671 1672
	lockdep_assert_cpus_held();

1673 1674 1675
	if (cpuhp_cb_check(state) || !name)
		return -EINVAL;

1676
	mutex_lock(&cpuhp_state_mutex);
1677

1678 1679
	ret = cpuhp_store_callbacks(state, name, startup, teardown,
				    multi_instance);
1680

1681 1682 1683 1684 1685 1686
	dynstate = state == CPUHP_AP_ONLINE_DYN;
	if (ret > 0 && dynstate) {
		state = ret;
		ret = 0;
	}

1687
	if (ret || !invoke || !startup)
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
		goto out;

	/*
	 * Try to call the startup callback for each present cpu
	 * depending on the hotplug state of the cpu.
	 */
	for_each_present_cpu(cpu) {
		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
		int cpustate = st->state;

		if (cpustate < state)
			continue;

1701
		ret = cpuhp_issue_call(cpu, state, true, NULL);
1702
		if (ret) {
1703
			if (teardown)
1704 1705
				cpuhp_rollback_install(cpu, state, NULL);
			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1706 1707 1708 1709
			goto out;
		}
	}
out:
1710
	mutex_unlock(&cpuhp_state_mutex);
1711 1712 1713 1714
	/*
	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
	 * dynamically allocated state in case of success.
	 */
1715
	if (!ret && dynstate)
1716 1717 1718
		return state;
	return ret;
}
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);

int __cpuhp_setup_state(enum cpuhp_state state,
			const char *name, bool invoke,
			int (*startup)(unsigned int cpu),
			int (*teardown)(unsigned int cpu),
			bool multi_instance)
{
	int ret;

	cpus_read_lock();
	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
					     teardown, multi_instance);
	cpus_read_unlock();
	return ret;
}
1735 1736
EXPORT_SYMBOL(__cpuhp_setup_state);

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
int __cpuhp_state_remove_instance(enum cpuhp_state state,
				  struct hlist_node *node, bool invoke)
{
	struct cpuhp_step *sp = cpuhp_get_step(state);
	int cpu;

	BUG_ON(cpuhp_cb_check(state));

	if (!sp->multi_instance)
		return -EINVAL;

1748
	cpus_read_lock();
1749 1750
	mutex_lock(&cpuhp_state_mutex);

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	if (!invoke || !cpuhp_get_teardown_cb(state))
		goto remove;
	/*
	 * Call the teardown callback for each present cpu depending
	 * on the hotplug state of the cpu. This function is not
	 * allowed to fail currently!
	 */
	for_each_present_cpu(cpu) {
		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
		int cpustate = st->state;

		if (cpustate >= state)
			cpuhp_issue_call(cpu, state, false, node);
	}

remove:
	hlist_del(node);
	mutex_unlock(&cpuhp_state_mutex);
1769
	cpus_read_unlock();
1770 1771 1772 1773

	return 0;
}
EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1774

1775
/**
1776
 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1777 1778 1779 1780
 * @state:	The state to remove
 * @invoke:	If true, the teardown function is invoked for cpus where
 *		cpu state >= @state
 *
1781
 * The caller needs to hold cpus read locked while calling this function.
1782 1783 1784
 * The teardown callback is currently not allowed to fail. Think
 * about module removal!
 */
1785
void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1786
{
1787
	struct cpuhp_step *sp = cpuhp_get_step(state);
1788 1789 1790 1791
	int cpu;

	BUG_ON(cpuhp_cb_check(state));

1792
	lockdep_assert_cpus_held();
1793

1794
	mutex_lock(&cpuhp_state_mutex);
1795 1796 1797 1798 1799 1800 1801
	if (sp->multi_instance) {
		WARN(!hlist_empty(&sp->list),
		     "Error: Removing state %d which has instances left.\n",
		     state);
		goto remove;
	}

1802
	if (!invoke || !cpuhp_get_teardown_cb(state))
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
		goto remove;

	/*
	 * Call the teardown callback for each present cpu depending
	 * on the hotplug state of the cpu. This function is not
	 * allowed to fail currently!
	 */
	for_each_present_cpu(cpu) {
		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
		int cpustate = st->state;

		if (cpustate >= state)
1815
			cpuhp_issue_call(cpu, state, false, NULL);
1816 1817
	}
remove:
1818
	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1819
	mutex_unlock(&cpuhp_state_mutex);
1820 1821 1822 1823 1824 1825 1826
}
EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);

void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
{
	cpus_read_lock();
	__cpuhp_remove_state_cpuslocked(state, invoke);
1827
	cpus_read_unlock();
1828 1829 1830
}
EXPORT_SYMBOL(__cpuhp_remove_state);

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
static ssize_t show_cpuhp_state(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);

	return sprintf(buf, "%d\n", st->state);
}
static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
static ssize_t write_cpuhp_target(struct device *dev,
				  struct device_attribute *attr,
				  const char *buf, size_t count)
{
	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
	struct cpuhp_step *sp;
	int target, ret;

	ret = kstrtoint(buf, 10, &target);
	if (ret)
		return ret;

#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
		return -EINVAL;
#else
	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
		return -EINVAL;
#endif

	ret = lock_device_hotplug_sysfs();
	if (ret)
		return ret;

	mutex_lock(&cpuhp_state_mutex);
	sp = cpuhp_get_step(target);
	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
	mutex_unlock(&cpuhp_state_mutex);
	if (ret)
1870
		goto out;
1871 1872 1873 1874 1875

	if (st->state < target)
		ret = do_cpu_up(dev->id, target);
	else
		ret = do_cpu_down(dev->id, target);
1876
out:
1877 1878 1879 1880
	unlock_device_hotplug();
	return ret ? ret : count;
}

1881 1882 1883 1884 1885 1886 1887
static ssize_t show_cpuhp_target(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);

	return sprintf(buf, "%d\n", st->target);
}
1888
static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1889

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

static ssize_t write_cpuhp_fail(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
	struct cpuhp_step *sp;
	int fail, ret;

	ret = kstrtoint(buf, 10, &fail);
	if (ret)
		return ret;

	/*
	 * Cannot fail STARTING/DYING callbacks.
	 */
	if (cpuhp_is_atomic_state(fail))
		return -EINVAL;

	/*
	 * Cannot fail anything that doesn't have callbacks.
	 */
	mutex_lock(&cpuhp_state_mutex);
	sp = cpuhp_get_step(fail);
	if (!sp->startup.single && !sp->teardown.single)
		ret = -EINVAL;
	mutex_unlock(&cpuhp_state_mutex);
	if (ret)
		return ret;

	st->fail = fail;

	return count;
}

static ssize_t show_cpuhp_fail(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);

	return sprintf(buf, "%d\n", st->fail);
}

static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);

1935 1936 1937
static struct attribute *cpuhp_cpu_attrs[] = {
	&dev_attr_state.attr,
	&dev_attr_target.attr,
1938
	&dev_attr_fail.attr,
1939 1940 1941
	NULL
};

1942
static const struct attribute_group cpuhp_cpu_attr_group = {
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
	.attrs = cpuhp_cpu_attrs,
	.name = "hotplug",
	NULL
};

static ssize_t show_cpuhp_states(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	ssize_t cur, res = 0;
	int i;

	mutex_lock(&cpuhp_state_mutex);
1955
	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
		struct cpuhp_step *sp = cpuhp_get_step(i);

		if (sp->name) {
			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
			buf += cur;
			res += cur;
		}
	}
	mutex_unlock(&cpuhp_state_mutex);
	return res;
}
static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);

static struct attribute *cpuhp_cpu_root_attrs[] = {
	&dev_attr_states.attr,
	NULL
};

1974
static const struct attribute_group cpuhp_cpu_root_attr_group = {
1975 1976 1977 1978 1979
	.attrs = cpuhp_cpu_root_attrs,
	.name = "hotplug",
	NULL
};

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
#ifdef CONFIG_HOTPLUG_SMT

static const char *smt_states[] = {
	[CPU_SMT_ENABLED]		= "on",
	[CPU_SMT_DISABLED]		= "off",
	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
};

static ssize_t
show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
{
	return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
}

static void cpuhp_offline_cpu_device(unsigned int cpu)
{
	struct device *dev = get_cpu_device(cpu);

	dev->offline = true;
	/* Tell user space about the state change */
	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
}

2004 2005 2006 2007 2008 2009 2010 2011 2012
static void cpuhp_online_cpu_device(unsigned int cpu)
{
	struct device *dev = get_cpu_device(cpu);

	dev->offline = false;
	/* Tell user space about the state change */
	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
}

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
{
	int cpu, ret = 0;

	cpu_maps_update_begin();
	for_each_online_cpu(cpu) {
		if (topology_is_primary_thread(cpu))
			continue;
		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
		if (ret)
			break;
		/*
		 * As this needs to hold the cpu maps lock it's impossible
		 * to call device_offline() because that ends up calling
		 * cpu_down() which takes cpu maps lock. cpu maps lock
		 * needs to be held as this might race against in kernel
		 * abusers of the hotplug machinery (thermal management).
		 *
		 * So nothing would update device:offline state. That would
		 * leave the sysfs entry stale and prevent onlining after
		 * smt control has been changed to 'off' again. This is
		 * called under the sysfs hotplug lock, so it is properly
		 * serialized against the regular offline usage.
		 */
		cpuhp_offline_cpu_device(cpu);
	}
2039
	if (!ret) {
2040
		cpu_smt_control = ctrlval;
2041 2042
		arch_smt_update();
	}
2043 2044 2045 2046
	cpu_maps_update_done();
	return ret;
}

2047
static int cpuhp_smt_enable(void)
2048
{
2049 2050
	int cpu, ret = 0;

2051 2052
	cpu_maps_update_begin();
	cpu_smt_control = CPU_SMT_ENABLED;
2053
	arch_smt_update();
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	for_each_present_cpu(cpu) {
		/* Skip online CPUs and CPUs on offline nodes */
		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
			continue;
		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
		if (ret)
			break;
		/* See comment in cpuhp_smt_disable() */
		cpuhp_online_cpu_device(cpu);
	}
2064
	cpu_maps_update_done();
2065
	return ret;
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
}

static ssize_t
store_smt_control(struct device *dev, struct device_attribute *attr,
		  const char *buf, size_t count)
{
	int ctrlval, ret;

	if (sysfs_streq(buf, "on"))
		ctrlval = CPU_SMT_ENABLED;
	else if (sysfs_streq(buf, "off"))
		ctrlval = CPU_SMT_DISABLED;
	else if (sysfs_streq(buf, "forceoff"))
		ctrlval = CPU_SMT_FORCE_DISABLED;
	else
		return -EINVAL;

	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
		return -EPERM;

	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
		return -ENODEV;

	ret = lock_device_hotplug_sysfs();
	if (ret)
		return ret;

	if (ctrlval != cpu_smt_control) {
		switch (ctrlval) {
		case CPU_SMT_ENABLED:
2096
			ret = cpuhp_smt_enable();
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
			break;
		case CPU_SMT_DISABLED:
		case CPU_SMT_FORCE_DISABLED:
			ret = cpuhp_smt_disable(ctrlval);
			break;
		}
	}

	unlock_device_hotplug();
	return ret ? ret : count;
}
static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);

static ssize_t
show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
{
	bool active = topology_max_smt_threads() > 1;

	return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
}
static DEVICE_ATTR(active, 0444, show_smt_active, NULL);

static struct attribute *cpuhp_smt_attrs[] = {
	&dev_attr_control.attr,
	&dev_attr_active.attr,
	NULL
};

static const struct attribute_group cpuhp_smt_attr_group = {
	.attrs = cpuhp_smt_attrs,
	.name = "smt",
	NULL
};

static int __init cpu_smt_state_init(void)
{
	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
				  &cpuhp_smt_attr_group);
}

#else
static inline int cpu_smt_state_init(void) { return 0; }
#endif

2141 2142 2143 2144
static int __init cpuhp_sysfs_init(void)
{
	int cpu, ret;

2145 2146 2147 2148
	ret = cpu_smt_state_init();
	if (ret)
		return ret;

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
				 &cpuhp_cpu_root_attr_group);
	if (ret)
		return ret;

	for_each_possible_cpu(cpu) {
		struct device *dev = get_cpu_device(cpu);

		if (!dev)
			continue;
		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
		if (ret)
			return ret;
	}
	return 0;
}
device_initcall(cpuhp_sysfs_init);
#endif

2168 2169 2170 2171
/*
 * cpu_bit_bitmap[] is a special, "compressed" data structure that
 * represents all NR_CPUS bits binary values of 1<<nr.
 *
R
Rusty Russell 已提交
2172
 * It is used by cpumask_of() to get a constant address to a CPU
2173 2174
 * mask value that has a single bit set only.
 */
2175

2176
/* cpu_bit_bitmap[0] is empty - so we can back into it */
2177
#define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2178 2179 2180
#define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
#define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
#define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2181

2182 2183 2184 2185 2186 2187 2188
const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {

	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
#if BITS_PER_LONG > 32
	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2189 2190
#endif
};
2191
EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2192 2193 2194

const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
EXPORT_SYMBOL(cpu_all_bits);
2195 2196

#ifdef CONFIG_INIT_ALL_POSSIBLE
2197
struct cpumask __cpu_possible_mask __read_mostly
2198
	= {CPU_BITS_ALL};
2199
#else
2200
struct cpumask __cpu_possible_mask __read_mostly;
2201
#endif
2202
EXPORT_SYMBOL(__cpu_possible_mask);
2203

2204 2205
struct cpumask __cpu_online_mask __read_mostly;
EXPORT_SYMBOL(__cpu_online_mask);
2206

2207 2208
struct cpumask __cpu_present_mask __read_mostly;
EXPORT_SYMBOL(__cpu_present_mask);
2209

2210 2211
struct cpumask __cpu_active_mask __read_mostly;
EXPORT_SYMBOL(__cpu_active_mask);
2212 2213 2214

void init_cpu_present(const struct cpumask *src)
{
2215
	cpumask_copy(&__cpu_present_mask, src);
2216 2217 2218 2219
}

void init_cpu_possible(const struct cpumask *src)
{
2220
	cpumask_copy(&__cpu_possible_mask, src);
2221 2222 2223 2224
}

void init_cpu_online(const struct cpumask *src)
{
2225
	cpumask_copy(&__cpu_online_mask, src);
2226
}
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

/*
 * Activate the first processor.
 */
void __init boot_cpu_init(void)
{
	int cpu = smp_processor_id();

	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
	set_cpu_online(cpu, true);
	set_cpu_active(cpu, true);
	set_cpu_present(cpu, true);
	set_cpu_possible(cpu, true);
2240 2241 2242 2243

#ifdef CONFIG_SMP
	__boot_cpu_id = cpu;
#endif
2244 2245 2246 2247 2248
}

/*
 * Must be called _AFTER_ setting up the per_cpu areas
 */
2249
void __init boot_cpu_hotplug_init(void)
2250
{
2251
#ifdef CONFIG_SMP
2252
	this_cpu_write(cpuhp_state.booted_once, true);
2253
#endif
2254
	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2255
}