intel_ddi.c 71.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

#include "i915_drv.h"
#include "intel_drv.h"

31 32 33 34 35
struct ddi_buf_trans {
	u32 trans1;	/* balance leg enable, de-emph level */
	u32 trans2;	/* vref sel, vswing */
};

36 37 38 39
/* HDMI/DVI modes ignore everything but the last 2 items. So we share
 * them for both DP and FDI transports, allowing those ports to
 * automatically adapt to HDMI connections as well
 */
40 41 42 43 44 45 46 47 48 49
static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
	{ 0x00FFFFFF, 0x0006000E },
	{ 0x00D75FFF, 0x0005000A },
	{ 0x00C30FFF, 0x00040006 },
	{ 0x80AAAFFF, 0x000B0000 },
	{ 0x00FFFFFF, 0x0005000A },
	{ 0x00D75FFF, 0x000C0004 },
	{ 0x80C30FFF, 0x000B0000 },
	{ 0x00FFFFFF, 0x00040006 },
	{ 0x80D75FFF, 0x000B0000 },
50 51
};

52 53 54 55 56 57 58 59 60 61
static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
	{ 0x00FFFFFF, 0x0007000E },
	{ 0x00D75FFF, 0x000F000A },
	{ 0x00C30FFF, 0x00060006 },
	{ 0x00AAAFFF, 0x001E0000 },
	{ 0x00FFFFFF, 0x000F000A },
	{ 0x00D75FFF, 0x00160004 },
	{ 0x00C30FFF, 0x001E0000 },
	{ 0x00FFFFFF, 0x00060006 },
	{ 0x00D75FFF, 0x001E0000 },
62 63
};

64 65 66 67 68 69 70 71 72 73 74 75 76 77
static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
					/* Idx	NT mV d	T mV d	db	*/
	{ 0x00FFFFFF, 0x0006000E },	/* 0:	400	400	0	*/
	{ 0x00E79FFF, 0x000E000C },	/* 1:	400	500	2	*/
	{ 0x00D75FFF, 0x0005000A },	/* 2:	400	600	3.5	*/
	{ 0x00FFFFFF, 0x0005000A },	/* 3:	600	600	0	*/
	{ 0x00E79FFF, 0x001D0007 },	/* 4:	600	750	2	*/
	{ 0x00D75FFF, 0x000C0004 },	/* 5:	600	900	3.5	*/
	{ 0x00FFFFFF, 0x00040006 },	/* 6:	800	800	0	*/
	{ 0x80E79FFF, 0x00030002 },	/* 7:	800	1000	2	*/
	{ 0x00FFFFFF, 0x00140005 },	/* 8:	850	850	0	*/
	{ 0x00FFFFFF, 0x000C0004 },	/* 9:	900	900	0	*/
	{ 0x00FFFFFF, 0x001C0003 },	/* 10:	950	950	0	*/
	{ 0x80FFFFFF, 0x00030002 },	/* 11:	1000	1000	0	*/
78 79
};

80 81 82 83 84 85 86 87 88 89
static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
	{ 0x00FFFFFF, 0x00000012 },
	{ 0x00EBAFFF, 0x00020011 },
	{ 0x00C71FFF, 0x0006000F },
	{ 0x00AAAFFF, 0x000E000A },
	{ 0x00FFFFFF, 0x00020011 },
	{ 0x00DB6FFF, 0x0005000F },
	{ 0x00BEEFFF, 0x000A000C },
	{ 0x00FFFFFF, 0x0005000F },
	{ 0x00DB6FFF, 0x000A000C },
90 91
};

92 93 94 95 96 97
static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
	{ 0x00FFFFFF, 0x0007000E },
	{ 0x00D75FFF, 0x000E000A },
	{ 0x00BEFFFF, 0x00140006 },
	{ 0x80B2CFFF, 0x001B0002 },
	{ 0x00FFFFFF, 0x000E000A },
98
	{ 0x00DB6FFF, 0x00160005 },
99
	{ 0x80C71FFF, 0x001A0002 },
100 101
	{ 0x00F7DFFF, 0x00180004 },
	{ 0x80D75FFF, 0x001B0002 },
102 103
};

104 105 106 107 108 109 110 111 112 113
static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
	{ 0x00FFFFFF, 0x0001000E },
	{ 0x00D75FFF, 0x0004000A },
	{ 0x00C30FFF, 0x00070006 },
	{ 0x00AAAFFF, 0x000C0000 },
	{ 0x00FFFFFF, 0x0004000A },
	{ 0x00D75FFF, 0x00090004 },
	{ 0x00C30FFF, 0x000C0000 },
	{ 0x00FFFFFF, 0x00070006 },
	{ 0x00D75FFF, 0x000C0000 },
114 115
};

116 117 118 119 120 121 122 123 124 125 126 127
static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
					/* Idx	NT mV d	T mV df	db	*/
	{ 0x00FFFFFF, 0x0007000E },	/* 0:	400	400	0	*/
	{ 0x00D75FFF, 0x000E000A },	/* 1:	400	600	3.5	*/
	{ 0x00BEFFFF, 0x00140006 },	/* 2:	400	800	6	*/
	{ 0x00FFFFFF, 0x0009000D },	/* 3:	450	450	0	*/
	{ 0x00FFFFFF, 0x000E000A },	/* 4:	600	600	0	*/
	{ 0x00D7FFFF, 0x00140006 },	/* 5:	600	800	2.5	*/
	{ 0x80CB2FFF, 0x001B0002 },	/* 6:	600	1000	4.5	*/
	{ 0x00FFFFFF, 0x00140006 },	/* 7:	800	800	0	*/
	{ 0x80E79FFF, 0x001B0002 },	/* 8:	800	1000	2	*/
	{ 0x80FFFFFF, 0x001B0002 },	/* 9:	1000	1000	0	*/
128 129
};

130
static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
131 132
	{ 0x00000018, 0x000000a2 },
	{ 0x00004014, 0x0000009B },
133
	{ 0x00006012, 0x00000088 },
134 135
	{ 0x00008010, 0x00000087 },
	{ 0x00000018, 0x0000009B },
136
	{ 0x00004014, 0x00000088 },
137
	{ 0x00006012, 0x00000087 },
138
	{ 0x00000018, 0x00000088 },
139
	{ 0x00004014, 0x00000087 },
140 141
};

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
/* eDP 1.4 low vswing translation parameters */
static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
	{ 0x00000018, 0x000000a8 },
	{ 0x00002016, 0x000000ab },
	{ 0x00006012, 0x000000a2 },
	{ 0x00008010, 0x00000088 },
	{ 0x00000018, 0x000000ab },
	{ 0x00004014, 0x000000a2 },
	{ 0x00006012, 0x000000a6 },
	{ 0x00000018, 0x000000a2 },
	{ 0x00005013, 0x0000009c },
	{ 0x00000018, 0x00000088 },
};


157
static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
158 159 160 161 162 163 164 165 166 167 168
	{ 0x00000018, 0x000000ac },
	{ 0x00005012, 0x0000009d },
	{ 0x00007011, 0x00000088 },
	{ 0x00000018, 0x000000a1 },
	{ 0x00000018, 0x00000098 },
	{ 0x00004013, 0x00000088 },
	{ 0x00006012, 0x00000087 },
	{ 0x00000018, 0x000000df },
	{ 0x00003015, 0x00000087 },
	{ 0x00003015, 0x000000c7 },
	{ 0x00000018, 0x000000c7 },
169 170
};

171
enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
172
{
173
	struct drm_encoder *encoder = &intel_encoder->base;
174 175
	int type = intel_encoder->type;

176 177 178 179
	if (type == INTEL_OUTPUT_DP_MST) {
		struct intel_digital_port *intel_dig_port = enc_to_mst(encoder)->primary;
		return intel_dig_port->port;
	} else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
P
Paulo Zanoni 已提交
180
	    type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
181 182 183
		struct intel_digital_port *intel_dig_port =
			enc_to_dig_port(encoder);
		return intel_dig_port->port;
184

185 186
	} else if (type == INTEL_OUTPUT_ANALOG) {
		return PORT_E;
187

188 189 190 191 192 193
	} else {
		DRM_ERROR("Invalid DDI encoder type %d\n", type);
		BUG();
	}
}

194 195 196
/*
 * Starting with Haswell, DDI port buffers must be programmed with correct
 * values in advance. The buffer values are different for FDI and DP modes,
197 198 199 200
 * but the HDMI/DVI fields are shared among those. So we program the DDI
 * in either FDI or DP modes only, as HDMI connections will work with both
 * of those
 */
201
static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
202 203 204
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 reg;
205
	int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
206
	    size;
207
	int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
208 209 210 211 212
	const struct ddi_buf_trans *ddi_translations_fdi;
	const struct ddi_buf_trans *ddi_translations_dp;
	const struct ddi_buf_trans *ddi_translations_edp;
	const struct ddi_buf_trans *ddi_translations_hdmi;
	const struct ddi_buf_trans *ddi_translations;
213

214 215 216
	if (IS_SKYLAKE(dev)) {
		ddi_translations_fdi = NULL;
		ddi_translations_dp = skl_ddi_translations_dp;
217 218 219 220 221 222 223 224 225
		n_dp_entries = ARRAY_SIZE(skl_ddi_translations_dp);
		if (dev_priv->vbt.edp_low_vswing) {
			ddi_translations_edp = skl_ddi_translations_edp;
			n_edp_entries = ARRAY_SIZE(skl_ddi_translations_edp);
		} else {
			ddi_translations_edp = skl_ddi_translations_dp;
			n_edp_entries = ARRAY_SIZE(skl_ddi_translations_dp);
		}

226 227
		ddi_translations_hdmi = skl_ddi_translations_hdmi;
		n_hdmi_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
228
		hdmi_default_entry = 7;
229
	} else if (IS_BROADWELL(dev)) {
230 231
		ddi_translations_fdi = bdw_ddi_translations_fdi;
		ddi_translations_dp = bdw_ddi_translations_dp;
232
		ddi_translations_edp = bdw_ddi_translations_edp;
233
		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
234 235
		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
236
		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
237
		hdmi_default_entry = 7;
238 239 240
	} else if (IS_HASWELL(dev)) {
		ddi_translations_fdi = hsw_ddi_translations_fdi;
		ddi_translations_dp = hsw_ddi_translations_dp;
241
		ddi_translations_edp = hsw_ddi_translations_dp;
242
		ddi_translations_hdmi = hsw_ddi_translations_hdmi;
243
		n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
244
		n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
245
		hdmi_default_entry = 6;
246 247
	} else {
		WARN(1, "ddi translation table missing\n");
248
		ddi_translations_edp = bdw_ddi_translations_dp;
249 250
		ddi_translations_fdi = bdw_ddi_translations_fdi;
		ddi_translations_dp = bdw_ddi_translations_dp;
251
		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
252 253
		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
254
		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
255
		hdmi_default_entry = 7;
256 257
	}

258 259 260
	switch (port) {
	case PORT_A:
		ddi_translations = ddi_translations_edp;
261
		size = n_edp_entries;
262 263 264 265
		break;
	case PORT_B:
	case PORT_C:
		ddi_translations = ddi_translations_dp;
266
		size = n_dp_entries;
267
		break;
268
	case PORT_D:
269
		if (intel_dp_is_edp(dev, PORT_D)) {
270
			ddi_translations = ddi_translations_edp;
271 272
			size = n_edp_entries;
		} else {
273
			ddi_translations = ddi_translations_dp;
274 275
			size = n_dp_entries;
		}
276
		break;
277
	case PORT_E:
278 279 280 281
		if (ddi_translations_fdi)
			ddi_translations = ddi_translations_fdi;
		else
			ddi_translations = ddi_translations_dp;
282
		size = n_dp_entries;
283 284 285 286
		break;
	default:
		BUG();
	}
287

288
	for (i = 0, reg = DDI_BUF_TRANS(port); i < size; i++) {
289 290 291
		I915_WRITE(reg, ddi_translations[i].trans1);
		reg += 4;
		I915_WRITE(reg, ddi_translations[i].trans2);
292 293
		reg += 4;
	}
294 295 296 297

	/* Choose a good default if VBT is badly populated */
	if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
	    hdmi_level >= n_hdmi_entries)
298
		hdmi_level = hdmi_default_entry;
299

300
	/* Entry 9 is for HDMI: */
301 302 303 304
	I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
	reg += 4;
	I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
	reg += 4;
305 306 307 308 309 310 311 312 313
}

/* Program DDI buffers translations for DP. By default, program ports A-D in DP
 * mode and port E for FDI.
 */
void intel_prepare_ddi(struct drm_device *dev)
{
	int port;

314 315
	if (!HAS_DDI(dev))
		return;
316

317 318
	for (port = PORT_A; port <= PORT_E; port++)
		intel_prepare_ddi_buffers(dev, port);
319
}
320

321 322 323 324 325 326
static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
				    enum port port)
{
	uint32_t reg = DDI_BUF_CTL(port);
	int i;

327
	for (i = 0; i < 16; i++) {
328 329 330 331 332 333
		udelay(1);
		if (I915_READ(reg) & DDI_BUF_IS_IDLE)
			return;
	}
	DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
}
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

/* Starting with Haswell, different DDI ports can work in FDI mode for
 * connection to the PCH-located connectors. For this, it is necessary to train
 * both the DDI port and PCH receiver for the desired DDI buffer settings.
 *
 * The recommended port to work in FDI mode is DDI E, which we use here. Also,
 * please note that when FDI mode is active on DDI E, it shares 2 lines with
 * DDI A (which is used for eDP)
 */

void hsw_fdi_link_train(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
349
	u32 temp, i, rx_ctl_val;
350

351 352 353 354
	/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
	 * mode set "sequence for CRT port" document:
	 * - TP1 to TP2 time with the default value
	 * - FDI delay to 90h
355 356
	 *
	 * WaFDIAutoLinkSetTimingOverrride:hsw
357 358 359 360 361 362
	 */
	I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
				  FDI_RX_PWRDN_LANE0_VAL(2) |
				  FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);

	/* Enable the PCH Receiver FDI PLL */
363
	rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
364
		     FDI_RX_PLL_ENABLE |
365
		     FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
366 367 368 369 370 371 372 373 374
	I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
	POSTING_READ(_FDI_RXA_CTL);
	udelay(220);

	/* Switch from Rawclk to PCDclk */
	rx_ctl_val |= FDI_PCDCLK;
	I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);

	/* Configure Port Clock Select */
375 376
	I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
	WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
377 378 379

	/* Start the training iterating through available voltages and emphasis,
	 * testing each value twice. */
380
	for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
381 382 383 384 385 386 387
		/* Configure DP_TP_CTL with auto-training */
		I915_WRITE(DP_TP_CTL(PORT_E),
					DP_TP_CTL_FDI_AUTOTRAIN |
					DP_TP_CTL_ENHANCED_FRAME_ENABLE |
					DP_TP_CTL_LINK_TRAIN_PAT1 |
					DP_TP_CTL_ENABLE);

388 389 390 391
		/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
		 * DDI E does not support port reversal, the functionality is
		 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
		 * port reversal bit */
392
		I915_WRITE(DDI_BUF_CTL(PORT_E),
393
			   DDI_BUF_CTL_ENABLE |
394
			   ((intel_crtc->config->fdi_lanes - 1) << 1) |
395
			   DDI_BUF_TRANS_SELECT(i / 2));
396
		POSTING_READ(DDI_BUF_CTL(PORT_E));
397 398 399

		udelay(600);

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
		/* Program PCH FDI Receiver TU */
		I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));

		/* Enable PCH FDI Receiver with auto-training */
		rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
		I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
		POSTING_READ(_FDI_RXA_CTL);

		/* Wait for FDI receiver lane calibration */
		udelay(30);

		/* Unset FDI_RX_MISC pwrdn lanes */
		temp = I915_READ(_FDI_RXA_MISC);
		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
		I915_WRITE(_FDI_RXA_MISC, temp);
		POSTING_READ(_FDI_RXA_MISC);

		/* Wait for FDI auto training time */
		udelay(5);
419 420 421

		temp = I915_READ(DP_TP_STATUS(PORT_E));
		if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
422
			DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
423 424 425

			/* Enable normal pixel sending for FDI */
			I915_WRITE(DP_TP_CTL(PORT_E),
426 427 428 429
				   DP_TP_CTL_FDI_AUTOTRAIN |
				   DP_TP_CTL_LINK_TRAIN_NORMAL |
				   DP_TP_CTL_ENHANCED_FRAME_ENABLE |
				   DP_TP_CTL_ENABLE);
430

431
			return;
432
		}
433

434 435 436 437 438
		temp = I915_READ(DDI_BUF_CTL(PORT_E));
		temp &= ~DDI_BUF_CTL_ENABLE;
		I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
		POSTING_READ(DDI_BUF_CTL(PORT_E));

439
		/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
440 441 442 443 444 445 446
		temp = I915_READ(DP_TP_CTL(PORT_E));
		temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
		temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
		I915_WRITE(DP_TP_CTL(PORT_E), temp);
		POSTING_READ(DP_TP_CTL(PORT_E));

		intel_wait_ddi_buf_idle(dev_priv, PORT_E);
447 448 449

		rx_ctl_val &= ~FDI_RX_ENABLE;
		I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
450
		POSTING_READ(_FDI_RXA_CTL);
451 452 453 454 455 456

		/* Reset FDI_RX_MISC pwrdn lanes */
		temp = I915_READ(_FDI_RXA_MISC);
		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
		temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
		I915_WRITE(_FDI_RXA_MISC, temp);
457
		POSTING_READ(_FDI_RXA_MISC);
458 459
	}

460
	DRM_ERROR("FDI link training failed!\n");
461
}
462

463 464 465 466 467 468 469
void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_digital_port *intel_dig_port =
		enc_to_dig_port(&encoder->base);

	intel_dp->DP = intel_dig_port->saved_port_bits |
470
		DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
471 472 473 474
	intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);

}

475 476 477 478 479 480 481 482 483 484 485 486 487 488
static struct intel_encoder *
intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder, *ret = NULL;
	int num_encoders = 0;

	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
		ret = intel_encoder;
		num_encoders++;
	}

	if (num_encoders != 1)
489 490
		WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
		     pipe_name(intel_crtc->pipe));
491 492 493 494 495

	BUG_ON(ret == NULL);
	return ret;
}

496
struct intel_encoder *
497
intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
498
{
499 500 501
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_encoder *ret = NULL;
	struct drm_atomic_state *state;
502
	int num_encoders = 0;
503
	int i;
504

505 506 507 508 509 510 511 512 513
	state = crtc_state->base.state;

	for (i = 0; i < state->num_connector; i++) {
		if (!state->connectors[i] ||
		    state->connector_states[i]->crtc != crtc_state->base.crtc)
			continue;

		ret = to_intel_encoder(state->connector_states[i]->best_encoder);
		num_encoders++;
514 515 516 517 518 519 520 521 522
	}

	WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
	     pipe_name(crtc->pipe));

	BUG_ON(ret == NULL);
	return ret;
}

523
#define LC_FREQ 2700
524
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)
525 526 527 528 529 530 531 532 533 534 535

#define P_MIN 2
#define P_MAX 64
#define P_INC 2

/* Constraints for PLL good behavior */
#define REF_MIN 48
#define REF_MAX 400
#define VCO_MIN 2400
#define VCO_MAX 4800

536 537 538 539 540
#define abs_diff(a, b) ({			\
	typeof(a) __a = (a);			\
	typeof(b) __b = (b);			\
	(void) (&__a == &__b);			\
	__a > __b ? (__a - __b) : (__b - __a); })
541 542 543 544 545 546

struct wrpll_rnp {
	unsigned p, n2, r2;
};

static unsigned wrpll_get_budget_for_freq(int clock)
547
{
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	unsigned budget;

	switch (clock) {
	case 25175000:
	case 25200000:
	case 27000000:
	case 27027000:
	case 37762500:
	case 37800000:
	case 40500000:
	case 40541000:
	case 54000000:
	case 54054000:
	case 59341000:
	case 59400000:
	case 72000000:
	case 74176000:
	case 74250000:
	case 81000000:
	case 81081000:
	case 89012000:
	case 89100000:
	case 108000000:
	case 108108000:
	case 111264000:
	case 111375000:
	case 148352000:
	case 148500000:
	case 162000000:
	case 162162000:
	case 222525000:
	case 222750000:
	case 296703000:
	case 297000000:
		budget = 0;
		break;
	case 233500000:
	case 245250000:
	case 247750000:
	case 253250000:
	case 298000000:
		budget = 1500;
		break;
	case 169128000:
	case 169500000:
	case 179500000:
	case 202000000:
		budget = 2000;
		break;
	case 256250000:
	case 262500000:
	case 270000000:
	case 272500000:
	case 273750000:
	case 280750000:
	case 281250000:
	case 286000000:
	case 291750000:
		budget = 4000;
		break;
	case 267250000:
	case 268500000:
		budget = 5000;
		break;
	default:
		budget = 1000;
		break;
	}
616

617 618 619 620 621 622 623 624
	return budget;
}

static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
			     unsigned r2, unsigned n2, unsigned p,
			     struct wrpll_rnp *best)
{
	uint64_t a, b, c, d, diff, diff_best;
625

626 627 628 629 630 631 632
	/* No best (r,n,p) yet */
	if (best->p == 0) {
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
		return;
	}
633

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
	/*
	 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
	 * freq2k.
	 *
	 * delta = 1e6 *
	 *	   abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
	 *	   freq2k;
	 *
	 * and we would like delta <= budget.
	 *
	 * If the discrepancy is above the PPM-based budget, always prefer to
	 * improve upon the previous solution.  However, if you're within the
	 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
	 */
	a = freq2k * budget * p * r2;
	b = freq2k * budget * best->p * best->r2;
650 651 652
	diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
	diff_best = abs_diff(freq2k * best->p * best->r2,
			     LC_FREQ_2K * best->n2);
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
	c = 1000000 * diff;
	d = 1000000 * diff_best;

	if (a < c && b < d) {
		/* If both are above the budget, pick the closer */
		if (best->p * best->r2 * diff < p * r2 * diff_best) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	} else if (a >= c && b < d) {
		/* If A is below the threshold but B is above it?  Update. */
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
	} else if (a >= c && b >= d) {
		/* Both are below the limit, so pick the higher n2/(r2*r2) */
		if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	}
	/* Otherwise a < c && b >= d, do nothing */
}

679 680 681 682 683 684 685 686
static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
				     int reg)
{
	int refclk = LC_FREQ;
	int n, p, r;
	u32 wrpll;

	wrpll = I915_READ(reg);
687 688 689
	switch (wrpll & WRPLL_PLL_REF_MASK) {
	case WRPLL_PLL_SSC:
	case WRPLL_PLL_NON_SSC:
690 691 692 693 694 695 696
		/*
		 * We could calculate spread here, but our checking
		 * code only cares about 5% accuracy, and spread is a max of
		 * 0.5% downspread.
		 */
		refclk = 135;
		break;
697
	case WRPLL_PLL_LCPLL:
698 699 700 701 702 703 704 705 706 707 708
		refclk = LC_FREQ;
		break;
	default:
		WARN(1, "bad wrpll refclk\n");
		return 0;
	}

	r = wrpll & WRPLL_DIVIDER_REF_MASK;
	p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
	n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;

709 710
	/* Convert to KHz, p & r have a fixed point portion */
	return (refclk * n * 100) / (p * r);
711 712
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
			       uint32_t dpll)
{
	uint32_t cfgcr1_reg, cfgcr2_reg;
	uint32_t cfgcr1_val, cfgcr2_val;
	uint32_t p0, p1, p2, dco_freq;

	cfgcr1_reg = GET_CFG_CR1_REG(dpll);
	cfgcr2_reg = GET_CFG_CR2_REG(dpll);

	cfgcr1_val = I915_READ(cfgcr1_reg);
	cfgcr2_val = I915_READ(cfgcr2_reg);

	p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
	p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;

	if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
		p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
	else
		p1 = 1;


	switch (p0) {
	case DPLL_CFGCR2_PDIV_1:
		p0 = 1;
		break;
	case DPLL_CFGCR2_PDIV_2:
		p0 = 2;
		break;
	case DPLL_CFGCR2_PDIV_3:
		p0 = 3;
		break;
	case DPLL_CFGCR2_PDIV_7:
		p0 = 7;
		break;
	}

	switch (p2) {
	case DPLL_CFGCR2_KDIV_5:
		p2 = 5;
		break;
	case DPLL_CFGCR2_KDIV_2:
		p2 = 2;
		break;
	case DPLL_CFGCR2_KDIV_3:
		p2 = 3;
		break;
	case DPLL_CFGCR2_KDIV_1:
		p2 = 1;
		break;
	}

	dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;

	dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
		1000) / 0x8000;

	return dco_freq / (p0 * p1 * p2 * 5);
}


static void skl_ddi_clock_get(struct intel_encoder *encoder,
775
				struct intel_crtc_state *pipe_config)
776 777 778 779 780
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	int link_clock = 0;
	uint32_t dpll_ctl1, dpll;

781
	dpll = pipe_config->ddi_pll_sel;
782 783 784 785 786 787 788 789 790 791 792 793 794

	dpll_ctl1 = I915_READ(DPLL_CTRL1);

	if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
		link_clock = skl_calc_wrpll_link(dev_priv, dpll);
	} else {
		link_clock = dpll_ctl1 & DPLL_CRTL1_LINK_RATE_MASK(dpll);
		link_clock >>= DPLL_CRTL1_LINK_RATE_SHIFT(dpll);

		switch (link_clock) {
		case DPLL_CRTL1_LINK_RATE_810:
			link_clock = 81000;
			break;
795 796 797
		case DPLL_CRTL1_LINK_RATE_1080:
			link_clock = 108000;
			break;
798 799 800
		case DPLL_CRTL1_LINK_RATE_1350:
			link_clock = 135000;
			break;
801 802 803 804 805 806
		case DPLL_CRTL1_LINK_RATE_1620:
			link_clock = 162000;
			break;
		case DPLL_CRTL1_LINK_RATE_2160:
			link_clock = 216000;
			break;
807 808 809 810 811 812 813 814 815 816 817 818 819
		case DPLL_CRTL1_LINK_RATE_2700:
			link_clock = 270000;
			break;
		default:
			WARN(1, "Unsupported link rate\n");
			break;
		}
		link_clock *= 2;
	}

	pipe_config->port_clock = link_clock;

	if (pipe_config->has_dp_encoder)
820
		pipe_config->base.adjusted_mode.crtc_clock =
821 822 823
			intel_dotclock_calculate(pipe_config->port_clock,
						 &pipe_config->dp_m_n);
	else
824
		pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
825 826
}

827
static void hsw_ddi_clock_get(struct intel_encoder *encoder,
828
			      struct intel_crtc_state *pipe_config)
829 830 831 832 833
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	int link_clock = 0;
	u32 val, pll;

834
	val = pipe_config->ddi_pll_sel;
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	switch (val & PORT_CLK_SEL_MASK) {
	case PORT_CLK_SEL_LCPLL_810:
		link_clock = 81000;
		break;
	case PORT_CLK_SEL_LCPLL_1350:
		link_clock = 135000;
		break;
	case PORT_CLK_SEL_LCPLL_2700:
		link_clock = 270000;
		break;
	case PORT_CLK_SEL_WRPLL1:
		link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
		break;
	case PORT_CLK_SEL_WRPLL2:
		link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
		break;
	case PORT_CLK_SEL_SPLL:
		pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
		if (pll == SPLL_PLL_FREQ_810MHz)
			link_clock = 81000;
		else if (pll == SPLL_PLL_FREQ_1350MHz)
			link_clock = 135000;
		else if (pll == SPLL_PLL_FREQ_2700MHz)
			link_clock = 270000;
		else {
			WARN(1, "bad spll freq\n");
			return;
		}
		break;
	default:
		WARN(1, "bad port clock sel\n");
		return;
	}

	pipe_config->port_clock = link_clock * 2;

	if (pipe_config->has_pch_encoder)
872
		pipe_config->base.adjusted_mode.crtc_clock =
873 874 875
			intel_dotclock_calculate(pipe_config->port_clock,
						 &pipe_config->fdi_m_n);
	else if (pipe_config->has_dp_encoder)
876
		pipe_config->base.adjusted_mode.crtc_clock =
877 878 879
			intel_dotclock_calculate(pipe_config->port_clock,
						 &pipe_config->dp_m_n);
	else
880
		pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
881 882
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
				enum intel_dpll_id dpll)
{
	/* FIXME formula not available in bspec */
	return 0;
}

static void bxt_ddi_clock_get(struct intel_encoder *encoder,
				struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	enum port port = intel_ddi_get_encoder_port(encoder);
	uint32_t dpll = port;

	pipe_config->port_clock =
		bxt_calc_pll_link(dev_priv, dpll);

	if (pipe_config->has_dp_encoder)
		pipe_config->base.adjusted_mode.crtc_clock =
			intel_dotclock_calculate(pipe_config->port_clock,
							&pipe_config->dp_m_n);
	else
		pipe_config->base.adjusted_mode.crtc_clock =
							pipe_config->port_clock;
}

909
void intel_ddi_clock_get(struct intel_encoder *encoder,
910
			 struct intel_crtc_state *pipe_config)
911
{
912 913 914 915
	struct drm_device *dev = encoder->base.dev;

	if (INTEL_INFO(dev)->gen <= 8)
		hsw_ddi_clock_get(encoder, pipe_config);
916
	else if (IS_SKYLAKE(dev))
917
		skl_ddi_clock_get(encoder, pipe_config);
918 919
	else if (IS_BROXTON(dev))
		bxt_ddi_clock_get(encoder, pipe_config);
920 921
}

922
static void
923 924
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
			unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
{
	uint64_t freq2k;
	unsigned p, n2, r2;
	struct wrpll_rnp best = { 0, 0, 0 };
	unsigned budget;

	freq2k = clock / 100;

	budget = wrpll_get_budget_for_freq(clock);

	/* Special case handling for 540 pixel clock: bypass WR PLL entirely
	 * and directly pass the LC PLL to it. */
	if (freq2k == 5400000) {
		*n2_out = 2;
		*p_out = 1;
		*r2_out = 2;
		return;
	}

	/*
	 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
	 * the WR PLL.
	 *
	 * We want R so that REF_MIN <= Ref <= REF_MAX.
	 * Injecting R2 = 2 * R gives:
	 *   REF_MAX * r2 > LC_FREQ * 2 and
	 *   REF_MIN * r2 < LC_FREQ * 2
	 *
	 * Which means the desired boundaries for r2 are:
	 *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
	 *
	 */
	for (r2 = LC_FREQ * 2 / REF_MAX + 1;
	     r2 <= LC_FREQ * 2 / REF_MIN;
	     r2++) {

		/*
		 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
		 *
		 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
		 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
		 *   VCO_MAX * r2 > n2 * LC_FREQ and
		 *   VCO_MIN * r2 < n2 * LC_FREQ)
		 *
		 * Which means the desired boundaries for n2 are:
		 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
		 */
		for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
		     n2 <= VCO_MAX * r2 / LC_FREQ;
		     n2++) {

			for (p = P_MIN; p <= P_MAX; p += P_INC)
				wrpll_update_rnp(freq2k, budget,
						 r2, n2, p, &best);
		}
	}
981

982 983 984
	*n2_out = best.n2;
	*p_out = best.p;
	*r2_out = best.r2;
985 986
}

987
static bool
988
hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
989
		   struct intel_crtc_state *crtc_state,
990 991
		   struct intel_encoder *intel_encoder,
		   int clock)
992
{
993
	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
994
		struct intel_shared_dpll *pll;
995
		uint32_t val;
996
		unsigned p, n2, r2;
997

998
		hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
P
Paulo Zanoni 已提交
999

1000
		val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
P
Paulo Zanoni 已提交
1001 1002 1003
		      WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
		      WRPLL_DIVIDER_POST(p);

1004
		crtc_state->dpll_hw_state.wrpll = val;
1005

1006
		pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1007 1008 1009 1010
		if (pll == NULL) {
			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
					 pipe_name(intel_crtc->pipe));
			return false;
P
Paulo Zanoni 已提交
1011
		}
1012

1013
		crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
1014 1015 1016 1017 1018
	}

	return true;
}

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
struct skl_wrpll_params {
	uint32_t        dco_fraction;
	uint32_t        dco_integer;
	uint32_t        qdiv_ratio;
	uint32_t        qdiv_mode;
	uint32_t        kdiv;
	uint32_t        pdiv;
	uint32_t        central_freq;
};

static void
skl_ddi_calculate_wrpll(int clock /* in Hz */,
			struct skl_wrpll_params *wrpll_params)
{
	uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
1034 1035 1036
	uint64_t dco_central_freq[3] = {8400000000ULL,
					9000000000ULL,
					9600000000ULL};
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	uint32_t min_dco_deviation = 400;
	uint32_t min_dco_index = 3;
	uint32_t P0[4] = {1, 2, 3, 7};
	uint32_t P2[4] = {1, 2, 3, 5};
	bool found = false;
	uint32_t candidate_p = 0;
	uint32_t candidate_p0[3] = {0}, candidate_p1[3] = {0};
	uint32_t candidate_p2[3] = {0};
	uint32_t dco_central_freq_deviation[3];
	uint32_t i, P1, k, dco_count;
	bool retry_with_odd = false;
	uint64_t dco_freq;

	/* Determine P0, P1 or P2 */
	for (dco_count = 0; dco_count < 3; dco_count++) {
		found = false;
		candidate_p =
			div64_u64(dco_central_freq[dco_count], afe_clock);
		if (retry_with_odd == false)
			candidate_p = (candidate_p % 2 == 0 ?
				candidate_p : candidate_p + 1);

		for (P1 = 1; P1 < candidate_p; P1++) {
			for (i = 0; i < 4; i++) {
				if (!(P0[i] != 1 || P1 == 1))
					continue;

				for (k = 0; k < 4; k++) {
					if (P1 != 1 && P2[k] != 2)
						continue;

					if (candidate_p == P0[i] * P1 * P2[k]) {
						/* Found possible P0, P1, P2 */
						found = true;
						candidate_p0[dco_count] = P0[i];
						candidate_p1[dco_count] = P1;
						candidate_p2[dco_count] = P2[k];
						goto found;
					}

				}
			}
		}

found:
		if (found) {
			dco_central_freq_deviation[dco_count] =
				div64_u64(10000 *
					  abs_diff((candidate_p * afe_clock),
						   dco_central_freq[dco_count]),
					  dco_central_freq[dco_count]);

			if (dco_central_freq_deviation[dco_count] <
				min_dco_deviation) {
				min_dco_deviation =
					dco_central_freq_deviation[dco_count];
				min_dco_index = dco_count;
			}
		}

		if (min_dco_index > 2 && dco_count == 2) {
			retry_with_odd = true;
			dco_count = 0;
		}
	}

	if (min_dco_index > 2) {
		WARN(1, "No valid values found for the given pixel clock\n");
	} else {
		 wrpll_params->central_freq = dco_central_freq[min_dco_index];

		 switch (dco_central_freq[min_dco_index]) {
1109
		 case 9600000000ULL:
1110 1111
			wrpll_params->central_freq = 0;
			break;
1112
		 case 9000000000ULL:
1113 1114
			wrpll_params->central_freq = 1;
			break;
1115
		 case 8400000000ULL:
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
			wrpll_params->central_freq = 3;
		 }

		 switch (candidate_p0[min_dco_index]) {
		 case 1:
			wrpll_params->pdiv = 0;
			break;
		 case 2:
			wrpll_params->pdiv = 1;
			break;
		 case 3:
			wrpll_params->pdiv = 2;
			break;
		 case 7:
			wrpll_params->pdiv = 4;
			break;
		 default:
			WARN(1, "Incorrect PDiv\n");
		 }

		 switch (candidate_p2[min_dco_index]) {
		 case 5:
			wrpll_params->kdiv = 0;
			break;
		 case 2:
			wrpll_params->kdiv = 1;
			break;
		 case 3:
			wrpll_params->kdiv = 2;
			break;
		 case 1:
			wrpll_params->kdiv = 3;
			break;
		 default:
			WARN(1, "Incorrect KDiv\n");
		 }

		 wrpll_params->qdiv_ratio = candidate_p1[min_dco_index];
		 wrpll_params->qdiv_mode =
			(wrpll_params->qdiv_ratio == 1) ? 0 : 1;

		 dco_freq = candidate_p0[min_dco_index] *
			 candidate_p1[min_dco_index] *
			 candidate_p2[min_dco_index] * afe_clock;

		/*
		* Intermediate values are in Hz.
		* Divide by MHz to match bsepc
		*/
		 wrpll_params->dco_integer = div_u64(dco_freq, (24 * MHz(1)));
		 wrpll_params->dco_fraction =
			 div_u64(((div_u64(dco_freq, 24) -
				   wrpll_params->dco_integer * MHz(1)) * 0x8000), MHz(1));

	}
}


static bool
skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1176
		   struct intel_crtc_state *crtc_state,
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		   struct intel_encoder *intel_encoder,
		   int clock)
{
	struct intel_shared_dpll *pll;
	uint32_t ctrl1, cfgcr1, cfgcr2;

	/*
	 * See comment in intel_dpll_hw_state to understand why we always use 0
	 * as the DPLL id in this function.
	 */

	ctrl1 = DPLL_CTRL1_OVERRIDE(0);

	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
		struct skl_wrpll_params wrpll_params = { 0, };

		ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);

		skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params);

		cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
			 DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
			 wrpll_params.dco_integer;

		cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
			 DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
			 DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
			 DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
			 wrpll_params.central_freq;
	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
		struct drm_encoder *encoder = &intel_encoder->base;
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

		switch (intel_dp->link_bw) {
		case DP_LINK_BW_1_62:
			ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_810, 0);
			break;
		case DP_LINK_BW_2_7:
			ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1350, 0);
			break;
		case DP_LINK_BW_5_4:
			ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2700, 0);
			break;
		}

		cfgcr1 = cfgcr2 = 0;
	} else /* eDP */
		return true;

1226 1227 1228
	crtc_state->dpll_hw_state.ctrl1 = ctrl1;
	crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
	crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1229

1230
	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1231 1232 1233 1234 1235 1236 1237
	if (pll == NULL) {
		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
				 pipe_name(intel_crtc->pipe));
		return false;
	}

	/* shared DPLL id 0 is DPLL 1 */
1238
	crtc_state->ddi_pll_sel = pll->id + 1;
1239 1240 1241

	return true;
}
1242

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
/* bxt clock parameters */
struct bxt_clk_div {
	uint32_t p1;
	uint32_t p2;
	uint32_t m2_int;
	uint32_t m2_frac;
	bool m2_frac_en;
	uint32_t n;
	uint32_t prop_coef;
	uint32_t int_coef;
	uint32_t gain_ctl;
	uint32_t targ_cnt;
	uint32_t lanestagger;
};

/* pre-calculated values for DP linkrates */
static struct bxt_clk_div bxt_dp_clk_val[7] = {
	/* 162 */ {4, 2, 32, 1677722, 1, 1, 5, 11, 2, 9, 0xd},
	/* 270 */ {4, 1, 27,       0, 0, 1, 3,  8, 1, 9, 0xd},
	/* 540 */ {2, 1, 27,       0, 0, 1, 3,  8, 1, 9, 0x18},
	/* 216 */ {3, 2, 32, 1677722, 1, 1, 5, 11, 2, 9, 0xd},
	/* 243 */ {4, 1, 24, 1258291, 1, 1, 5, 11, 2, 9, 0xd},
	/* 324 */ {4, 1, 32, 1677722, 1, 1, 5, 11, 2, 9, 0xd},
	/* 432 */ {3, 1, 32, 1677722, 1, 1, 5, 11, 2, 9, 0x18}
};

static bool
bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
		   struct intel_crtc_state *crtc_state,
		   struct intel_encoder *intel_encoder,
		   int clock)
{
	struct intel_shared_dpll *pll;
	struct bxt_clk_div clk_div = {0};

	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
		intel_clock_t best_clock;

		/* Calculate HDMI div */
		/*
		 * FIXME: tie the following calculation into
		 * i9xx_crtc_compute_clock
		 */
		if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
			DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
					 clock, pipe_name(intel_crtc->pipe));
			return false;
		}

		clk_div.p1 = best_clock.p1;
		clk_div.p2 = best_clock.p2;
		WARN_ON(best_clock.m1 != 2);
		clk_div.n = best_clock.n;
		clk_div.m2_int = best_clock.m2 >> 22;
		clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
		clk_div.m2_frac_en = clk_div.m2_frac != 0;

		/* FIXME: set coef, gain, targcnt based on freq band */
		clk_div.prop_coef = 5;
		clk_div.int_coef = 11;
		clk_div.gain_ctl = 2;
		clk_div.targ_cnt = 9;
		if (clock > 270000)
			clk_div.lanestagger = 0x18;
		else if (clock > 135000)
			clk_div.lanestagger = 0x0d;
		else if (clock > 67000)
			clk_div.lanestagger = 0x07;
		else if (clock > 33000)
			clk_div.lanestagger = 0x04;
		else
			clk_div.lanestagger = 0x02;
	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
			intel_encoder->type == INTEL_OUTPUT_EDP) {
		struct drm_encoder *encoder = &intel_encoder->base;
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

		switch (intel_dp->link_bw) {
		case DP_LINK_BW_1_62:
			clk_div = bxt_dp_clk_val[0];
			break;
		case DP_LINK_BW_2_7:
			clk_div = bxt_dp_clk_val[1];
			break;
		case DP_LINK_BW_5_4:
			clk_div = bxt_dp_clk_val[2];
			break;
		default:
			clk_div = bxt_dp_clk_val[0];
			DRM_ERROR("Unknown link rate\n");
		}
	}

	crtc_state->dpll_hw_state.ebb0 =
		PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
	crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
	crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
	crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;

	if (clk_div.m2_frac_en)
		crtc_state->dpll_hw_state.pll3 =
			PORT_PLL_M2_FRAC_ENABLE;

	crtc_state->dpll_hw_state.pll6 =
		clk_div.prop_coef | PORT_PLL_INT_COEFF(clk_div.int_coef);
	crtc_state->dpll_hw_state.pll6 |=
		PORT_PLL_GAIN_CTL(clk_div.gain_ctl);

	crtc_state->dpll_hw_state.pll8 = clk_div.targ_cnt;

	crtc_state->dpll_hw_state.pcsdw12 =
		LANESTAGGER_STRAP_OVRD | clk_div.lanestagger;

	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
	if (pll == NULL) {
		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
			pipe_name(intel_crtc->pipe));
		return false;
	}

	/* shared DPLL id 0 is DPLL A */
	crtc_state->ddi_pll_sel = pll->id;

	return true;
}

1369 1370 1371 1372 1373 1374 1375
/*
 * Tries to find a *shared* PLL for the CRTC and store it in
 * intel_crtc->ddi_pll_sel.
 *
 * For private DPLLs, compute_config() should do the selection for us. This
 * function should be folded into compute_config() eventually.
 */
1376 1377
bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
			  struct intel_crtc_state *crtc_state)
1378
{
1379
	struct drm_device *dev = intel_crtc->base.dev;
1380
	struct intel_encoder *intel_encoder =
1381
		intel_ddi_get_crtc_new_encoder(crtc_state);
1382
	int clock = crtc_state->port_clock;
1383

1384
	if (IS_SKYLAKE(dev))
1385 1386
		return skl_ddi_pll_select(intel_crtc, crtc_state,
					  intel_encoder, clock);
1387 1388 1389
	else if (IS_BROXTON(dev))
		return bxt_ddi_pll_select(intel_crtc, crtc_state,
					  intel_encoder, clock);
1390
	else
1391 1392
		return hsw_ddi_pll_select(intel_crtc, crtc_state,
					  intel_encoder, clock);
1393 1394
}

1395 1396 1397 1398 1399
void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1400
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1401 1402 1403
	int type = intel_encoder->type;
	uint32_t temp;

1404
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1405
		temp = TRANS_MSA_SYNC_CLK;
1406
		switch (intel_crtc->config->pipe_bpp) {
1407
		case 18:
1408
			temp |= TRANS_MSA_6_BPC;
1409 1410
			break;
		case 24:
1411
			temp |= TRANS_MSA_8_BPC;
1412 1413
			break;
		case 30:
1414
			temp |= TRANS_MSA_10_BPC;
1415 1416
			break;
		case 36:
1417
			temp |= TRANS_MSA_12_BPC;
1418 1419
			break;
		default:
1420
			BUG();
1421
		}
1422
		I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1423 1424 1425
	}
}

1426 1427 1428 1429 1430
void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1431
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1432 1433 1434 1435 1436 1437 1438 1439 1440
	uint32_t temp;
	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
	if (state == true)
		temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
	else
		temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}

1441
void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1442 1443 1444
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1445
	struct drm_encoder *encoder = &intel_encoder->base;
1446 1447
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1448
	enum pipe pipe = intel_crtc->pipe;
1449
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1450
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1451
	int type = intel_encoder->type;
1452 1453
	uint32_t temp;

1454 1455
	/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
	temp = TRANS_DDI_FUNC_ENABLE;
1456
	temp |= TRANS_DDI_SELECT_PORT(port);
1457

1458
	switch (intel_crtc->config->pipe_bpp) {
1459
	case 18:
1460
		temp |= TRANS_DDI_BPC_6;
1461 1462
		break;
	case 24:
1463
		temp |= TRANS_DDI_BPC_8;
1464 1465
		break;
	case 30:
1466
		temp |= TRANS_DDI_BPC_10;
1467 1468
		break;
	case 36:
1469
		temp |= TRANS_DDI_BPC_12;
1470 1471
		break;
	default:
1472
		BUG();
1473
	}
1474

1475
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1476
		temp |= TRANS_DDI_PVSYNC;
1477
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1478
		temp |= TRANS_DDI_PHSYNC;
1479

1480 1481 1482
	if (cpu_transcoder == TRANSCODER_EDP) {
		switch (pipe) {
		case PIPE_A:
1483 1484 1485 1486
			/* On Haswell, can only use the always-on power well for
			 * eDP when not using the panel fitter, and when not
			 * using motion blur mitigation (which we don't
			 * support). */
1487
			if (IS_HASWELL(dev) &&
1488 1489
			    (intel_crtc->config->pch_pfit.enabled ||
			     intel_crtc->config->pch_pfit.force_thru))
1490 1491 1492
				temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
			else
				temp |= TRANS_DDI_EDP_INPUT_A_ON;
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
			break;
		case PIPE_B:
			temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
			break;
		case PIPE_C:
			temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
			break;
		default:
			BUG();
			break;
		}
	}

1506
	if (type == INTEL_OUTPUT_HDMI) {
1507
		if (intel_crtc->config->has_hdmi_sink)
1508
			temp |= TRANS_DDI_MODE_SELECT_HDMI;
1509
		else
1510
			temp |= TRANS_DDI_MODE_SELECT_DVI;
1511

1512
	} else if (type == INTEL_OUTPUT_ANALOG) {
1513
		temp |= TRANS_DDI_MODE_SELECT_FDI;
1514
		temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1515 1516 1517 1518 1519

	} else if (type == INTEL_OUTPUT_DISPLAYPORT ||
		   type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		if (intel_dp->is_mst) {
			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
		} else
			temp |= TRANS_DDI_MODE_SELECT_DP_SST;

		temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
	} else if (type == INTEL_OUTPUT_DP_MST) {
		struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;

		if (intel_dp->is_mst) {
			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
		} else
			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1533

1534
		temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1535
	} else {
1536 1537
		WARN(1, "Invalid encoder type %d for pipe %c\n",
		     intel_encoder->type, pipe_name(pipe));
1538 1539
	}

1540
	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1541
}
1542

1543 1544
void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
				       enum transcoder cpu_transcoder)
1545
{
1546
	uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1547 1548
	uint32_t val = I915_READ(reg);

1549
	val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1550
	val |= TRANS_DDI_PORT_NONE;
1551
	I915_WRITE(reg, val);
1552 1553
}

1554 1555 1556 1557 1558 1559 1560 1561 1562
bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
{
	struct drm_device *dev = intel_connector->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_encoder *intel_encoder = intel_connector->encoder;
	int type = intel_connector->base.connector_type;
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	enum pipe pipe = 0;
	enum transcoder cpu_transcoder;
1563
	enum intel_display_power_domain power_domain;
1564 1565
	uint32_t tmp;

1566
	power_domain = intel_display_port_power_domain(intel_encoder);
1567
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1568 1569
		return false;

1570 1571 1572 1573 1574 1575
	if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
		return false;

	if (port == PORT_A)
		cpu_transcoder = TRANSCODER_EDP;
	else
D
Daniel Vetter 已提交
1576
		cpu_transcoder = (enum transcoder) pipe;
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588

	tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));

	switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
	case TRANS_DDI_MODE_SELECT_HDMI:
	case TRANS_DDI_MODE_SELECT_DVI:
		return (type == DRM_MODE_CONNECTOR_HDMIA);

	case TRANS_DDI_MODE_SELECT_DP_SST:
		if (type == DRM_MODE_CONNECTOR_eDP)
			return true;
		return (type == DRM_MODE_CONNECTOR_DisplayPort);
1589 1590 1591 1592
	case TRANS_DDI_MODE_SELECT_DP_MST:
		/* if the transcoder is in MST state then
		 * connector isn't connected */
		return false;
1593 1594 1595 1596 1597 1598 1599 1600 1601

	case TRANS_DDI_MODE_SELECT_FDI:
		return (type == DRM_MODE_CONNECTOR_VGA);

	default:
		return false;
	}
}

1602 1603 1604 1605 1606
bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
			    enum pipe *pipe)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1607
	enum port port = intel_ddi_get_encoder_port(encoder);
1608
	enum intel_display_power_domain power_domain;
1609 1610 1611
	u32 tmp;
	int i;

1612
	power_domain = intel_display_port_power_domain(encoder);
1613
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1614 1615
		return false;

1616
	tmp = I915_READ(DDI_BUF_CTL(port));
1617 1618 1619 1620

	if (!(tmp & DDI_BUF_CTL_ENABLE))
		return false;

1621 1622
	if (port == PORT_A) {
		tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
1623

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
		case TRANS_DDI_EDP_INPUT_A_ON:
		case TRANS_DDI_EDP_INPUT_A_ONOFF:
			*pipe = PIPE_A;
			break;
		case TRANS_DDI_EDP_INPUT_B_ONOFF:
			*pipe = PIPE_B;
			break;
		case TRANS_DDI_EDP_INPUT_C_ONOFF:
			*pipe = PIPE_C;
			break;
		}

		return true;
	} else {
		for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
			tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));

			if ((tmp & TRANS_DDI_PORT_MASK)
			    == TRANS_DDI_SELECT_PORT(port)) {
1644 1645 1646
				if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
					return false;

1647 1648 1649
				*pipe = i;
				return true;
			}
1650 1651 1652
		}
	}

1653
	DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
1654

1655
	return false;
1656 1657
}

1658 1659 1660 1661 1662 1663
void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1664
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1665

1666 1667 1668
	if (cpu_transcoder != TRANSCODER_EDP)
		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
			   TRANS_CLK_SEL_PORT(port));
1669 1670 1671 1672 1673
}

void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
{
	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1674
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1675

1676 1677 1678
	if (cpu_transcoder != TRANSCODER_EDP)
		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
			   TRANS_CLK_SEL_DISABLED);
1679 1680
}

P
Paulo Zanoni 已提交
1681
static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
1682
{
1683
	struct drm_encoder *encoder = &intel_encoder->base;
1684 1685
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1686
	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
1687
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1688
	int type = intel_encoder->type;
1689

1690 1691
	if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1692
		intel_edp_panel_on(intel_dp);
1693
	}
1694

1695
	if (IS_SKYLAKE(dev)) {
1696
		uint32_t dpll = crtc->config->ddi_pll_sel;
1697 1698
		uint32_t val;

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
		/*
		 * DPLL0 is used for eDP and is the only "private" DPLL (as
		 * opposed to shared) on SKL
		 */
		if (type == INTEL_OUTPUT_EDP) {
			WARN_ON(dpll != SKL_DPLL0);

			val = I915_READ(DPLL_CTRL1);

			val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
				 DPLL_CTRL1_SSC(dpll) |
				 DPLL_CRTL1_LINK_RATE_MASK(dpll));
1711
			val |= crtc->config->dpll_hw_state.ctrl1 << (dpll * 6);
1712 1713 1714 1715 1716 1717

			I915_WRITE(DPLL_CTRL1, val);
			POSTING_READ(DPLL_CTRL1);
		}

		/* DDI -> PLL mapping  */
1718 1719 1720 1721 1722 1723 1724 1725
		val = I915_READ(DPLL_CTRL2);

		val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
			DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
		val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
			DPLL_CTRL2_DDI_SEL_OVERRIDE(port));

		I915_WRITE(DPLL_CTRL2, val);
1726

1727
	} else if (INTEL_INFO(dev)->gen < 9) {
1728 1729
		WARN_ON(crtc->config->ddi_pll_sel == PORT_CLK_SEL_NONE);
		I915_WRITE(PORT_CLK_SEL(port), crtc->config->ddi_pll_sel);
1730
	}
1731

1732
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1733
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1734

1735
		intel_ddi_init_dp_buf_reg(intel_encoder);
1736 1737 1738 1739

		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
		intel_dp_start_link_train(intel_dp);
		intel_dp_complete_link_train(intel_dp);
1740
		if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
1741
			intel_dp_stop_link_train(intel_dp);
1742 1743 1744 1745
	} else if (type == INTEL_OUTPUT_HDMI) {
		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);

		intel_hdmi->set_infoframes(encoder,
1746 1747
					   crtc->config->has_hdmi_sink,
					   &crtc->config->base.adjusted_mode);
1748
	}
1749 1750
}

P
Paulo Zanoni 已提交
1751
static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
1752 1753
{
	struct drm_encoder *encoder = &intel_encoder->base;
1754 1755
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1756
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1757
	int type = intel_encoder->type;
1758
	uint32_t val;
1759
	bool wait = false;
1760 1761 1762 1763 1764

	val = I915_READ(DDI_BUF_CTL(port));
	if (val & DDI_BUF_CTL_ENABLE) {
		val &= ~DDI_BUF_CTL_ENABLE;
		I915_WRITE(DDI_BUF_CTL(port), val);
1765
		wait = true;
1766
	}
1767

1768 1769 1770 1771 1772 1773 1774 1775
	val = I915_READ(DP_TP_CTL(port));
	val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
	val |= DP_TP_CTL_LINK_TRAIN_PAT1;
	I915_WRITE(DP_TP_CTL(port), val);

	if (wait)
		intel_wait_ddi_buf_idle(dev_priv, port);

1776
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1777
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1778
		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1779
		intel_edp_panel_vdd_on(intel_dp);
1780
		intel_edp_panel_off(intel_dp);
1781 1782
	}

1783 1784 1785
	if (IS_SKYLAKE(dev))
		I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
					DPLL_CTRL2_DDI_CLK_OFF(port)));
1786
	else if (INTEL_INFO(dev)->gen < 9)
1787
		I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
1788 1789
}

P
Paulo Zanoni 已提交
1790
static void intel_enable_ddi(struct intel_encoder *intel_encoder)
1791
{
1792
	struct drm_encoder *encoder = &intel_encoder->base;
1793 1794
	struct drm_crtc *crtc = encoder->crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1795
	struct drm_device *dev = encoder->dev;
1796
	struct drm_i915_private *dev_priv = dev->dev_private;
1797 1798
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	int type = intel_encoder->type;
1799

1800
	if (type == INTEL_OUTPUT_HDMI) {
1801 1802 1803
		struct intel_digital_port *intel_dig_port =
			enc_to_dig_port(encoder);

1804 1805 1806 1807
		/* In HDMI/DVI mode, the port width, and swing/emphasis values
		 * are ignored so nothing special needs to be done besides
		 * enabling the port.
		 */
1808
		I915_WRITE(DDI_BUF_CTL(port),
1809 1810
			   intel_dig_port->saved_port_bits |
			   DDI_BUF_CTL_ENABLE);
1811 1812 1813
	} else if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

1814
		if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
1815 1816
			intel_dp_stop_link_train(intel_dp);

1817
		intel_edp_backlight_on(intel_dp);
R
Rodrigo Vivi 已提交
1818
		intel_psr_enable(intel_dp);
V
Vandana Kannan 已提交
1819
		intel_edp_drrs_enable(intel_dp);
1820
	}
1821

1822
	if (intel_crtc->config->has_audio) {
1823
		intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
1824
		intel_audio_codec_enable(intel_encoder);
1825
	}
1826 1827
}

P
Paulo Zanoni 已提交
1828
static void intel_disable_ddi(struct intel_encoder *intel_encoder)
1829
{
1830
	struct drm_encoder *encoder = &intel_encoder->base;
1831 1832
	struct drm_crtc *crtc = encoder->crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1833
	int type = intel_encoder->type;
1834 1835
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1836

1837
	if (intel_crtc->config->has_audio) {
1838
		intel_audio_codec_disable(intel_encoder);
1839 1840
		intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
	}
1841

1842 1843 1844
	if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

V
Vandana Kannan 已提交
1845
		intel_edp_drrs_disable(intel_dp);
R
Rodrigo Vivi 已提交
1846
		intel_psr_disable(intel_dp);
1847
		intel_edp_backlight_off(intel_dp);
1848
	}
1849
}
P
Paulo Zanoni 已提交
1850

1851 1852 1853
static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
1854
	I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
1855 1856 1857 1858
	POSTING_READ(WRPLL_CTL(pll->id));
	udelay(20);
}

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	uint32_t val;

	val = I915_READ(WRPLL_CTL(pll->id));
	I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
	POSTING_READ(WRPLL_CTL(pll->id));
}

1869 1870 1871 1872 1873 1874
static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
				     struct intel_shared_dpll *pll,
				     struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;

1875
	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
1876 1877 1878 1879 1880 1881 1882 1883
		return false;

	val = I915_READ(WRPLL_CTL(pll->id));
	hw_state->wrpll = val;

	return val & WRPLL_PLL_ENABLE;
}

1884
static const char * const hsw_ddi_pll_names[] = {
1885 1886 1887 1888
	"WRPLL 1",
	"WRPLL 2",
};

1889
static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
P
Paulo Zanoni 已提交
1890
{
1891 1892
	int i;

1893
	dev_priv->num_shared_dpll = 2;
1894

1895
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
1896 1897
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
1898
		dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
1899
		dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
1900 1901
		dev_priv->shared_dplls[i].get_hw_state =
			hsw_ddi_pll_get_hw_state;
1902
	}
1903 1904
}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
static const char * const skl_ddi_pll_names[] = {
	"DPLL 1",
	"DPLL 2",
	"DPLL 3",
};

struct skl_dpll_regs {
	u32 ctl, cfgcr1, cfgcr2;
};

/* this array is indexed by the *shared* pll id */
static const struct skl_dpll_regs skl_dpll_regs[3] = {
	{
		/* DPLL 1 */
		.ctl = LCPLL2_CTL,
		.cfgcr1 = DPLL1_CFGCR1,
		.cfgcr2 = DPLL1_CFGCR2,
	},
	{
		/* DPLL 2 */
		.ctl = WRPLL_CTL1,
		.cfgcr1 = DPLL2_CFGCR1,
		.cfgcr2 = DPLL2_CFGCR2,
	},
	{
		/* DPLL 3 */
		.ctl = WRPLL_CTL2,
		.cfgcr1 = DPLL3_CFGCR1,
		.cfgcr2 = DPLL3_CFGCR2,
	},
};

static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
	uint32_t val;
	unsigned int dpll;
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
	dpll = pll->id + 1;

	val = I915_READ(DPLL_CTRL1);

	val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
		 DPLL_CRTL1_LINK_RATE_MASK(dpll));
	val |= pll->config.hw_state.ctrl1 << (dpll * 6);

	I915_WRITE(DPLL_CTRL1, val);
	POSTING_READ(DPLL_CTRL1);

	I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
	I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
	POSTING_READ(regs[pll->id].cfgcr1);
	POSTING_READ(regs[pll->id].cfgcr2);

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);

	if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
		DRM_ERROR("DPLL %d not locked\n", dpll);
}

static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
	POSTING_READ(regs[pll->id].ctl);
}

static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
				     struct intel_shared_dpll *pll,
				     struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;
	unsigned int dpll;
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
	dpll = pll->id + 1;

	val = I915_READ(regs[pll->id].ctl);
	if (!(val & LCPLL_PLL_ENABLE))
		return false;

	val = I915_READ(DPLL_CTRL1);
	hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;

	/* avoid reading back stale values if HDMI mode is not enabled */
	if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
		hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
		hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
	}

	return true;
}

static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
{
	int i;

	dev_priv->num_shared_dpll = 3;

	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
		dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
		dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
		dev_priv->shared_dplls[i].get_hw_state =
			skl_ddi_pll_get_hw_state;
	}
}

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
static void broxton_phy_init(struct drm_i915_private *dev_priv,
			     enum dpio_phy phy)
{
	enum port port;
	uint32_t val;

	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
	val |= GT_DISPLAY_POWER_ON(phy);
	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);

	/* Considering 10ms timeout until BSpec is updated */
	if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
		DRM_ERROR("timeout during PHY%d power on\n", phy);

	for (port =  (phy == DPIO_PHY0 ? PORT_B : PORT_A);
	     port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
		int lane;

		for (lane = 0; lane < 4; lane++) {
			val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
			/*
			 * Note that on CHV this flag is called UPAR, but has
			 * the same function.
			 */
			val &= ~LATENCY_OPTIM;
			if (lane != 1)
				val |= LATENCY_OPTIM;

			I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
		}
	}

	/* Program PLL Rcomp code offset */
	val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
	val &= ~IREF0RC_OFFSET_MASK;
	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
	I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);

	val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
	val &= ~IREF1RC_OFFSET_MASK;
	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
	I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);

	/* Program power gating */
	val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
		SUS_CLK_CONFIG;
	I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);

	if (phy == DPIO_PHY0) {
		val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
		I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
	}

	val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
	val &= ~OCL2_LDOFUSE_PWR_DIS;
	/*
	 * On PHY1 disable power on the second channel, since no port is
	 * connected there. On PHY0 both channels have a port, so leave it
	 * enabled.
	 * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
	 * power down the second channel on PHY0 as well.
	 */
	if (phy == DPIO_PHY1)
		val |= OCL2_LDOFUSE_PWR_DIS;
	I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);

	if (phy == DPIO_PHY0) {
		uint32_t grc_code;
		/*
		 * PHY0 isn't connected to an RCOMP resistor so copy over
		 * the corresponding calibrated value from PHY1, and disable
		 * the automatic calibration on PHY0.
		 */
		if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
			     10))
			DRM_ERROR("timeout waiting for PHY1 GRC\n");

		val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
		val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
		grc_code = val << GRC_CODE_FAST_SHIFT |
			   val << GRC_CODE_SLOW_SHIFT |
			   val;
		I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);

		val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
		val |= GRC_DIS | GRC_RDY_OVRD;
		I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
	}

	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
	val |= COMMON_RESET_DIS;
	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}

void broxton_ddi_phy_init(struct drm_device *dev)
{
	/* Enable PHY1 first since it provides Rcomp for PHY0 */
	broxton_phy_init(dev->dev_private, DPIO_PHY1);
	broxton_phy_init(dev->dev_private, DPIO_PHY0);
}

static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
			       enum dpio_phy phy)
{
	uint32_t val;

	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
	val &= ~COMMON_RESET_DIS;
	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}

void broxton_ddi_phy_uninit(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	broxton_phy_uninit(dev_priv, DPIO_PHY1);
	broxton_phy_uninit(dev_priv, DPIO_PHY0);

	/* FIXME: do this in broxton_phy_uninit per phy */
	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
}

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
static const char * const bxt_ddi_pll_names[] = {
	"PORT PLL A",
	"PORT PLL B",
	"PORT PLL C",
};

static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	uint32_t temp;
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_REF_SEL;
	/* Non-SSC reference */
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);

	/* Disable 10 bit clock */
	temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);

	/* Write P1 & P2 */
	temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
	temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
	temp |= pll->config.hw_state.ebb0;
	I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);

	/* Write M2 integer */
	temp = I915_READ(BXT_PORT_PLL(port, 0));
	temp &= ~PORT_PLL_M2_MASK;
	temp |= pll->config.hw_state.pll0;
	I915_WRITE(BXT_PORT_PLL(port, 0), temp);

	/* Write N */
	temp = I915_READ(BXT_PORT_PLL(port, 1));
	temp &= ~PORT_PLL_N_MASK;
	temp |= pll->config.hw_state.pll1;
	I915_WRITE(BXT_PORT_PLL(port, 1), temp);

	/* Write M2 fraction */
	temp = I915_READ(BXT_PORT_PLL(port, 2));
	temp &= ~PORT_PLL_M2_FRAC_MASK;
	temp |= pll->config.hw_state.pll2;
	I915_WRITE(BXT_PORT_PLL(port, 2), temp);

	/* Write M2 fraction enable */
	temp = I915_READ(BXT_PORT_PLL(port, 3));
	temp &= ~PORT_PLL_M2_FRAC_ENABLE;
	temp |= pll->config.hw_state.pll3;
	I915_WRITE(BXT_PORT_PLL(port, 3), temp);

	/* Write coeff */
	temp = I915_READ(BXT_PORT_PLL(port, 6));
	temp &= ~PORT_PLL_PROP_COEFF_MASK;
	temp &= ~PORT_PLL_INT_COEFF_MASK;
	temp &= ~PORT_PLL_GAIN_CTL_MASK;
	temp |= pll->config.hw_state.pll6;
	I915_WRITE(BXT_PORT_PLL(port, 6), temp);

	/* Write calibration val */
	temp = I915_READ(BXT_PORT_PLL(port, 8));
	temp &= ~PORT_PLL_TARGET_CNT_MASK;
	temp |= pll->config.hw_state.pll8;
	I915_WRITE(BXT_PORT_PLL(port, 8), temp);

	/*
	 * FIXME: program PORT_PLL_9/i_lockthresh according to the latest
	 * specification update.
	 */

	/* Recalibrate with new settings */
	temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
	temp |= PORT_PLL_RECALIBRATE;
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
	/* Enable 10 bit clock */
	temp |= PORT_PLL_10BIT_CLK_ENABLE;
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);

	/* Enable PLL */
	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp |= PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));

	if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
			PORT_PLL_LOCK), 200))
		DRM_ERROR("PLL %d not locked\n", port);

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
	temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
	temp &= ~LANE_STAGGER_MASK;
	temp &= ~LANESTAGGER_STRAP_OVRD;
	temp |= pll->config.hw_state.pcsdw12;
	I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
}

static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t temp;

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));
}

static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll,
					struct intel_dpll_hw_state *hw_state)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t val;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(BXT_PORT_PLL_ENABLE(port));
	if (!(val & PORT_PLL_ENABLE))
		return false;

	hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
	hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
	hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
	hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
	hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
	hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
	hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers. We configure all lanes the same way, so
	 * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
	 */
	hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
	if (I915_READ(BXT_PORT_PCS_DW12_LN23(port) != hw_state->pcsdw12))
		DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
				 hw_state->pcsdw12,
				 I915_READ(BXT_PORT_PCS_DW12_LN23(port)));

	return true;
}

static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
{
	int i;

	dev_priv->num_shared_dpll = 3;

	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
		dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
		dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
		dev_priv->shared_dplls[i].get_hw_state =
			bxt_ddi_pll_get_hw_state;
	}
}

2313 2314 2315 2316 2317
void intel_ddi_pll_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t val = I915_READ(LCPLL_CTL);

2318 2319
	if (IS_SKYLAKE(dev))
		skl_shared_dplls_init(dev_priv);
2320 2321
	else if (IS_BROXTON(dev))
		bxt_shared_dplls_init(dev_priv);
2322 2323
	else
		hsw_shared_dplls_init(dev_priv);
P
Paulo Zanoni 已提交
2324

2325
	DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
2326
		      dev_priv->display.get_display_clock_speed(dev));
P
Paulo Zanoni 已提交
2327

2328 2329 2330
	if (IS_SKYLAKE(dev)) {
		if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
			DRM_ERROR("LCPLL1 is disabled\n");
2331 2332
	} else if (IS_BROXTON(dev)) {
		broxton_init_cdclk(dev);
2333
		broxton_ddi_phy_init(dev);
2334 2335 2336 2337 2338 2339 2340 2341 2342
	} else {
		/*
		 * The LCPLL register should be turned on by the BIOS. For now
		 * let's just check its state and print errors in case
		 * something is wrong.  Don't even try to turn it on.
		 */

		if (val & LCPLL_CD_SOURCE_FCLK)
			DRM_ERROR("CDCLK source is not LCPLL\n");
P
Paulo Zanoni 已提交
2343

2344 2345 2346
		if (val & LCPLL_PLL_DISABLE)
			DRM_ERROR("LCPLL is disabled\n");
	}
P
Paulo Zanoni 已提交
2347
}
2348 2349 2350

void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
{
2351 2352
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
2353
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
2354
	enum port port = intel_dig_port->port;
2355
	uint32_t val;
2356
	bool wait = false;
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375

	if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
		val = I915_READ(DDI_BUF_CTL(port));
		if (val & DDI_BUF_CTL_ENABLE) {
			val &= ~DDI_BUF_CTL_ENABLE;
			I915_WRITE(DDI_BUF_CTL(port), val);
			wait = true;
		}

		val = I915_READ(DP_TP_CTL(port));
		val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
		val |= DP_TP_CTL_LINK_TRAIN_PAT1;
		I915_WRITE(DP_TP_CTL(port), val);
		POSTING_READ(DP_TP_CTL(port));

		if (wait)
			intel_wait_ddi_buf_idle(dev_priv, port);
	}

2376
	val = DP_TP_CTL_ENABLE |
2377
	      DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
2378 2379 2380 2381 2382 2383 2384
	if (intel_dp->is_mst)
		val |= DP_TP_CTL_MODE_MST;
	else {
		val |= DP_TP_CTL_MODE_SST;
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
	}
2385 2386 2387 2388 2389 2390 2391 2392 2393
	I915_WRITE(DP_TP_CTL(port), val);
	POSTING_READ(DP_TP_CTL(port));

	intel_dp->DP |= DDI_BUF_CTL_ENABLE;
	I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
	POSTING_READ(DDI_BUF_CTL(port));

	udelay(600);
}
P
Paulo Zanoni 已提交
2394

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
void intel_ddi_fdi_disable(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
	uint32_t val;

	intel_ddi_post_disable(intel_encoder);

	val = I915_READ(_FDI_RXA_CTL);
	val &= ~FDI_RX_ENABLE;
	I915_WRITE(_FDI_RXA_CTL, val);

	val = I915_READ(_FDI_RXA_MISC);
	val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
	val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
	I915_WRITE(_FDI_RXA_MISC, val);

	val = I915_READ(_FDI_RXA_CTL);
	val &= ~FDI_PCDCLK;
	I915_WRITE(_FDI_RXA_CTL, val);

	val = I915_READ(_FDI_RXA_CTL);
	val &= ~FDI_RX_PLL_ENABLE;
	I915_WRITE(_FDI_RXA_CTL, val);
}

P
Paulo Zanoni 已提交
2421 2422
static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
{
2423 2424 2425 2426 2427 2428 2429 2430
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(&intel_encoder->base);
	int type = intel_dig_port->base.type;

	if (type != INTEL_OUTPUT_DISPLAYPORT &&
	    type != INTEL_OUTPUT_EDP &&
	    type != INTEL_OUTPUT_UNKNOWN) {
		return;
	}
P
Paulo Zanoni 已提交
2431

2432
	intel_dp_hot_plug(intel_encoder);
P
Paulo Zanoni 已提交
2433 2434
}

2435
void intel_ddi_get_config(struct intel_encoder *encoder,
2436
			  struct intel_crtc_state *pipe_config)
2437 2438 2439
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2440
	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
2441
	struct intel_hdmi *intel_hdmi;
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	u32 temp, flags = 0;

	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
	if (temp & TRANS_DDI_PHSYNC)
		flags |= DRM_MODE_FLAG_PHSYNC;
	else
		flags |= DRM_MODE_FLAG_NHSYNC;
	if (temp & TRANS_DDI_PVSYNC)
		flags |= DRM_MODE_FLAG_PVSYNC;
	else
		flags |= DRM_MODE_FLAG_NVSYNC;

2454
	pipe_config->base.adjusted_mode.flags |= flags;
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471

	switch (temp & TRANS_DDI_BPC_MASK) {
	case TRANS_DDI_BPC_6:
		pipe_config->pipe_bpp = 18;
		break;
	case TRANS_DDI_BPC_8:
		pipe_config->pipe_bpp = 24;
		break;
	case TRANS_DDI_BPC_10:
		pipe_config->pipe_bpp = 30;
		break;
	case TRANS_DDI_BPC_12:
		pipe_config->pipe_bpp = 36;
		break;
	default:
		break;
	}
2472 2473 2474

	switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
	case TRANS_DDI_MODE_SELECT_HDMI:
2475
		pipe_config->has_hdmi_sink = true;
2476 2477 2478 2479
		intel_hdmi = enc_to_intel_hdmi(&encoder->base);

		if (intel_hdmi->infoframe_enabled(&encoder->base))
			pipe_config->has_infoframe = true;
2480
		break;
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	case TRANS_DDI_MODE_SELECT_DVI:
	case TRANS_DDI_MODE_SELECT_FDI:
		break;
	case TRANS_DDI_MODE_SELECT_DP_SST:
	case TRANS_DDI_MODE_SELECT_DP_MST:
		pipe_config->has_dp_encoder = true;
		intel_dp_get_m_n(intel_crtc, pipe_config);
		break;
	default:
		break;
	}
2492

2493
	if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
2494
		temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
2495
		if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
2496 2497
			pipe_config->has_audio = true;
	}
2498

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
	if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
	}
2518

2519
	intel_ddi_clock_get(encoder, pipe_config);
2520 2521
}

P
Paulo Zanoni 已提交
2522 2523 2524 2525 2526 2527
static void intel_ddi_destroy(struct drm_encoder *encoder)
{
	/* HDMI has nothing special to destroy, so we can go with this. */
	intel_dp_encoder_destroy(encoder);
}

2528
static bool intel_ddi_compute_config(struct intel_encoder *encoder,
2529
				     struct intel_crtc_state *pipe_config)
P
Paulo Zanoni 已提交
2530
{
2531
	int type = encoder->type;
2532
	int port = intel_ddi_get_encoder_port(encoder);
P
Paulo Zanoni 已提交
2533

2534
	WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
P
Paulo Zanoni 已提交
2535

2536 2537 2538
	if (port == PORT_A)
		pipe_config->cpu_transcoder = TRANSCODER_EDP;

P
Paulo Zanoni 已提交
2539
	if (type == INTEL_OUTPUT_HDMI)
2540
		return intel_hdmi_compute_config(encoder, pipe_config);
P
Paulo Zanoni 已提交
2541
	else
2542
		return intel_dp_compute_config(encoder, pipe_config);
P
Paulo Zanoni 已提交
2543 2544 2545 2546 2547 2548
}

static const struct drm_encoder_funcs intel_ddi_funcs = {
	.destroy = intel_ddi_destroy,
};

2549 2550 2551 2552 2553 2554
static struct intel_connector *
intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
{
	struct intel_connector *connector;
	enum port port = intel_dig_port->port;

2555
	connector = intel_connector_alloc();
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
	if (!connector)
		return NULL;

	intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
	if (!intel_dp_init_connector(intel_dig_port, connector)) {
		kfree(connector);
		return NULL;
	}

	return connector;
}

static struct intel_connector *
intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
{
	struct intel_connector *connector;
	enum port port = intel_dig_port->port;

2574
	connector = intel_connector_alloc();
2575 2576 2577 2578 2579 2580 2581 2582 2583
	if (!connector)
		return NULL;

	intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
	intel_hdmi_init_connector(intel_dig_port, connector);

	return connector;
}

P
Paulo Zanoni 已提交
2584 2585
void intel_ddi_init(struct drm_device *dev, enum port port)
{
2586
	struct drm_i915_private *dev_priv = dev->dev_private;
P
Paulo Zanoni 已提交
2587 2588 2589
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
2590 2591 2592 2593 2594 2595
	bool init_hdmi, init_dp;

	init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
		     dev_priv->vbt.ddi_port_info[port].supports_hdmi);
	init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
	if (!init_dp && !init_hdmi) {
2596
		DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
2597 2598 2599 2600
			      port_name(port));
		init_hdmi = true;
		init_dp = true;
	}
P
Paulo Zanoni 已提交
2601

2602
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
P
Paulo Zanoni 已提交
2603 2604 2605 2606 2607 2608 2609 2610 2611
	if (!intel_dig_port)
		return;

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

	drm_encoder_init(dev, encoder, &intel_ddi_funcs,
			 DRM_MODE_ENCODER_TMDS);

2612
	intel_encoder->compute_config = intel_ddi_compute_config;
P
Paulo Zanoni 已提交
2613 2614 2615 2616 2617
	intel_encoder->enable = intel_enable_ddi;
	intel_encoder->pre_enable = intel_ddi_pre_enable;
	intel_encoder->disable = intel_disable_ddi;
	intel_encoder->post_disable = intel_ddi_post_disable;
	intel_encoder->get_hw_state = intel_ddi_get_hw_state;
2618
	intel_encoder->get_config = intel_ddi_get_config;
P
Paulo Zanoni 已提交
2619 2620

	intel_dig_port->port = port;
2621 2622 2623
	intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
					  (DDI_BUF_PORT_REVERSAL |
					   DDI_A_4_LANES);
P
Paulo Zanoni 已提交
2624 2625

	intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
2626
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2627
	intel_encoder->cloneable = 0;
P
Paulo Zanoni 已提交
2628 2629
	intel_encoder->hot_plug = intel_ddi_hot_plug;

2630 2631 2632
	if (init_dp) {
		if (!intel_ddi_init_dp_connector(intel_dig_port))
			goto err;
2633

2634 2635 2636
		intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
		dev_priv->hpd_irq_port[port] = intel_dig_port;
	}
2637

2638 2639
	/* In theory we don't need the encoder->type check, but leave it just in
	 * case we have some really bad VBTs... */
2640 2641 2642
	if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
		if (!intel_ddi_init_hdmi_connector(intel_dig_port))
			goto err;
2643
	}
2644 2645 2646 2647 2648 2649

	return;

err:
	drm_encoder_cleanup(encoder);
	kfree(intel_dig_port);
P
Paulo Zanoni 已提交
2650
}