process.c 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * arch/xtensa/kernel/process.c
 *
 * Xtensa Processor version.
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 2001 - 2005 Tensilica Inc.
 *
 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
 * Chris Zankel <chris@zankel.net>
 * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
 * Kevin Chea
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/elf.h>
#include <linux/init.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
#include <linux/module.h>
#include <linux/mqueue.h>
32
#include <linux/fs.h>
33
#include <linux/slab.h>
34
#include <linux/rcupdate.h>
35 36 37 38 39 40 41 42

#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/platform.h>
#include <asm/mmu.h>
#include <asm/irq.h>
A
Arun Sharma 已提交
43
#include <linux/atomic.h>
44
#include <asm/asm-offsets.h>
45
#include <asm/regs.h>
46 47

extern void ret_from_fork(void);
48
extern void ret_from_kernel_thread(void);
49 50 51

struct task_struct *current_set[NR_CPUS] = {&init_task, };

A
Adrian Bunk 已提交
52 53 54
void (*pm_power_off)(void) = NULL;
EXPORT_SYMBOL(pm_power_off);

55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
#if XTENSA_HAVE_COPROCESSORS

void coprocessor_release_all(struct thread_info *ti)
{
	unsigned long cpenable;
	int i;

	/* Make sure we don't switch tasks during this operation. */

	preempt_disable();

	/* Walk through all cp owners and release it for the requested one. */

	cpenable = ti->cpenable;

	for (i = 0; i < XCHAL_CP_MAX; i++) {
		if (coprocessor_owner[i] == ti) {
			coprocessor_owner[i] = 0;
			cpenable &= ~(1 << i);
		}
	}

	ti->cpenable = cpenable;
	coprocessor_clear_cpenable();

	preempt_enable();
}

void coprocessor_flush_all(struct thread_info *ti)
{
	unsigned long cpenable;
	int i;

	preempt_disable();

	cpenable = ti->cpenable;

	for (i = 0; i < XCHAL_CP_MAX; i++) {
		if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
			coprocessor_flush(ti, i);
		cpenable >>= 1;
	}

	preempt_enable();
}

#endif


105 106 107 108 109 110
/*
 * Powermanagement idle function, if any is provided by the platform.
 */

void cpu_idle(void)
{
111
	local_irq_enable();
112 113 114

	/* endless idle loop with no priority at all */
	while (1) {
115
		rcu_idle_enter();
116 117
		while (!need_resched())
			platform_idle();
118
		rcu_idle_exit();
119
		schedule_preempt_disabled();
120 121 122 123
	}
}

/*
124
 * This is called when the thread calls exit().
125 126 127
 */
void exit_thread(void)
{
128 129 130
#if XTENSA_HAVE_COPROCESSORS
	coprocessor_release_all(current_thread_info());
#endif
131 132
}

133 134 135 136
/*
 * Flush thread state. This is called when a thread does an execve()
 * Note that we flush coprocessor registers for the case execve fails.
 */
137 138
void flush_thread(void)
{
139 140 141 142 143 144 145 146
#if XTENSA_HAVE_COPROCESSORS
	struct thread_info *ti = current_thread_info();
	coprocessor_flush_all(ti);
	coprocessor_release_all(ti);
#endif
}

/*
147 148
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
149
 */
150
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
151 152
{
#if XTENSA_HAVE_COPROCESSORS
153
	coprocessor_flush_all(task_thread_info(src));
154
#endif
155 156
	*dst = *src;
	return 0;
157 158 159 160 161
}

/*
 * Copy thread.
 *
162 163 164 165 166 167 168 169 170 171
 * There are two modes in which this function is called:
 * 1) Userspace thread creation,
 *    regs != NULL, usp_thread_fn is userspace stack pointer.
 *    It is expected to copy parent regs (in case CLONE_VM is not set
 *    in the clone_flags) and set up passed usp in the childregs.
 * 2) Kernel thread creation,
 *    regs == NULL, usp_thread_fn is the function to run in the new thread
 *    and thread_fn_arg is its parameter.
 *    childregs are not used for the kernel threads.
 *
172 173
 * The stack layout for the new thread looks like this:
 *
174
 *	+------------------------+
175 176 177 178 179
 *	|       childregs        |
 *	+------------------------+ <- thread.sp = sp in dummy-frame
 *	|      dummy-frame       |    (saved in dummy-frame spill-area)
 *	+------------------------+
 *
180 181 182
 * We create a dummy frame to return to either ret_from_fork or
 *   ret_from_kernel_thread:
 *   a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
183
 *   sp points to itself (thread.sp)
184 185
 *   a2, a3 are unused for userspace threads,
 *   a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
186 187 188
 *
 * Note: This is a pristine frame, so we don't need any spill region on top of
 *       childregs.
189 190 191 192 193 194 195 196 197 198
 *
 * The fun part:  if we're keeping the same VM (i.e. cloning a thread,
 * not an entire process), we're normally given a new usp, and we CANNOT share
 * any live address register windows.  If we just copy those live frames over,
 * the two threads (parent and child) will overflow the same frames onto the
 * parent stack at different times, likely corrupting the parent stack (esp.
 * if the parent returns from functions that called clone() and calls new
 * ones, before the child overflows its now old copies of its parent windows).
 * One solution is to spill windows to the parent stack, but that's fairly
 * involved.  Much simpler to just not copy those live frames across.
199 200
 */

201
int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn,
202
		unsigned long thread_fn_arg, struct task_struct *p)
203
{
204
	struct pt_regs *childregs = task_pt_regs(p);
205

C
Chris Zankel 已提交
206 207 208 209
#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
	struct thread_info *ti;
#endif

210 211 212 213 214
	/* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
	*((int*)childregs - 3) = (unsigned long)childregs;
	*((int*)childregs - 4) = 0;

	p->thread.sp = (unsigned long)childregs;
215

216 217 218 219 220 221 222
	if (!(p->flags & PF_KTHREAD)) {
		struct pt_regs *regs = current_pt_regs();
		unsigned long usp = usp_thread_fn ?
			usp_thread_fn : regs->areg[1];

		p->thread.ra = MAKE_RA_FOR_CALL(
				(unsigned long)ret_from_fork, 0x1);
223

224 225 226 227 228
		/* This does not copy all the regs.
		 * In a bout of brilliance or madness,
		 * ARs beyond a0-a15 exist past the end of the struct.
		 */
		*childregs = *regs;
229
		childregs->areg[1] = usp;
230
		childregs->areg[2] = 0;
231 232 233 234 235 236 237 238 239 240 241 242 243 244

		/* When sharing memory with the parent thread, the child
		   usually starts on a pristine stack, so we have to reset
		   windowbase, windowstart and wmask.
		   (Note that such a new thread is required to always create
		   an initial call4 frame)
		   The exception is vfork, where the new thread continues to
		   run on the parent's stack until it calls execve. This could
		   be a call8 or call12, which requires a legal stack frame
		   of the previous caller for the overflow handlers to work.
		   (Note that it's always legal to overflow live registers).
		   In this case, ensure to spill at least the stack pointer
		   of that frame. */

245
		if (clone_flags & CLONE_VM) {
246 247 248 249 250 251 252 253 254 255 256
			/* check that caller window is live and same stack */
			int len = childregs->wmask & ~0xf;
			if (regs->areg[1] == usp && len != 0) {
				int callinc = (regs->areg[0] >> 30) & 3;
				int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
				put_user(regs->areg[caller_ars+1],
					 (unsigned __user*)(usp - 12));
			}
			childregs->wmask = 1;
			childregs->windowstart = 1;
			childregs->windowbase = 0;
257 258 259 260 261
		} else {
			int len = childregs->wmask & ~0xf;
			memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
			       &regs->areg[XCHAL_NUM_AREGS - len/4], len);
		}
C
Chris Zankel 已提交
262 263

		/* The thread pointer is passed in the '4th argument' (= a5) */
264
		if (clone_flags & CLONE_SETTLS)
C
Chris Zankel 已提交
265
			childregs->threadptr = childregs->areg[5];
266
	} else {
267 268 269 270 271 272 273 274 275 276 277 278
		p->thread.ra = MAKE_RA_FOR_CALL(
				(unsigned long)ret_from_kernel_thread, 1);

		/* pass parameters to ret_from_kernel_thread:
		 * a2 = thread_fn, a3 = thread_fn arg
		 */
		*((int *)childregs - 1) = thread_fn_arg;
		*((int *)childregs - 2) = usp_thread_fn;

		/* Childregs are only used when we're going to userspace
		 * in which case start_thread will set them up.
		 */
279
	}
280 281 282 283 284 285

#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
	ti = task_thread_info(p);
	ti->cpenable = 0;
#endif

286 287 288 289 290 291 292 293 294 295 296
	return 0;
}


/*
 * These bracket the sleeping functions..
 */

unsigned long get_wchan(struct task_struct *p)
{
	unsigned long sp, pc;
297
	unsigned long stack_page = (unsigned long) task_stack_page(p);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.sp;
	pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);

	do {
		if (sp < stack_page + sizeof(struct task_struct) ||
		    sp >= (stack_page + THREAD_SIZE) ||
		    pc == 0)
			return 0;
		if (!in_sched_functions(pc))
			return pc;

		/* Stack layout: sp-4: ra, sp-3: sp' */

		pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp);
		sp = *(unsigned long *)sp - 3;
	} while (count++ < 16);
	return 0;
}

/*
 * xtensa_gregset_t and 'struct pt_regs' are vastly different formats
 * of processor registers.  Besides different ordering,
 * xtensa_gregset_t contains non-live register information that
 * 'struct pt_regs' does not.  Exception handling (primarily) uses
 * 'struct pt_regs'.  Core files and ptrace use xtensa_gregset_t.
 *
 */

331
void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs)
332
{
333 334 335 336 337 338 339 340 341 342
	unsigned long wb, ws, wm;
	int live, last;

	wb = regs->windowbase;
	ws = regs->windowstart;
	wm = regs->wmask;
	ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1);

	/* Don't leak any random bits. */

A
Alan Cox 已提交
343
	memset(elfregs, 0, sizeof(*elfregs));
344

345 346 347 348 349
	/* Note:  PS.EXCM is not set while user task is running; its
	 * being set in regs->ps is for exception handling convenience.
	 */

	elfregs->pc		= regs->pc;
350
	elfregs->ps		= (regs->ps & ~(1 << PS_EXCM_BIT));
351 352 353 354
	elfregs->lbeg		= regs->lbeg;
	elfregs->lend		= regs->lend;
	elfregs->lcount		= regs->lcount;
	elfregs->sar		= regs->sar;
355
	elfregs->windowstart	= ws;
356

357 358 359 360
	live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16;
	last = XCHAL_NUM_AREGS - (wm >> 4) * 4;
	memcpy(elfregs->a, regs->areg, live * 4);
	memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16);
361 362
}

363
int dump_fpu(void)
364 365 366
{
	return 0;
}