cpufreq-cpu0.c 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
/*
 * Copyright (C) 2012 Freescale Semiconductor, Inc.
 *
 * The OPP code in function cpu0_set_target() is reused from
 * drivers/cpufreq/omap-cpufreq.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/opp.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>

static unsigned int transition_latency;
static unsigned int voltage_tolerance; /* in percentage */

static struct device *cpu_dev;
static struct clk *cpu_clk;
static struct regulator *cpu_reg;
static struct cpufreq_frequency_table *freq_table;

static int cpu0_verify_speed(struct cpufreq_policy *policy)
{
	return cpufreq_frequency_table_verify(policy, freq_table);
}

static unsigned int cpu0_get_speed(unsigned int cpu)
{
	return clk_get_rate(cpu_clk) / 1000;
}

static int cpu0_set_target(struct cpufreq_policy *policy,
			   unsigned int target_freq, unsigned int relation)
{
	struct cpufreq_freqs freqs;
	struct opp *opp;
	unsigned long freq_Hz, volt = 0, volt_old = 0, tol = 0;
	unsigned int index, cpu;
	int ret;

	ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
					     relation, &index);
	if (ret) {
		pr_err("failed to match target freqency %d: %d\n",
		       target_freq, ret);
		return ret;
	}

	freq_Hz = clk_round_rate(cpu_clk, freq_table[index].frequency * 1000);
	if (freq_Hz < 0)
		freq_Hz = freq_table[index].frequency * 1000;
	freqs.new = freq_Hz / 1000;
	freqs.old = clk_get_rate(cpu_clk) / 1000;

	if (freqs.old == freqs.new)
		return 0;

	for_each_online_cpu(cpu) {
		freqs.cpu = cpu;
		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
	}

	if (cpu_reg) {
		opp = opp_find_freq_ceil(cpu_dev, &freq_Hz);
		if (IS_ERR(opp)) {
			pr_err("failed to find OPP for %ld\n", freq_Hz);
			return PTR_ERR(opp);
		}
		volt = opp_get_voltage(opp);
		tol = volt * voltage_tolerance / 100;
		volt_old = regulator_get_voltage(cpu_reg);
	}

	pr_debug("%u MHz, %ld mV --> %u MHz, %ld mV\n",
		 freqs.old / 1000, volt_old ? volt_old / 1000 : -1,
		 freqs.new / 1000, volt ? volt / 1000 : -1);

	/* scaling up?  scale voltage before frequency */
	if (cpu_reg && freqs.new > freqs.old) {
		ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
		if (ret) {
			pr_err("failed to scale voltage up: %d\n", ret);
			freqs.new = freqs.old;
			return ret;
		}
	}

	ret = clk_set_rate(cpu_clk, freqs.new * 1000);
	if (ret) {
		pr_err("failed to set clock rate: %d\n", ret);
		if (cpu_reg)
			regulator_set_voltage_tol(cpu_reg, volt_old, tol);
		return ret;
	}

	/* scaling down?  scale voltage after frequency */
	if (cpu_reg && freqs.new < freqs.old) {
		ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
		if (ret) {
			pr_err("failed to scale voltage down: %d\n", ret);
			clk_set_rate(cpu_clk, freqs.old * 1000);
			freqs.new = freqs.old;
			return ret;
		}
	}

	for_each_online_cpu(cpu) {
		freqs.cpu = cpu;
		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
	}

	return 0;
}

static int cpu0_cpufreq_init(struct cpufreq_policy *policy)
{
	int ret;

	if (policy->cpu != 0)
		return -EINVAL;

	ret = cpufreq_frequency_table_cpuinfo(policy, freq_table);
	if (ret) {
		pr_err("invalid frequency table: %d\n", ret);
		return ret;
	}

	policy->cpuinfo.transition_latency = transition_latency;
	policy->cur = clk_get_rate(cpu_clk) / 1000;

	/*
	 * The driver only supports the SMP configuartion where all processors
	 * share the clock and voltage and clock.  Use cpufreq affected_cpus
	 * interface to have all CPUs scaled together.
	 */
	policy->shared_type = CPUFREQ_SHARED_TYPE_ANY;
	cpumask_setall(policy->cpus);

	cpufreq_frequency_table_get_attr(freq_table, policy->cpu);

	return 0;
}

static int cpu0_cpufreq_exit(struct cpufreq_policy *policy)
{
	cpufreq_frequency_table_put_attr(policy->cpu);

	return 0;
}

static struct freq_attr *cpu0_cpufreq_attr[] = {
	&cpufreq_freq_attr_scaling_available_freqs,
	NULL,
};

static struct cpufreq_driver cpu0_cpufreq_driver = {
	.flags = CPUFREQ_STICKY,
	.verify = cpu0_verify_speed,
	.target = cpu0_set_target,
	.get = cpu0_get_speed,
	.init = cpu0_cpufreq_init,
	.exit = cpu0_cpufreq_exit,
	.name = "generic_cpu0",
	.attr = cpu0_cpufreq_attr,
};

static int __devinit cpu0_cpufreq_driver_init(void)
{
	struct device_node *np;
	int ret;

	np = of_find_node_by_path("/cpus/cpu@0");
	if (!np) {
		pr_err("failed to find cpu0 node\n");
		return -ENOENT;
	}

	cpu_dev = get_cpu_device(0);
	if (!cpu_dev) {
		pr_err("failed to get cpu0 device\n");
		ret = -ENODEV;
		goto out_put_node;
	}

	cpu_dev->of_node = np;

	cpu_clk = clk_get(cpu_dev, NULL);
	if (IS_ERR(cpu_clk)) {
		ret = PTR_ERR(cpu_clk);
		pr_err("failed to get cpu0 clock: %d\n", ret);
		goto out_put_node;
	}

	cpu_reg = regulator_get(cpu_dev, "cpu0");
	if (IS_ERR(cpu_reg)) {
		pr_warn("failed to get cpu0 regulator\n");
		cpu_reg = NULL;
	}

	ret = of_init_opp_table(cpu_dev);
	if (ret) {
		pr_err("failed to init OPP table: %d\n", ret);
		goto out_put_node;
	}

	ret = opp_init_cpufreq_table(cpu_dev, &freq_table);
	if (ret) {
		pr_err("failed to init cpufreq table: %d\n", ret);
		goto out_put_node;
	}

	of_property_read_u32(np, "voltage-tolerance", &voltage_tolerance);

	if (of_property_read_u32(np, "clock-latency", &transition_latency))
		transition_latency = CPUFREQ_ETERNAL;

	if (cpu_reg) {
		struct opp *opp;
		unsigned long min_uV, max_uV;
		int i;

		/*
		 * OPP is maintained in order of increasing frequency, and
		 * freq_table initialised from OPP is therefore sorted in the
		 * same order.
		 */
		for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++)
			;
		opp = opp_find_freq_exact(cpu_dev,
				freq_table[0].frequency * 1000, true);
		min_uV = opp_get_voltage(opp);
		opp = opp_find_freq_exact(cpu_dev,
				freq_table[i-1].frequency * 1000, true);
		max_uV = opp_get_voltage(opp);
		ret = regulator_set_voltage_time(cpu_reg, min_uV, max_uV);
		if (ret > 0)
			transition_latency += ret * 1000;
	}

	ret = cpufreq_register_driver(&cpu0_cpufreq_driver);
	if (ret) {
		pr_err("failed register driver: %d\n", ret);
		goto out_free_table;
	}

	of_node_put(np);
	return 0;

out_free_table:
	opp_free_cpufreq_table(cpu_dev, &freq_table);
out_put_node:
	of_node_put(np);
	return ret;
}
late_initcall(cpu0_cpufreq_driver_init);

MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
MODULE_DESCRIPTION("Generic CPU0 cpufreq driver");
MODULE_LICENSE("GPL");