nic.h 17.8 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2006-2011 Solarflare Communications Inc.
5 6 7 8 9 10
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

B
Ben Hutchings 已提交
11 12
#ifndef EFX_NIC_H
#define EFX_NIC_H
13

14
#include <linux/net_tstamp.h>
15
#include <linux/i2c-algo-bit.h>
16
#include "net_driver.h"
17
#include "efx.h"
18
#include "mcdi.h"
19
#include "spi.h"
20 21 22 23 24

/*
 * Falcon hardware control
 */

25 26 27 28
enum {
	EFX_REV_FALCON_A0 = 0,
	EFX_REV_FALCON_A1 = 1,
	EFX_REV_FALCON_B0 = 2,
29
	EFX_REV_SIENA_A0 = 3,
30 31
};

32
static inline int efx_nic_rev(struct efx_nic *efx)
33
{
34
	return efx->type->revision;
35
}
36

37
extern u32 efx_farch_fpga_ver(struct efx_nic *efx);
38 39 40 41 42 43 44

/* NIC has two interlinked PCI functions for the same port. */
static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
{
	return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
}

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/* Read the current event from the event queue */
static inline efx_qword_t *efx_event(struct efx_channel *channel,
				     unsigned int index)
{
	return ((efx_qword_t *) (channel->eventq.buf.addr)) +
		(index & channel->eventq_mask);
}

/* See if an event is present
 *
 * We check both the high and low dword of the event for all ones.  We
 * wrote all ones when we cleared the event, and no valid event can
 * have all ones in either its high or low dwords.  This approach is
 * robust against reordering.
 *
 * Note that using a single 64-bit comparison is incorrect; even
 * though the CPU read will be atomic, the DMA write may not be.
 */
static inline int efx_event_present(efx_qword_t *event)
{
	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
}

/* Returns a pointer to the specified transmit descriptor in the TX
 * descriptor queue belonging to the specified channel.
 */
static inline efx_qword_t *
efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
{
	return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
}

/* Decide whether to push a TX descriptor to the NIC vs merely writing
 * the doorbell.  This can reduce latency when we are adding a single
 * descriptor to an empty queue, but is otherwise pointless.  Further,
 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
 * triggered if we don't check this.
 */
static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
					    unsigned int write_count)
{
	unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);

	if (empty_read_count == 0)
		return false;

	tx_queue->empty_read_count = 0;
	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
		&& tx_queue->write_count - write_count == 1;
}

/* Returns a pointer to the specified descriptor in the RX descriptor queue */
static inline efx_qword_t *
efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
{
	return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
enum {
	PHY_TYPE_NONE = 0,
	PHY_TYPE_TXC43128 = 1,
	PHY_TYPE_88E1111 = 2,
	PHY_TYPE_SFX7101 = 3,
	PHY_TYPE_QT2022C2 = 4,
	PHY_TYPE_PM8358 = 6,
	PHY_TYPE_SFT9001A = 8,
	PHY_TYPE_QT2025C = 9,
	PHY_TYPE_SFT9001B = 10,
};

#define FALCON_XMAC_LOOPBACKS			\
	((1 << LOOPBACK_XGMII) |		\
	 (1 << LOOPBACK_XGXS) |			\
	 (1 << LOOPBACK_XAUI))

#define FALCON_GMAC_LOOPBACKS			\
	(1 << LOOPBACK_GMAC)

124 125 126 127 128
/* Alignment of PCIe DMA boundaries (4KB) */
#define EFX_PAGE_SIZE	4096
/* Size and alignment of buffer table entries (same) */
#define EFX_BUF_SIZE	EFX_PAGE_SIZE

129
/**
130 131
 * struct falcon_board_type - board operations and type information
 * @id: Board type id, as found in NVRAM
132 133
 * @init: Allocate resources and initialise peripheral hardware
 * @init_phy: Do board-specific PHY initialisation
134
 * @fini: Shut down hardware and free resources
135 136
 * @set_id_led: Set state of identifying LED or revert to automatic function
 * @monitor: Board-specific health check function
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
 */
struct falcon_board_type {
	u8 id;
	int (*init) (struct efx_nic *nic);
	void (*init_phy) (struct efx_nic *efx);
	void (*fini) (struct efx_nic *nic);
	void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode);
	int (*monitor) (struct efx_nic *nic);
};

/**
 * struct falcon_board - board information
 * @type: Type of board
 * @major: Major rev. ('A', 'B' ...)
 * @minor: Minor rev. (0, 1, ...)
152 153
 * @i2c_adap: I2C adapter for on-board peripherals
 * @i2c_data: Data for bit-banging algorithm
154 155 156 157
 * @hwmon_client: I2C client for hardware monitor
 * @ioexp_client: I2C client for power/port control
 */
struct falcon_board {
158
	const struct falcon_board_type *type;
159 160
	int major;
	int minor;
161 162
	struct i2c_adapter i2c_adap;
	struct i2c_algo_bit_data i2c_data;
163 164 165
	struct i2c_client *hwmon_client, *ioexp_client;
};

166 167
/**
 * struct falcon_nic_data - Falcon NIC state
B
Ben Hutchings 已提交
168
 * @pci_dev2: Secondary function of Falcon A
169
 * @board: Board state and functions
170 171 172 173
 * @stats_disable_count: Nest count for disabling statistics fetches
 * @stats_pending: Is there a pending DMA of MAC statistics.
 * @stats_timer: A timer for regularly fetching MAC statistics.
 * @stats_dma_done: Pointer to the flag which indicates DMA completion.
174 175 176
 * @spi_flash: SPI flash device
 * @spi_eeprom: SPI EEPROM device
 * @spi_lock: SPI bus lock
177
 * @mdio_lock: MDIO bus lock
178
 * @xmac_poll_required: XMAC link state needs polling
179 180 181
 */
struct falcon_nic_data {
	struct pci_dev *pci_dev2;
182
	struct falcon_board board;
183 184 185 186
	unsigned int stats_disable_count;
	bool stats_pending;
	struct timer_list stats_timer;
	u32 *stats_dma_done;
187 188 189
	struct efx_spi_device spi_flash;
	struct efx_spi_device spi_eeprom;
	struct mutex spi_lock;
190
	struct mutex mdio_lock;
191
	bool xmac_poll_required;
192 193
};

194 195
static inline struct falcon_board *falcon_board(struct efx_nic *efx)
{
196 197
	struct falcon_nic_data *data = efx->nic_data;
	return &data->board;
198 199
}

200 201 202 203 204 205 206 207
/**
 * struct siena_nic_data - Siena NIC state
 * @wol_filter_id: Wake-on-LAN packet filter id
 */
struct siena_nic_data {
	int wol_filter_id;
};

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/*
 * On the SFC9000 family each port is associated with 1 PCI physical
 * function (PF) handled by sfc and a configurable number of virtual
 * functions (VFs) that may be handled by some other driver, often in
 * a VM guest.  The queue pointer registers are mapped in both PF and
 * VF BARs such that an 8K region provides access to a single RX, TX
 * and event queue (collectively a Virtual Interface, VI or VNIC).
 *
 * The PF has access to all 1024 VIs while VFs are mapped to VIs
 * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered
 * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE).
 * The number of VIs and the VI_SCALE value are configurable but must
 * be established at boot time by firmware.
 */

/* Maximum VI_SCALE parameter supported by Siena */
#define EFX_VI_SCALE_MAX 6
/* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX),
 * so this is the smallest allowed value. */
#define EFX_VI_BASE 128U
/* Maximum number of VFs allowed */
#define EFX_VF_COUNT_MAX 127
/* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */
#define EFX_MAX_VF_EVQ_SIZE 8192UL
/* The number of buffer table entries reserved for each VI on a VF */
#define EFX_VF_BUFTBL_PER_VI					\
	((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) *	\
	 sizeof(efx_qword_t) / EFX_BUF_SIZE)

#ifdef CONFIG_SFC_SRIOV

static inline bool efx_sriov_wanted(struct efx_nic *efx)
{
	return efx->vf_count != 0;
}
static inline bool efx_sriov_enabled(struct efx_nic *efx)
{
	return efx->vf_init_count != 0;
}
static inline unsigned int efx_vf_size(struct efx_nic *efx)
{
	return 1 << efx->vi_scale;
}

extern int efx_init_sriov(void);
extern void efx_sriov_probe(struct efx_nic *efx);
extern int efx_sriov_init(struct efx_nic *efx);
extern void efx_sriov_mac_address_changed(struct efx_nic *efx);
extern void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event);
extern void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event);
extern void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event);
extern void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq);
extern void efx_sriov_flr(struct efx_nic *efx, unsigned flr);
extern void efx_sriov_reset(struct efx_nic *efx);
extern void efx_sriov_fini(struct efx_nic *efx);
extern void efx_fini_sriov(void);

#else

static inline bool efx_sriov_wanted(struct efx_nic *efx) { return false; }
static inline bool efx_sriov_enabled(struct efx_nic *efx) { return false; }
static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; }

static inline int efx_init_sriov(void) { return 0; }
static inline void efx_sriov_probe(struct efx_nic *efx) {}
static inline int efx_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
static inline void efx_sriov_mac_address_changed(struct efx_nic *efx) {}
static inline void efx_sriov_tx_flush_done(struct efx_nic *efx,
					   efx_qword_t *event) {}
static inline void efx_sriov_rx_flush_done(struct efx_nic *efx,
					   efx_qword_t *event) {}
static inline void efx_sriov_event(struct efx_channel *channel,
				   efx_qword_t *event) {}
static inline void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) {}
static inline void efx_sriov_flr(struct efx_nic *efx, unsigned flr) {}
static inline void efx_sriov_reset(struct efx_nic *efx) {}
static inline void efx_sriov_fini(struct efx_nic *efx) {}
static inline void efx_fini_sriov(void) {}

#endif

extern int efx_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac);
extern int efx_sriov_set_vf_vlan(struct net_device *dev, int vf,
				 u16 vlan, u8 qos);
extern int efx_sriov_get_vf_config(struct net_device *dev, int vf,
				   struct ifla_vf_info *ivf);
extern int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf,
				     bool spoofchk);

297 298 299
struct ethtool_ts_info;
extern void efx_ptp_probe(struct efx_nic *efx);
extern int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd);
300 301
extern void efx_ptp_get_ts_info(struct efx_nic *efx,
				struct ethtool_ts_info *ts_info);
302 303 304 305
extern bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
extern int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
extern void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);

306 307 308
extern const struct efx_nic_type falcon_a1_nic_type;
extern const struct efx_nic_type falcon_b0_nic_type;
extern const struct efx_nic_type siena_a0_nic_type;
309 310 311 312 313 314 315 316

/**************************************************************************
 *
 * Externs
 *
 **************************************************************************
 */

317
extern int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
318

319
/* TX data path */
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
{
	return tx_queue->efx->type->tx_probe(tx_queue);
}
static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
{
	tx_queue->efx->type->tx_init(tx_queue);
}
static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
{
	tx_queue->efx->type->tx_remove(tx_queue);
}
static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
{
	tx_queue->efx->type->tx_write(tx_queue);
}
336 337

/* RX data path */
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
{
	return rx_queue->efx->type->rx_probe(rx_queue);
}
static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
{
	rx_queue->efx->type->rx_init(rx_queue);
}
static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
{
	rx_queue->efx->type->rx_remove(rx_queue);
}
static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
{
	rx_queue->efx->type->rx_write(rx_queue);
}
static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
{
	rx_queue->efx->type->rx_defer_refill(rx_queue);
}
358 359

/* Event data path */
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
static inline int efx_nic_probe_eventq(struct efx_channel *channel)
{
	return channel->efx->type->ev_probe(channel);
}
static inline void efx_nic_init_eventq(struct efx_channel *channel)
{
	channel->efx->type->ev_init(channel);
}
static inline void efx_nic_fini_eventq(struct efx_channel *channel)
{
	channel->efx->type->ev_fini(channel);
}
static inline void efx_nic_remove_eventq(struct efx_channel *channel)
{
	channel->efx->type->ev_remove(channel);
}
static inline int
efx_nic_process_eventq(struct efx_channel *channel, int quota)
{
	return channel->efx->type->ev_process(channel, quota);
}
static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
{
	channel->efx->type->ev_read_ack(channel);
}
extern void efx_nic_event_test_start(struct efx_channel *channel);

/* Falcon/Siena queue operations */
extern int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
extern void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
extern void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
extern void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
extern void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
extern int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
extern void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
extern void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
extern void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
extern void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
extern void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
extern int efx_farch_ev_probe(struct efx_channel *channel);
extern void efx_farch_ev_init(struct efx_channel *channel);
extern void efx_farch_ev_fini(struct efx_channel *channel);
extern void efx_farch_ev_remove(struct efx_channel *channel);
extern int efx_farch_ev_process(struct efx_channel *channel, int quota);
extern void efx_farch_ev_read_ack(struct efx_channel *channel);
extern void efx_farch_ev_test_generate(struct efx_channel *channel);

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
/* Falcon/Siena filter operations */
extern int efx_farch_filter_table_probe(struct efx_nic *efx);
extern void efx_farch_filter_table_restore(struct efx_nic *efx);
extern void efx_farch_filter_table_remove(struct efx_nic *efx);
extern void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
extern s32 efx_farch_filter_insert(struct efx_nic *efx,
				   struct efx_filter_spec *spec, bool replace);
extern int efx_farch_filter_remove_safe(struct efx_nic *efx,
					enum efx_filter_priority priority,
					u32 filter_id);
extern int efx_farch_filter_get_safe(struct efx_nic *efx,
				     enum efx_filter_priority priority,
				     u32 filter_id, struct efx_filter_spec *);
extern void efx_farch_filter_clear_rx(struct efx_nic *efx,
				      enum efx_filter_priority priority);
extern u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
					  enum efx_filter_priority priority);
extern u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
extern s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
				       enum efx_filter_priority priority,
				       u32 *buf, u32 size);
#ifdef CONFIG_RFS_ACCEL
extern s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
				       struct efx_filter_spec *spec);
extern bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
					    unsigned int index);
#endif
434
extern void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
435

436
extern bool efx_nic_event_present(struct efx_channel *channel);
437

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
/* Some statistics are computed as A - B where A and B each increase
 * linearly with some hardware counter(s) and the counters are read
 * asynchronously.  If the counters contributing to B are always read
 * after those contributing to A, the computed value may be lower than
 * the true value by some variable amount, and may decrease between
 * subsequent computations.
 *
 * We should never allow statistics to decrease or to exceed the true
 * value.  Since the computed value will never be greater than the
 * true value, we can achieve this by only storing the computed value
 * when it increases.
 */
static inline void efx_update_diff_stat(u64 *stat, u64 diff)
{
	if ((s64)(diff - *stat) > 0)
		*stat = diff;
}

456
/* Interrupts */
457
extern int efx_nic_init_interrupt(struct efx_nic *efx);
458
extern void efx_nic_irq_test_start(struct efx_nic *efx);
459
extern void efx_nic_fini_interrupt(struct efx_nic *efx);
460 461 462 463 464 465 466 467

/* Falcon/Siena interrupts */
extern void efx_farch_irq_enable_master(struct efx_nic *efx);
extern void efx_farch_irq_test_generate(struct efx_nic *efx);
extern void efx_farch_irq_disable_master(struct efx_nic *efx);
extern irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
extern irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
extern irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
468

469 470
static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
{
471
	return ACCESS_ONCE(channel->event_test_cpu);
472 473 474 475 476 477
}
static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
{
	return ACCESS_ONCE(efx->last_irq_cpu);
}

478
/* Global Resources */
479
extern int efx_nic_flush_queues(struct efx_nic *efx);
480
extern void siena_prepare_flush(struct efx_nic *efx);
481
extern int efx_farch_fini_dmaq(struct efx_nic *efx);
482
extern void siena_finish_flush(struct efx_nic *efx);
483 484
extern void falcon_start_nic_stats(struct efx_nic *efx);
extern void falcon_stop_nic_stats(struct efx_nic *efx);
485
extern int falcon_reset_xaui(struct efx_nic *efx);
486 487 488 489 490 491 492
extern void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
extern void efx_farch_init_common(struct efx_nic *efx);
static inline void efx_nic_push_rx_indir_table(struct efx_nic *efx)
{
	efx->type->rx_push_indir_table(efx);
}
extern void efx_farch_rx_push_indir_table(struct efx_nic *efx);
493 494

int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
495
			 unsigned int len, gfp_t gfp_flags);
496
void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
497

B
Ben Hutchings 已提交
498
/* Tests */
499
struct efx_farch_register_test {
500 501 502
	unsigned address;
	efx_oword_t mask;
};
503 504 505
extern int efx_farch_test_registers(struct efx_nic *efx,
				    const struct efx_farch_register_test *regs,
				    size_t n_regs);
B
Ben Hutchings 已提交
506

507 508 509
extern size_t efx_nic_get_regs_len(struct efx_nic *efx);
extern void efx_nic_get_regs(struct efx_nic *efx, void *buf);

510
#define EFX_MAX_FLUSH_TIME 5000
511

512 513
extern void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
				     efx_qword_t *event);
514

B
Ben Hutchings 已提交
515
#endif /* EFX_NIC_H */