machine.c 56.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <dirent.h>
3
#include <errno.h>
4
#include <inttypes.h>
5
#include <regex.h>
6
#include "callchain.h"
7 8
#include "debug.h"
#include "event.h"
9 10
#include "evsel.h"
#include "hist.h"
11 12
#include "machine.h"
#include "map.h"
13
#include "sort.h"
14
#include "strlist.h"
15
#include "thread.h"
16
#include "vdso.h"
17
#include <stdbool.h>
18 19 20
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
21
#include "unwind.h"
22
#include "linux/hash.h"
23
#include "asm/bug.h"
24

25 26 27
#include "sane_ctype.h"
#include <symbol/kallsyms.h>

28 29
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

30 31 32 33
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
34
	init_rwsem(&dsos->lock);
35 36
}

37 38 39 40 41 42 43
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
		threads->entries = RB_ROOT;
44
		init_rwsem(&threads->lock);
45 46 47 48 49 50
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

51 52
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
53
	memset(machine, 0, sizeof(*machine));
54
	map_groups__init(&machine->kmaps, machine);
55
	RB_CLEAR_NODE(&machine->rb_node);
56
	dsos__init(&machine->dsos);
57

58
	machine__threads_init(machine);
59

60
	machine->vdso_info = NULL;
61
	machine->env = NULL;
62

63 64
	machine->pid = pid;

65
	machine->id_hdr_size = 0;
66
	machine->kptr_restrict_warned = false;
67
	machine->comm_exec = false;
68
	machine->kernel_start = 0;
69

70 71
	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));

72 73 74 75 76
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

	if (pid != HOST_KERNEL_ID) {
77
		struct thread *thread = machine__findnew_thread(machine, -1,
78
								pid);
79 80 81 82 83 84
		char comm[64];

		if (thread == NULL)
			return -ENOMEM;

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
85
		thread__set_comm(thread, comm, 0);
86
		thread__put(thread);
87 88
	}

89 90
	machine->current_tid = NULL;

91 92 93
	return 0;
}

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
	 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
	 *    functions and data objects.
	 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
	if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

130
static void dsos__purge(struct dsos *dsos)
131 132 133
{
	struct dso *pos, *n;

134
	down_write(&dsos->lock);
135

136
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
137
		RB_CLEAR_NODE(&pos->rb_node);
138
		pos->root = NULL;
139 140
		list_del_init(&pos->node);
		dso__put(pos);
141
	}
142

143
	up_write(&dsos->lock);
144
}
145

146 147 148
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
149
	exit_rwsem(&dsos->lock);
150 151
}

152 153
void machine__delete_threads(struct machine *machine)
{
154
	struct rb_node *nd;
155
	int i;
156

157 158
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
159
		down_write(&threads->lock);
160 161 162
		nd = rb_first(&threads->entries);
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
163

164 165 166
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
167
		up_write(&threads->lock);
168 169 170
	}
}

171 172
void machine__exit(struct machine *machine)
{
173 174
	int i;

175 176 177
	if (machine == NULL)
		return;

178
	machine__destroy_kernel_maps(machine);
179
	map_groups__exit(&machine->kmaps);
180
	dsos__exit(&machine->dsos);
181
	machine__exit_vdso(machine);
182
	zfree(&machine->root_dir);
183
	zfree(&machine->current_tid);
184 185 186

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
187
		exit_rwsem(&threads->lock);
188
	}
189 190 191 192
}

void machine__delete(struct machine *machine)
{
193 194 195 196
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
197 198
}

199 200 201 202 203 204 205 206 207 208 209 210 211
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
212 213
			      const char *root_dir)
{
214
	struct rb_node **p = &machines->guests.rb_node;
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
236
	rb_insert_color(&machine->rb_node, &machines->guests);
237 238 239 240

	return machine;
}

241 242 243 244 245 246 247 248 249 250 251 252 253
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

254
struct machine *machines__find(struct machines *machines, pid_t pid)
255
{
256
	struct rb_node **p = &machines->guests.rb_node;
257 258 259 260
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

261 262 263
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

280
struct machine *machines__findnew(struct machines *machines, pid_t pid)
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
297
				seen = strlist__new(NULL, NULL);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

314 315
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
316 317 318
{
	struct rb_node *nd;

319
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
{
	if (machine__is_host(machine))
		snprintf(bf, size, "[%s]", "kernel.kallsyms");
	else if (machine__is_default_guest(machine))
		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
	else {
		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
			 machine->pid);
	}

	return bf;
}

339
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
340 341 342 343
{
	struct rb_node *node;
	struct machine *machine;

344 345 346
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
347 348 349 350 351 352 353
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

354 355 356 357 358 359 360 361 362 363 364 365 366
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

367
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
368 369 370 371
	if (!leader)
		goto out_err;

	if (!leader->mg)
372
		leader->mg = map_groups__new(machine);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
389
		map_groups__put(th->mg);
390 391 392
	}

	th->mg = map_groups__get(leader->mg);
393 394
out_put:
	thread__put(leader);
395 396 397
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
398
	goto out_put;
399 400
}

401
/*
402
 * Caller must eventually drop thread->refcnt returned with a successful
403 404
 * lookup/new thread inserted.
 */
405
static struct thread *____machine__findnew_thread(struct machine *machine,
406
						  struct threads *threads,
407 408
						  pid_t pid, pid_t tid,
						  bool create)
409
{
410
	struct rb_node **p = &threads->entries.rb_node;
411 412 413 414
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
415
	 * Front-end cache - TID lookups come in blocks,
416 417 418
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
419
	th = threads->last_match;
420 421 422
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
423
			return thread__get(th);
424 425
		}

426
		threads->last_match = NULL;
427
	}
428 429 430 431 432

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

433
		if (th->tid == tid) {
434
			threads->last_match = th;
435
			machine__update_thread_pid(machine, th, pid);
436
			return thread__get(th);
437 438
		}

439
		if (tid < th->tid)
440 441 442 443 444 445 446 447
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

448
	th = thread__new(pid, tid);
449 450
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
451
		rb_insert_color(&th->rb_node, &threads->entries);
452 453 454 455 456 457 458 459 460

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
461
		if (thread__init_map_groups(th, machine)) {
462
			rb_erase_init(&th->rb_node, &threads->entries);
463
			RB_CLEAR_NODE(&th->rb_node);
464
			thread__put(th);
465
			return NULL;
466
		}
467 468 469 470
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
471 472
		threads->last_match = th;
		++threads->nr;
473 474 475 476 477
	}

	return th;
}

478 479
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
480
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
481 482
}

483 484
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
485
{
486
	struct threads *threads = machine__threads(machine, tid);
487 488
	struct thread *th;

489
	down_write(&threads->lock);
490
	th = __machine__findnew_thread(machine, pid, tid);
491
	up_write(&threads->lock);
492
	return th;
493 494
}

495 496
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
497
{
498
	struct threads *threads = machine__threads(machine, tid);
499
	struct thread *th;
500

501
	down_read(&threads->lock);
502
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
503
	up_read(&threads->lock);
504
	return th;
505
}
506

507 508 509 510 511 512 513 514 515
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

516 517
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
518
{
519 520 521
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
522
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
523
	int err = 0;
524

525 526 527
	if (exec)
		machine->comm_exec = true;

528 529 530
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

531 532
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
533
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
534
		err = -1;
535 536
	}

537 538 539
	thread__put(thread);

	return err;
540 541
}

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

573
int machine__process_lost_event(struct machine *machine __maybe_unused,
574
				union perf_event *event, struct perf_sample *sample __maybe_unused)
575 576 577 578 579 580
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

581 582 583 584 585 586 587 588
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

589 590 591
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
592 593 594
{
	struct dso *dso;

595
	down_write(&machine->dsos.lock);
596 597

	dso = __dsos__find(&machine->dsos, m->name, true);
598
	if (!dso) {
599
		dso = __dsos__addnew(&machine->dsos, m->name);
600
		if (dso == NULL)
601
			goto out_unlock;
602

603
		dso__set_module_info(dso, m, machine);
604
		dso__set_long_name(dso, strdup(filename), true);
605 606
	}

607
	dso__get(dso);
608
out_unlock:
609
	up_write(&machine->dsos.lock);
610 611 612
	return dso;
}

613 614 615 616 617 618 619 620
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

621 622 623 624 625 626 627 628
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

629 630 631 632 633 634 635 636
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

652
	dso__set_long_name(dso, dup_filename, true);
653 654
}

655 656
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
657
{
658
	struct map *map = NULL;
659
	struct dso *dso = NULL;
660
	struct kmod_path m;
661

662
	if (kmod_path__parse_name(&m, filename))
663 664
		return NULL;

665 666
	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
				       m.name);
667 668 669 670 671 672 673
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
674
		goto out;
675
	}
676

677
	dso = machine__findnew_module_dso(machine, &m, filename);
678 679 680
	if (dso == NULL)
		goto out;

681 682
	map = map__new2(start, dso, MAP__FUNCTION);
	if (map == NULL)
683
		goto out;
684 685

	map_groups__insert(&machine->kmaps, map);
686

687 688
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
689
out:
690 691
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
692
	free(m.name);
693 694 695
	return map;
}

696
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
697 698
{
	struct rb_node *nd;
699
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
700

701
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
702
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
703
		ret += __dsos__fprintf(&pos->dsos.head, fp);
704 705 706 707 708
	}

	return ret;
}

709
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
710 711
				     bool (skip)(struct dso *dso, int parm), int parm)
{
712
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
713 714
}

715
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
716 717 718
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
719
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
720

721
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
722 723 724 725 726 727 728 729 730 731
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
732
	struct dso *kdso = machine__kernel_map(machine)->dso;
733 734 735

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
736 737
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
738 739 740 741 742 743 744 745 746 747 748 749 750
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
751 752
	size_t ret;
	int i;
753

754 755
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
756 757

		down_read(&threads->lock);
758

759
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
760

761 762
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
763

764 765
			ret += thread__fprintf(pos, fp);
		}
766

767
		up_read(&threads->lock);
768
	}
769 770 771 772 773 774 775 776 777 778 779
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
	const char *vmlinux_name = NULL;
	struct dso *kernel;

	if (machine__is_host(machine)) {
		vmlinux_name = symbol_conf.vmlinux_name;
		if (!vmlinux_name)
780
			vmlinux_name = DSO__NAME_KALLSYMS;
781

782 783
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
784 785 786 787 788 789 790 791 792
	} else {
		char bf[PATH_MAX];

		if (machine__is_default_guest(machine))
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = machine__mmap_name(machine, bf,
							  sizeof(bf));

793 794 795
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
796 797 798 799 800 801 802 803 804 805 806 807
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

808 809 810 811 812 813 814 815 816
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

817 818 819 820 821 822
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
823 824
static int machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name, u64 *start)
825
{
826
	char filename[PATH_MAX];
827
	int i, err = -1;
828 829
	const char *name;
	u64 addr = 0;
830

831
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
832 833 834 835

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

836
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
837 838
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
839 840 841
			break;
	}

842 843 844
	if (err)
		return -1;

845 846
	if (symbol_name)
		*symbol_name = name;
847

848 849
	*start = addr;
	return 0;
850 851 852 853
}

int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
{
854
	int type;
855 856 857 858
	u64 start = 0;

	if (machine__get_running_kernel_start(machine, NULL, &start))
		return -1;
859

860 861 862
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

863 864
	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
865
		struct map *map;
866 867 868 869 870 871 872 873

		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
		if (machine->vmlinux_maps[type] == NULL)
			return -1;

		machine->vmlinux_maps[type]->map_ip =
			machine->vmlinux_maps[type]->unmap_ip =
				identity__map_ip;
874
		map = __machine__kernel_map(machine, type);
875
		kmap = map__kmap(map);
876 877 878
		if (!kmap)
			return -1;

879
		kmap->kmaps = &machine->kmaps;
880
		map_groups__insert(&machine->kmaps, map);
881 882 883 884 885 886 887
	}

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
888
	int type;
889 890 891

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
892
		struct map *map = __machine__kernel_map(machine, type);
893

894
		if (map == NULL)
895 896
			continue;

897 898
		kmap = map__kmap(map);
		map_groups__remove(&machine->kmaps, map);
899
		if (kmap && kmap->ref_reloc_sym) {
900 901 902 903 904
			/*
			 * ref_reloc_sym is shared among all maps, so free just
			 * on one of them.
			 */
			if (type == MAP__FUNCTION) {
905 906 907 908
				zfree((char **)&kmap->ref_reloc_sym->name);
				zfree(&kmap->ref_reloc_sym);
			} else
				kmap->ref_reloc_sym = NULL;
909 910
		}

911
		map__put(machine->vmlinux_maps[type]);
912 913 914 915
		machine->vmlinux_maps[type] = NULL;
	}
}

916
int machines__create_guest_kernel_maps(struct machines *machines)
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

965
void machines__destroy_kernel_maps(struct machines *machines)
966
{
967 968 969
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
970 971 972 973 974

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
975
		rb_erase(&pos->rb_node, &machines->guests);
976 977 978 979
		machine__delete(pos);
	}
}

980
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
981 982 983 984 985 986 987 988 989
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

990
int __machine__load_kallsyms(struct machine *machine, const char *filename,
991
			     enum map_type type, bool no_kcore)
992
{
993
	struct map *map = machine__kernel_map(machine);
994
	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

	if (ret > 0) {
		dso__set_loaded(map->dso, type);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		__map_groups__fixup_end(&machine->kmaps, type);
	}

	return ret;
}

1009
int machine__load_kallsyms(struct machine *machine, const char *filename,
1010
			   enum map_type type)
1011
{
1012
	return __machine__load_kallsyms(machine, filename, type, false);
1013 1014
}

1015
int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1016
{
1017
	struct map *map = machine__kernel_map(machine);
1018
	int ret = dso__load_vmlinux_path(map->dso, map);
1019

1020
	if (ret > 0)
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
		dso__set_loaded(map->dso, type);

	return ret;
}

static void map_groups__fixup_end(struct map_groups *mg)
{
	int i;
	for (i = 0; i < MAP__NR_TYPES; ++i)
		__map_groups__fixup_end(mg, i);
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	struct map *map;
	char *long_name;

	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

1093
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1094
				const char *dir_name, int depth)
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1119 1120 1121 1122 1123 1124 1125 1126 1127
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1128 1129 1130
			if (ret < 0)
				goto out;
		} else {
1131
			struct kmod_path m;
1132

1133 1134 1135
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1136

1137 1138
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1139

1140
			free(m.name);
1141

1142
			if (ret)
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1161
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1162 1163 1164
		 machine->root_dir, version);
	free(version);

1165
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1166
}
1167 1168 1169 1170 1171
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
				const char *name __maybe_unused)
{
	return 0;
}
1172

1173 1174
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1175
{
1176
	struct machine *machine = arg;
1177
	struct map *map;
1178

1179 1180 1181
	if (arch__fix_module_text_start(&start, name) < 0)
		return -1;

1182
	map = machine__findnew_module_map(machine, start, name);
1183 1184
	if (map == NULL)
		return -1;
1185
	map->end = start + size;
1186 1187 1188 1189 1190 1191 1192 1193

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1194 1195 1196
	const char *modules;
	char path[PATH_MAX];

1197
	if (machine__is_default_guest(machine)) {
1198
		modules = symbol_conf.default_guest_modules;
1199 1200
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1201 1202 1203
		modules = path;
	}

1204
	if (symbol__restricted_filename(modules, "/proc/modules"))
1205 1206
		return -1;

1207
	if (modules__parse(modules, machine, machine__create_module))
1208 1209
		return -1;

1210 1211
	if (!machine__set_modules_path(machine))
		return 0;
1212

1213
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1214

1215
	return 0;
1216 1217 1218 1219 1220
}

int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1221 1222
	const char *name = NULL;
	u64 addr = 0;
1223 1224
	int ret;

1225
	if (kernel == NULL)
1226
		return -1;
1227

1228 1229 1230
	ret = __machine__create_kernel_maps(machine, kernel);
	dso__put(kernel);
	if (ret < 0)
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

	/*
	 * Now that we have all the maps created, just set the ->end of them:
	 */
	map_groups__fixup_end(&machine->kmaps);
1246

1247 1248 1249 1250 1251 1252
	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
		if (name &&
		    maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
			machine__destroy_kernel_maps(machine);
			return -1;
		}
1253 1254
	}

1255 1256 1257
	return 0;
}

1258 1259 1260
static void machine__set_kernel_mmap_len(struct machine *machine,
					 union perf_event *event)
{
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	int i;

	for (i = 0; i < MAP__NR_TYPES; i++) {
		machine->vmlinux_maps[i]->start = event->mmap.start;
		machine->vmlinux_maps[i]->end   = (event->mmap.start +
						   event->mmap.len);
		/*
		 * Be a bit paranoid here, some perf.data file came with
		 * a zero sized synthesized MMAP event for the kernel.
		 */
		if (machine->vmlinux_maps[i]->end == 0)
			machine->vmlinux_maps[i]->end = ~0ULL;
	}
1274 1275
}

1276 1277 1278 1279
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1280
	list_for_each_entry(dso, &machine->dsos.head, node) {
1281 1282 1283 1284 1285 1286 1287
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1288 1289 1290 1291 1292 1293 1294 1295
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	char kmmap_prefix[PATH_MAX];
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1296 1297 1298 1299
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
				kmmap_prefix,
				strlen(kmmap_prefix) - 1) == 0;
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1311 1312
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
				strlen(kmmap_prefix));
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1324 1325 1326
		struct dso *kernel = NULL;
		struct dso *dso;

1327
		down_read(&machine->dsos.lock);
1328

1329
		list_for_each_entry(dso, &machine->dsos.head, node) {
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1350 1351
				continue;

1352

1353 1354 1355 1356
			kernel = dso;
			break;
		}

1357
		up_read(&machine->dsos.lock);
1358

1359
		if (kernel == NULL)
1360
			kernel = machine__findnew_dso(machine, kmmap_prefix);
1361 1362 1363 1364
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1365 1366
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1367
			goto out_problem;
1368
		}
1369

1370 1371
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
		machine__set_kernel_mmap_len(machine, event);

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
							 symbol_name,
							 event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1390
			dso__load(kernel, machine__kernel_map(machine));
1391 1392 1393 1394 1395 1396 1397
		}
	}
	return 0;
out_problem:
	return -1;
}

1398
int machine__process_mmap2_event(struct machine *machine,
1399
				 union perf_event *event,
1400
				 struct perf_sample *sample)
1401 1402 1403 1404 1405 1406 1407 1408 1409
{
	struct thread *thread;
	struct map *map;
	enum map_type type;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1410 1411
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1412 1413 1414 1415 1416 1417 1418
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1419
					event->mmap2.tid);
1420 1421 1422 1423 1424 1425 1426 1427
	if (thread == NULL)
		goto out_problem;

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1428
	map = map__new(machine, event->mmap2.start,
1429
			event->mmap2.len, event->mmap2.pgoff,
1430
			event->mmap2.maj,
1431 1432
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1433 1434
			event->mmap2.prot,
			event->mmap2.flags,
1435
			event->mmap2.filename, type, thread);
1436 1437

	if (map == NULL)
1438
		goto out_problem_map;
1439

1440 1441 1442 1443
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1444
	thread__put(thread);
1445
	map__put(map);
1446 1447
	return 0;

1448 1449
out_problem_insert:
	map__put(map);
1450 1451
out_problem_map:
	thread__put(thread);
1452 1453 1454 1455 1456
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1457
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1458
				struct perf_sample *sample)
1459 1460 1461
{
	struct thread *thread;
	struct map *map;
1462
	enum map_type type;
1463 1464 1465 1466 1467
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1468 1469
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1470 1471 1472 1473 1474 1475
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1476
	thread = machine__findnew_thread(machine, event->mmap.pid,
1477
					 event->mmap.tid);
1478 1479
	if (thread == NULL)
		goto out_problem;
1480 1481 1482 1483 1484 1485

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1486
	map = map__new(machine, event->mmap.start,
1487
			event->mmap.len, event->mmap.pgoff,
1488
			0, 0, 0, 0, 0, 0,
1489
			event->mmap.filename,
1490
			type, thread);
1491

1492
	if (map == NULL)
1493
		goto out_problem_map;
1494

1495 1496 1497 1498
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1499
	thread__put(thread);
1500
	map__put(map);
1501 1502
	return 0;

1503 1504
out_problem_insert:
	map__put(map);
1505 1506
out_problem_map:
	thread__put(thread);
1507 1508 1509 1510 1511
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1512
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1513
{
1514 1515 1516 1517
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
		threads->last_match = NULL;
1518

1519
	BUG_ON(refcount_read(&th->refcnt) == 0);
1520
	if (lock)
1521
		down_write(&threads->lock);
1522
	rb_erase_init(&th->rb_node, &threads->entries);
1523
	RB_CLEAR_NODE(&th->rb_node);
1524
	--threads->nr;
1525
	/*
1526 1527 1528
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1529
	 */
1530
	list_add_tail(&th->node, &threads->dead);
1531
	if (lock)
1532
		up_write(&threads->lock);
1533
	thread__put(th);
1534 1535
}

1536 1537 1538 1539 1540
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1541 1542
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1543
{
1544 1545 1546
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1547 1548 1549
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1550
	int err = 0;
1551

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1570
	/* if a thread currently exists for the thread id remove it */
1571
	if (thread != NULL) {
1572
		machine__remove_thread(machine, thread);
1573 1574
		thread__put(thread);
	}
1575

1576 1577
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1578 1579

	if (thread == NULL || parent == NULL ||
1580
	    thread__fork(thread, parent, sample->time) < 0) {
1581
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1582
		err = -1;
1583
	}
1584 1585
	thread__put(thread);
	thread__put(parent);
1586

1587
	return err;
1588 1589
}

1590 1591
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1592
{
1593 1594 1595
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1596 1597 1598 1599

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1600
	if (thread != NULL) {
1601
		thread__exited(thread);
1602 1603
		thread__put(thread);
	}
1604 1605 1606 1607

	return 0;
}

1608 1609
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1610 1611 1612 1613 1614
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1615
		ret = machine__process_comm_event(machine, event, sample); break;
1616
	case PERF_RECORD_MMAP:
1617
		ret = machine__process_mmap_event(machine, event, sample); break;
1618 1619
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1620
	case PERF_RECORD_MMAP2:
1621
		ret = machine__process_mmap2_event(machine, event, sample); break;
1622
	case PERF_RECORD_FORK:
1623
		ret = machine__process_fork_event(machine, event, sample); break;
1624
	case PERF_RECORD_EXIT:
1625
		ret = machine__process_exit_event(machine, event, sample); break;
1626
	case PERF_RECORD_LOST:
1627
		ret = machine__process_lost_event(machine, event, sample); break;
1628 1629
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1630
	case PERF_RECORD_ITRACE_START:
1631
		ret = machine__process_itrace_start_event(machine, event); break;
1632 1633
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1634 1635 1636
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1637 1638 1639 1640 1641 1642 1643
	default:
		ret = -1;
		break;
	}

	return ret;
}
1644

1645
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1646
{
1647
	if (!regexec(regex, sym->name, 0, NULL, 0))
1648 1649 1650 1651
		return 1;
	return 0;
}

1652
static void ip__resolve_ams(struct thread *thread,
1653 1654 1655 1656 1657 1658
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1659 1660 1661 1662 1663 1664 1665
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1666
	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1667 1668 1669 1670 1671

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1672
	ams->phys_addr = 0;
1673 1674
}

1675
static void ip__resolve_data(struct thread *thread,
1676 1677
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
1678 1679 1680 1681 1682
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1683
	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1684 1685 1686 1687 1688 1689
	if (al.map == NULL) {
		/*
		 * some shared data regions have execute bit set which puts
		 * their mapping in the MAP__FUNCTION type array.
		 * Check there as a fallback option before dropping the sample.
		 */
1690
		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1691 1692
	}

1693 1694 1695 1696
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1697
	ams->phys_addr = phys_addr;
1698 1699
}

1700 1701
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1702 1703 1704 1705 1706 1707
{
	struct mem_info *mi = zalloc(sizeof(*mi));

	if (!mi)
		return NULL;

1708
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1709 1710
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
1711 1712 1713 1714 1715
	mi->data_src.val = sample->data_src;

	return mi;
}

1716 1717
static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
{
1718 1719
	char *srcline = NULL;

1720
	if (!map || callchain_param.key == CCKEY_FUNCTION)
1721 1722 1723 1724 1725 1726 1727 1728
		return srcline;

	srcline = srcline__tree_find(&map->dso->srclines, ip);
	if (!srcline) {
		bool show_sym = false;
		bool show_addr = callchain_param.key == CCKEY_ADDRESS;

		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1729
				      sym, show_sym, show_addr, ip);
1730 1731
		srcline__tree_insert(&map->dso->srclines, ip, srcline);
	}
1732

1733
	return srcline;
1734 1735
}

1736 1737 1738 1739 1740
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

1741
static int add_callchain_ip(struct thread *thread,
1742
			    struct callchain_cursor *cursor,
1743 1744
			    struct symbol **parent,
			    struct addr_location *root_al,
1745
			    u8 *cpumode,
1746 1747 1748
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
1749
			    struct iterations *iter,
1750
			    u64 branch_from)
1751 1752
{
	struct addr_location al;
1753 1754
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
1755
	const char *srcline = NULL;
1756 1757 1758

	al.filtered = 0;
	al.sym = NULL;
1759
	if (!cpumode) {
1760 1761
		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
						   ip, &al);
1762
	} else {
1763 1764 1765
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1766
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1767 1768
				break;
			case PERF_CONTEXT_KERNEL:
1769
				*cpumode = PERF_RECORD_MISC_KERNEL;
1770 1771
				break;
			case PERF_CONTEXT_USER:
1772
				*cpumode = PERF_RECORD_MISC_USER;
1773 1774 1775 1776 1777 1778 1779 1780
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
1781
				callchain_cursor_reset(cursor);
1782 1783 1784 1785
				return 1;
			}
			return 0;
		}
1786 1787
		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
					   ip, &al);
1788 1789
	}

1790
	if (al.sym != NULL) {
1791
		if (perf_hpp_list.parent && !*parent &&
1792 1793 1794 1795 1796 1797 1798
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
1799
			callchain_cursor_reset(cursor);
1800 1801 1802
		}
	}

1803 1804
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
1805 1806 1807 1808 1809 1810

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

1811
	srcline = callchain_srcline(al.map, al.sym, al.addr);
1812
	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1813
				       branch, flags, nr_loop_iter,
1814
				       iter_cycles, branch_from, srcline);
1815 1816
}

1817 1818
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1819 1820
{
	unsigned int i;
1821 1822
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1823 1824 1825 1826 1827

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1828 1829
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1830 1831 1832 1833 1834
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

	iter->nr_loop_iter = nr;
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

1847 1848 1849 1850 1851 1852 1853
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
1854 1855
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

1892 1893 1894 1895 1896 1897 1898
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1899 1900 1901 1902 1903 1904 1905 1906
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
1907
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
1908 1909 1910 1911
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1912
{
K
Kan Liang 已提交
1913
	struct ip_callchain *chain = sample->callchain;
1914
	int chain_nr = min(max_stack, (int)chain->nr), i;
1915
	u8 cpumode = PERF_RECORD_MISC_USER;
1916
	u64 ip, branch_from = 0;
K
Kan Liang 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
1926 1927 1928
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
1942
			int err;
1943 1944 1945
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
1946 1947 1948
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
1949 1950 1951 1952 1953 1954
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
K
Kan Liang 已提交
1955
					ip = lbr_stack->entries[0].to;
1956 1957
					branch = true;
					flags = &lbr_stack->entries[0].flags;
1958 1959
					branch_from =
						lbr_stack->entries[0].from;
1960
				}
K
Kan Liang 已提交
1961
			} else {
1962 1963 1964 1965 1966 1967
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
K
Kan Liang 已提交
1968 1969
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
1970
				else {
K
Kan Liang 已提交
1971
					ip = lbr_stack->entries[0].to;
1972 1973
					branch = true;
					flags = &lbr_stack->entries[0].flags;
1974 1975
					branch_from =
						lbr_stack->entries[0].from;
1976
				}
K
Kan Liang 已提交
1977 1978
			}

1979 1980
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
1981
					       branch, flags, NULL,
1982
					       branch_from);
K
Kan Liang 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
1993
					    struct callchain_cursor *cursor,
K
Kan Liang 已提交
1994 1995 1996 1997 1998 1999 2000 2001
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
2002
	int chain_nr = 0;
2003
	u8 cpumode = PERF_RECORD_MISC_USER;
2004
	int i, j, err, nr_entries;
2005 2006 2007
	int skip_idx = -1;
	int first_call = 0;

2008 2009 2010
	if (chain)
		chain_nr = chain->nr;

2011
	if (perf_evsel__has_branch_callstack(evsel)) {
2012
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
2013 2014 2015 2016 2017
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

2018 2019 2020 2021
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
2022
	skip_idx = arch_skip_callchain_idx(thread, chain);
2023

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2039
		struct iterations iter[nr];
2040 2041 2042 2043 2044 2045 2046 2047 2048

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
2049 2050 2051 2052

				if (chain == NULL)
					continue;

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

2070 2071
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2072

2073
		for (i = 0; i < nr; i++) {
2074 2075 2076 2077 2078
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2079

2080
			if (!err)
2081
				err = add_callchain_ip(thread, cursor, parent, root_al,
2082 2083
						       NULL, be[i].from,
						       true, &be[i].flags,
2084
						       &iter[i], 0);
2085 2086 2087 2088 2089
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2090 2091 2092 2093

		if (chain_nr == 0)
			return 0;

2094 2095 2096 2097
		chain_nr -= nr;
	}

check_calls:
2098
	for (i = first_call, nr_entries = 0;
2099
	     i < chain_nr && nr_entries < max_stack; i++) {
2100 2101 2102
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2103
			j = i;
2104
		else
2105 2106 2107 2108 2109 2110 2111
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2112

2113 2114
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2115

2116 2117
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2118
				       false, NULL, NULL, 0);
2119 2120

		if (err)
2121
			return (err < 0) ? err : 0;
2122 2123 2124 2125 2126
	}

	return 0;
}

2127 2128 2129 2130 2131 2132
static int append_inlines(struct callchain_cursor *cursor,
			  struct map *map, struct symbol *sym, u64 ip)
{
	struct inline_node *inline_node;
	struct inline_list *ilist;
	u64 addr;
2133
	int ret = 1;
2134 2135

	if (!symbol_conf.inline_name || !map || !sym)
2136
		return ret;
2137 2138 2139 2140 2141 2142 2143

	addr = map__rip_2objdump(map, ip);

	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
	if (!inline_node) {
		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
		if (!inline_node)
2144
			return ret;
2145 2146 2147 2148
		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
	}

	list_for_each_entry(ilist, &inline_node->val, list) {
2149 2150 2151
		ret = callchain_cursor_append(cursor, ip, map,
					      ilist->symbol, false,
					      NULL, 0, 0, 0, ilist->srcline);
2152 2153 2154 2155 2156

		if (ret != 0)
			return ret;
	}

2157
	return ret;
2158 2159
}

2160 2161 2162
static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2163
	const char *srcline = NULL;
2164 2165 2166

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
2167

2168 2169 2170
	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
		return 0;

2171
	srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
2172
	return callchain_cursor_append(cursor, entry->ip,
2173
				       entry->map, entry->sym,
2174
				       false, NULL, 0, 0, 0, srcline);
2175 2176
}

2177 2178 2179 2180 2181
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    int max_stack)
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
{
	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2193
	return unwind__get_entries(unwind_entry, cursor,
2194
				   thread, sample, max_stack);
2195
}
2196

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

2207
	callchain_cursor_reset(cursor);
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2232
}
2233 2234 2235 2236 2237

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2238
	struct threads *threads;
2239 2240 2241
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2242
	int i;
2243

2244 2245 2246 2247 2248 2249 2250 2251
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2252

2253 2254 2255 2256 2257
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2258 2259 2260
	}
	return rc;
}
2261

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2283
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2284
				  struct target *target, struct thread_map *threads,
2285
				  perf_event__handler_t process, bool data_mmap,
2286 2287
				  unsigned int proc_map_timeout,
				  unsigned int nr_threads_synthesize)
2288
{
2289
	if (target__has_task(target))
2290
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2291
	else if (target__has_cpu(target))
2292 2293 2294 2295
		return perf_event__synthesize_threads(tool, process,
						      machine, data_mmap,
						      proc_map_timeout,
						      nr_threads_synthesize);
2296 2297 2298
	/* command specified */
	return 0;
}
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2339
	thread__put(thread);
2340 2341 2342

	return 0;
}
2343 2344 2345

int machine__get_kernel_start(struct machine *machine)
{
2346
	struct map *map = machine__kernel_map(machine);
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2359
		err = map__load(map);
2360
		if (!err)
2361 2362 2363 2364
			machine->kernel_start = map->start;
	}
	return err;
}
2365 2366 2367

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2368
	return dsos__findnew(&machine->dsos, filename);
2369
}
2370 2371 2372 2373 2374

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2375
	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2376 2377 2378 2379 2380 2381 2382 2383

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}