cpuset.c 74.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
L
Linus Torvalds 已提交
40 41 42 43 44
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57 58
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
L
Linus Torvalds 已提交
62

63 64 65 66 67 68 69 70
/*
 * Workqueue for cpuset related tasks.
 *
 * Using kevent workqueue may cause deadlock when memory_migrate
 * is set. So we create a separate workqueue thread for cpuset.
 */
static struct workqueue_struct *cpuset_wq;

71 72 73 74 75
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
76
int number_of_cpusets __read_mostly;
77

78
/* Forward declare cgroup structures */
79 80 81
struct cgroup_subsys cpuset_subsys;
struct cpuset;

82 83 84 85 86 87 88 89 90
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
91
struct cpuset {
92 93
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
94
	unsigned long flags;		/* "unsigned long" so bitops work */
95
	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
L
Linus Torvalds 已提交
96 97 98 99
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

	struct cpuset *parent;		/* my parent */

100
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
101 102 103

	/* partition number for rebuild_sched_domains() */
	int pn;
104

105 106 107
	/* for custom sched domain */
	int relax_domain_level;

108
	/* used for walking a cpuset hierarchy */
109
	struct list_head stack_list;
L
Linus Torvalds 已提交
110 111
};

112 113 114 115 116 117 118 119 120 121 122 123 124 125
/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}

L
Linus Torvalds 已提交
126 127 128 129
/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
130
	CS_MEM_HARDWALL,
131
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
132
	CS_SCHED_LOAD_BALANCE,
133 134
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
135 136 137 138 139
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
140
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
141 142 143 144
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
145
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
146 147
}

148 149 150 151 152
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
153 154 155 156 157
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

158 159
static inline int is_memory_migrate(const struct cpuset *cs)
{
160
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
161 162
}

163 164 165 166 167 168 169 170 171 172
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
173 174 175 176 177
static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
};

/*
178 179 180 181 182 183 184
 * There are two global mutexes guarding cpuset structures.  The first
 * is the main control groups cgroup_mutex, accessed via
 * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific
 * callback_mutex, below. They can nest.  It is ok to first take
 * cgroup_mutex, then nest callback_mutex.  We also require taking
 * task_lock() when dereferencing a task's cpuset pointer.  See "The
 * task_lock() exception", at the end of this comment.
185
 *
186
 * A task must hold both mutexes to modify cpusets.  If a task
187
 * holds cgroup_mutex, then it blocks others wanting that mutex,
188
 * ensuring that it is the only task able to also acquire callback_mutex
189 190
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
191
 * also allocate memory while just holding cgroup_mutex.  While it is
192
 * performing these checks, various callback routines can briefly
193 194
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
195 196
 *
 * Calls to the kernel memory allocator can not be made while holding
197
 * callback_mutex, as that would risk double tripping on callback_mutex
198 199 200
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
201
 * If a task is only holding callback_mutex, then it has read-only
202 203
 * access to cpusets.
 *
204 205 206
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
207
 *
208
 * The cpuset_common_file_read() handlers only hold callback_mutex across
209 210 211
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
212 213
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
214 215
 */

216
static DEFINE_MUTEX(callback_mutex);
217

218 219 220 221 222 223 224 225 226 227 228
/*
 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
 * buffers.  They are statically allocated to prevent using excess stack
 * when calling cpuset_print_task_mems_allowed().
 */
#define CPUSET_NAME_LEN		(128)
#define	CPUSET_NODELIST_LEN	(256)
static char cpuset_name[CPUSET_NAME_LEN];
static char cpuset_nodelist[CPUSET_NODELIST_LEN];
static DEFINE_SPINLOCK(cpuset_buffer_lock);

229 230
/*
 * This is ugly, but preserves the userspace API for existing cpuset
231
 * users. If someone tries to mount the "cpuset" filesystem, we
232 233
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
234 235
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
236
{
237
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
238
	struct dentry *ret = ERR_PTR(-ENODEV);
239 240 241 242
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
243 244
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
245 246 247
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
248 249 250 251
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
252
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
253 254 255
};

/*
256
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
257 258 259 260 261 262 263 264 265
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
266
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
267 268
 */

269 270
static void guarantee_online_cpus(const struct cpuset *cs,
				  struct cpumask *pmask)
L
Linus Torvalds 已提交
271
{
272
	while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
L
Linus Torvalds 已提交
273 274
		cs = cs->parent;
	if (cs)
275
		cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
276
	else
277 278
		cpumask_copy(pmask, cpu_online_mask);
	BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
L
Linus Torvalds 已提交
279 280 281 282
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
283 284 285 286
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  If we get all the way to the top and still haven't
 * found any online mems, return node_states[N_HIGH_MEMORY].
L
Linus Torvalds 已提交
287 288
 *
 * One way or another, we guarantee to return some non-empty subset
289
 * of node_states[N_HIGH_MEMORY].
L
Linus Torvalds 已提交
290
 *
291
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
292 293 294 295
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
296 297
	while (cs && !nodes_intersects(cs->mems_allowed,
					node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
298 299
		cs = cs->parent;
	if (cs)
300 301
		nodes_and(*pmask, cs->mems_allowed,
					node_states[N_HIGH_MEMORY]);
L
Linus Torvalds 已提交
302
	else
303 304
		*pmask = node_states[N_HIGH_MEMORY];
	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
L
Linus Torvalds 已提交
305 306
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
 * Called with callback_mutex/cgroup_mutex held
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

L
Linus Torvalds 已提交
325 326 327 328 329
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
330
 * are only set if the other's are set.  Call holding cgroup_mutex.
L
Linus Torvalds 已提交
331 332 333 334
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
335
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
336 337 338 339 340
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

341 342 343 344 345 346
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
{
347 348 349 350 351 352 353 354 355 356 357 358 359
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
		kfree(trial);
		return NULL;
	}
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);

	return trial;
360 361 362 363 364 365 366 367
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
368
	free_cpumask_var(trial->cpus_allowed);
369 370 371
	kfree(trial);
}

L
Linus Torvalds 已提交
372 373 374 375 376 377 378
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
379
 * cgroup_mutex held.
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
394
	struct cgroup *cont;
L
Linus Torvalds 已提交
395 396 397
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
398 399
	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
		if (!is_cpuset_subset(cgroup_cs(cont), trial))
L
Linus Torvalds 已提交
400 401 402 403
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
404
	if (cur == &top_cpuset)
L
Linus Torvalds 已提交
405 406
		return 0;

407 408
	par = cur->parent;

L
Linus Torvalds 已提交
409 410 411 412
	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

413 414 415 416
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
417 418
	list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
		c = cgroup_cs(cont);
L
Linus Torvalds 已提交
419 420
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
421
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
L
Linus Torvalds 已提交
422 423 424 425 426 427 428
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

429 430
	/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
	if (cgroup_task_count(cur->css.cgroup)) {
431
		if (cpumask_empty(trial->cpus_allowed) ||
432 433 434 435 436
		    nodes_empty(trial->mems_allowed)) {
			return -ENOSPC;
		}
	}

L
Linus Torvalds 已提交
437 438 439
	return 0;
}

440
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
441
/*
442
 * Helper routine for generate_sched_domains().
P
Paul Jackson 已提交
443 444 445 446
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
447
	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
P
Paul Jackson 已提交
448 449
}

450 451 452 453 454 455 456 457
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

458 459 460 461 462 463 464 465 466 467 468 469 470 471
static void
update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
{
	LIST_HEAD(q);

	list_add(&c->stack_list, &q);
	while (!list_empty(&q)) {
		struct cpuset *cp;
		struct cgroup *cont;
		struct cpuset *child;

		cp = list_first_entry(&q, struct cpuset, stack_list);
		list_del(q.next);

472
		if (cpumask_empty(cp->cpus_allowed))
473 474 475 476 477 478 479 480 481 482 483 484
			continue;

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);

		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			list_add_tail(&child->stack_list, &q);
		}
	}
}

P
Paul Jackson 已提交
485
/*
486 487 488 489 490 491 492 493 494
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
 * The output of this function needs to be passed to kernel/sched.c
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
495
 *
L
Li Zefan 已提交
496
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
497 498 499 500 501 502 503
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
504
 * Must be called with cgroup_lock held.
P
Paul Jackson 已提交
505 506
 *
 * The three key local variables below are:
507
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 *	   the kernel/sched.c routine partition_sched_domains() in a
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
539
static int generate_sched_domains(cpumask_var_t **domains,
540
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
541
{
542
	LIST_HEAD(q);		/* queue of cpusets to be scanned */
P
Paul Jackson 已提交
543 544 545 546
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
547
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
548
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
549
	int ndoms = 0;		/* number of sched domains in result */
550
	int nslot;		/* next empty doms[] struct cpumask slot */
P
Paul Jackson 已提交
551 552

	doms = NULL;
553
	dattr = NULL;
554
	csa = NULL;
P
Paul Jackson 已提交
555 556 557

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
558 559
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
560
		if (!doms)
561 562
			goto done;

563 564 565
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
566
			update_domain_attr_tree(dattr, &top_cpuset);
567
		}
568
		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
569 570

		goto done;
P
Paul Jackson 已提交
571 572 573 574 575 576 577
	}

	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

578 579
	list_add(&top_cpuset.stack_list, &q);
	while (!list_empty(&q)) {
P
Paul Jackson 已提交
580 581
		struct cgroup *cont;
		struct cpuset *child;   /* scans child cpusets of cp */
582

583 584 585
		cp = list_first_entry(&q, struct cpuset, stack_list);
		list_del(q.next);

586
		if (cpumask_empty(cp->cpus_allowed))
587 588
			continue;

589 590 591 592 593 594 595
		/*
		 * All child cpusets contain a subset of the parent's cpus, so
		 * just skip them, and then we call update_domain_attr_tree()
		 * to calc relax_domain_level of the corresponding sched
		 * domain.
		 */
		if (is_sched_load_balance(cp)) {
P
Paul Jackson 已提交
596
			csa[csn++] = cp;
597 598
			continue;
		}
599

P
Paul Jackson 已提交
600 601
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
602
			list_add_tail(&child->stack_list, &q);
P
Paul Jackson 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
		}
  	}

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

633 634 635 636
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
637
	doms = alloc_sched_domains(ndoms);
638
	if (!doms)
639 640 641 642 643 644
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
645
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
646 647 648

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
649
		struct cpumask *dp;
P
Paul Jackson 已提交
650 651
		int apn = a->pn;

652 653 654 655 656
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

657
		dp = doms[nslot];
658 659 660 661 662 663 664 665 666 667

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
				printk(KERN_WARNING
				 "rebuild_sched_domains confused:"
				  " nslot %d, ndoms %d, csn %d, i %d,"
				  " apn %d\n",
				  nslot, ndoms, csn, i, apn);
				warnings--;
P
Paul Jackson 已提交
668
			}
669 670
			continue;
		}
P
Paul Jackson 已提交
671

672
		cpumask_clear(dp);
673 674 675 676 677 678
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
679
				cpumask_or(dp, dp, b->cpus_allowed);
680 681 682 683 684
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
685 686
			}
		}
687
		nslot++;
P
Paul Jackson 已提交
688 689 690
	}
	BUG_ON(nslot != ndoms);

691 692 693
done:
	kfree(csa);

694 695 696 697 698 699 700
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
 * Call with neither cgroup_mutex held nor within get_online_cpus().
 * Takes both cgroup_mutex and get_online_cpus().
 *
 * Cannot be directly called from cpuset code handling changes
 * to the cpuset pseudo-filesystem, because it cannot be called
 * from code that already holds cgroup_mutex.
 */
static void do_rebuild_sched_domains(struct work_struct *unused)
{
	struct sched_domain_attr *attr;
719
	cpumask_var_t *doms;
720 721
	int ndoms;

722
	get_online_cpus();
723 724 725 726 727 728 729 730 731

	/* Generate domain masks and attrs */
	cgroup_lock();
	ndoms = generate_sched_domains(&doms, &attr);
	cgroup_unlock();

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);

732
	put_online_cpus();
733
}
734 735 736 737 738
#else /* !CONFIG_SMP */
static void do_rebuild_sched_domains(struct work_struct *unused)
{
}

739
static int generate_sched_domains(cpumask_var_t **domains,
740 741 742 743 744 745
			struct sched_domain_attr **attributes)
{
	*domains = NULL;
	return 1;
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
746

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);

/*
 * Rebuild scheduler domains, asynchronously via workqueue.
 *
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
 *
 * The rebuild_sched_domains() and partition_sched_domains()
 * routines must nest cgroup_lock() inside get_online_cpus(),
 * but such cpuset changes as these must nest that locking the
 * other way, holding cgroup_lock() for much of the code.
 *
 * So in order to avoid an ABBA deadlock, the cpuset code handling
 * these user changes delegates the actual sched domain rebuilding
 * to a separate workqueue thread, which ends up processing the
 * above do_rebuild_sched_domains() function.
 */
static void async_rebuild_sched_domains(void)
{
770
	queue_work(cpuset_wq, &rebuild_sched_domains_work);
771 772 773 774 775 776 777 778 779 780 781 782 783 784
}

/*
 * Accomplishes the same scheduler domain rebuild as the above
 * async_rebuild_sched_domains(), however it directly calls the
 * rebuild routine synchronously rather than calling it via an
 * asynchronous work thread.
 *
 * This can only be called from code that is not holding
 * cgroup_mutex (not nested in a cgroup_lock() call.)
 */
void rebuild_sched_domains(void)
{
	do_rebuild_sched_domains(NULL);
P
Paul Jackson 已提交
785 786
}

C
Cliff Wickman 已提交
787 788 789 790 791
/**
 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
792
 * Call with cgroup_mutex held.  May take callback_mutex during call.
C
Cliff Wickman 已提交
793 794 795
 * Called for each task in a cgroup by cgroup_scan_tasks().
 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
 * words, if its mask is not equal to its cpuset's mask).
796
 */
797 798
static int cpuset_test_cpumask(struct task_struct *tsk,
			       struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
799
{
800
	return !cpumask_equal(&tsk->cpus_allowed,
C
Cliff Wickman 已提交
801 802
			(cgroup_cs(scan->cg))->cpus_allowed);
}
803

C
Cliff Wickman 已提交
804 805 806 807 808 809 810 811 812 813 814
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 * cpus_allowed mask needs to be changed.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
 * holding cgroup_lock() at this point.
 */
815 816
static void cpuset_change_cpumask(struct task_struct *tsk,
				  struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
817
{
818
	set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
C
Cliff Wickman 已提交
819 820
}

821 822 823
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
824
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
825 826 827 828 829 830
 *
 * Called with cgroup_mutex held
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
831 832
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
833
 */
834
static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
835 836 837 838 839 840
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = cpuset_test_cpumask;
	scan.process_task = cpuset_change_cpumask;
841 842
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
843 844
}

C
Cliff Wickman 已提交
845 846 847 848 849
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
850 851
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
852
{
853
	struct ptr_heap heap;
C
Cliff Wickman 已提交
854 855
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
856

857 858 859 860
	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

861
	/*
862
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
863 864 865
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
866
	 */
867
	if (!*buf) {
868
		cpumask_clear(trialcs->cpus_allowed);
869
	} else {
870
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
871 872
		if (retval < 0)
			return retval;
873

874
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
875
			return -EINVAL;
876
	}
877
	retval = validate_change(cs, trialcs);
878 879
	if (retval < 0)
		return retval;
P
Paul Jackson 已提交
880

P
Paul Menage 已提交
881
	/* Nothing to do if the cpus didn't change */
882
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
883
		return 0;
C
Cliff Wickman 已提交
884

885 886 887 888
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval)
		return retval;

889
	is_load_balanced = is_sched_load_balance(trialcs);
P
Paul Jackson 已提交
890

891
	mutex_lock(&callback_mutex);
892
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
893
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
894

P
Paul Menage 已提交
895 896
	/*
	 * Scan tasks in the cpuset, and update the cpumasks of any
C
Cliff Wickman 已提交
897
	 * that need an update.
P
Paul Menage 已提交
898
	 */
899 900 901
	update_tasks_cpumask(cs, &heap);

	heap_free(&heap);
C
Cliff Wickman 已提交
902

P
Paul Menage 已提交
903
	if (is_load_balanced)
904
		async_rebuild_sched_domains();
905
	return 0;
L
Linus Torvalds 已提交
906 907
}

908 909 910 911 912 913 914 915
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
916
 *    Call holding cgroup_mutex, so current's cpuset won't change
917
 *    during this call, as manage_mutex holds off any cpuset_attach()
918 919
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
920
 *    our task's cpuset.
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

937
	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
938 939
}

940
/*
941 942 943 944 945 946 947 948 949 950 951
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
952 953 954 955 956 957 958 959 960 961 962
repeat:
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
963
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);


	/*
	 * ensure checking ->mems_allowed_change_disable after setting all new
	 * allowed nodes.
	 *
	 * the read-side task can see an nodemask with new allowed nodes and
	 * old allowed nodes. and if it allocates page when cpuset clears newly
	 * disallowed ones continuous, it can see the new allowed bits.
	 *
	 * And if setting all new allowed nodes is after the checking, setting
	 * all new allowed nodes and clearing newly disallowed ones will be done
	 * continuous, and the read-side task may find no node to alloc page.
	 */
	smp_mb();

	/*
	 * Allocation of memory is very fast, we needn't sleep when waiting
	 * for the read-side.
	 */
	while (ACCESS_ONCE(tsk->mems_allowed_change_disable)) {
		task_unlock(tsk);
		if (!task_curr(tsk))
			yield();
		goto repeat;
	}

	/*
	 * ensure checking ->mems_allowed_change_disable before clearing all new
	 * disallowed nodes.
	 *
	 * if clearing newly disallowed bits before the checking, the read-side
	 * task may find no node to alloc page.
	 */
	smp_mb();

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1002
	tsk->mems_allowed = *newmems;
1003
	task_unlock(tsk);
1004 1005 1006 1007 1008 1009
}

/*
 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
 * memory_migrate flag is set. Called with cgroup_mutex held.
1010 1011 1012 1013 1014 1015 1016 1017
 */
static void cpuset_change_nodemask(struct task_struct *p,
				   struct cgroup_scanner *scan)
{
	struct mm_struct *mm;
	struct cpuset *cs;
	int migrate;
	const nodemask_t *oldmem = scan->data;
1018 1019 1020 1021
	NODEMASK_ALLOC(nodemask_t, newmems, GFP_KERNEL);

	if (!newmems)
		return;
1022 1023

	cs = cgroup_cs(scan->cg);
1024
	guarantee_online_mems(cs, newmems);
1025

1026
	cpuset_change_task_nodemask(p, newmems);
1027

1028 1029
	NODEMASK_FREE(newmems);

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	mm = get_task_mm(p);
	if (!mm)
		return;

	migrate = is_memory_migrate(cs);

	mpol_rebind_mm(mm, &cs->mems_allowed);
	if (migrate)
		cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
	mmput(mm);
}

1042 1043
static void *cpuset_being_rebound;

1044 1045 1046 1047
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 * @oldmem: old mems_allowed of cpuset cs
1048
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1049 1050
 *
 * Called with cgroup_mutex held
1051 1052
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
1053
 */
1054 1055
static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
				 struct ptr_heap *heap)
L
Linus Torvalds 已提交
1056
{
1057
	struct cgroup_scanner scan;
1058

1059
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1060

1061 1062 1063
	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_nodemask;
1064
	scan.heap = heap;
1065
	scan.data = (nodemask_t *)oldmem;
1066 1067

	/*
1068 1069 1070 1071 1072 1073
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
	 * the global cgroup_mutex, we know that no other rebind effort
	 * will be contending for the global variable cpuset_being_rebound.
1074
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1075
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1076
	 */
1077
	cgroup_scan_tasks(&scan);
1078

1079
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1080
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1081 1082
}

1083 1084 1085
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1086 1087 1088 1089
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1090 1091 1092 1093 1094 1095
 *
 * Call with cgroup_mutex held.  May take callback_mutex during call.
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1096 1097
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1098
{
1099
	NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1100
	int retval;
1101
	struct ptr_heap heap;
1102

1103 1104 1105
	if (!oldmem)
		return -ENOMEM;

1106 1107 1108 1109
	/*
	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
	 * it's read-only
	 */
1110 1111 1112 1113
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1114 1115 1116 1117 1118 1119 1120 1121

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1122
		nodes_clear(trialcs->mems_allowed);
1123
	} else {
1124
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1125 1126 1127
		if (retval < 0)
			goto done;

1128
		if (!nodes_subset(trialcs->mems_allowed,
1129 1130 1131 1132
				node_states[N_HIGH_MEMORY])) {
			retval =  -EINVAL;
			goto done;
		}
1133
	}
1134 1135
	*oldmem = cs->mems_allowed;
	if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1136 1137 1138
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1139
	retval = validate_change(cs, trialcs);
1140 1141 1142
	if (retval < 0)
		goto done;

1143 1144 1145 1146
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval < 0)
		goto done;

1147
	mutex_lock(&callback_mutex);
1148
	cs->mems_allowed = trialcs->mems_allowed;
1149 1150
	mutex_unlock(&callback_mutex);

1151
	update_tasks_nodemask(cs, oldmem, &heap);
1152 1153

	heap_free(&heap);
1154
done:
1155
	NODEMASK_FREE(oldmem);
1156 1157 1158
	return retval;
}

1159 1160 1161 1162 1163
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1164
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1165
{
1166
#ifdef CONFIG_SMP
1167 1168
	if (val < -1 || val >= SD_LV_MAX)
		return -EINVAL;
1169
#endif
1170 1171 1172

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1173 1174
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1175
			async_rebuild_sched_domains();
1176 1177 1178 1179 1180
	}

	return 0;
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
/*
 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
 * @tsk: task to be updated
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
 * holding cgroup_lock() at this point.
 */
static void cpuset_change_flag(struct task_struct *tsk,
				struct cgroup_scanner *scan)
{
	cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
}

/*
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
 *
 * Called with cgroup_mutex held
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
 */
static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_flag;
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
}

L
Linus Torvalds 已提交
1221 1222
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1223 1224 1225
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1226
 *
1227
 * Call with cgroup_mutex held.
L
Linus Torvalds 已提交
1228 1229
 */

1230 1231
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1232
{
1233
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1234
	int balance_flag_changed;
1235 1236 1237
	int spread_flag_changed;
	struct ptr_heap heap;
	int err;
L
Linus Torvalds 已提交
1238

1239 1240 1241 1242
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1243
	if (turning_on)
1244
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1245
	else
1246
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1247

1248
	err = validate_change(cs, trialcs);
1249
	if (err < 0)
1250
		goto out;
P
Paul Jackson 已提交
1251

1252 1253 1254 1255
	err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (err < 0)
		goto out;

P
Paul Jackson 已提交
1256
	balance_flag_changed = (is_sched_load_balance(cs) !=
1257
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1258

1259 1260 1261
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1262
	mutex_lock(&callback_mutex);
1263
	cs->flags = trialcs->flags;
1264
	mutex_unlock(&callback_mutex);
1265

1266
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1267
		async_rebuild_sched_domains();
P
Paul Jackson 已提交
1268

1269 1270 1271
	if (spread_flag_changed)
		update_tasks_flags(cs, &heap);
	heap_free(&heap);
1272 1273 1274
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1275 1276
}

1277
/*
A
Adrian Bunk 已提交
1278
 * Frequency meter - How fast is some event occurring?
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1375 1376 1377
/* Protected by cgroup_lock */
static cpumask_var_t cpus_attach;

1378
/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1379 1380
static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont,
			     struct task_struct *tsk, bool threadgroup)
L
Linus Torvalds 已提交
1381
{
1382
	int ret;
1383
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1384

1385
	if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
L
Linus Torvalds 已提交
1386
		return -ENOSPC;
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	/*
	 * Kthreads bound to specific cpus cannot be moved to a new cpuset; we
	 * cannot change their cpu affinity and isolating such threads by their
	 * set of allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for success of
	 * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may
	 * be changed.
	 */
	if (tsk->flags & PF_THREAD_BOUND)
		return -EINVAL;
L
Linus Torvalds 已提交
1398

1399
	ret = security_task_setscheduler(tsk);
1400 1401 1402 1403 1404 1405 1406
	if (ret)
		return ret;
	if (threadgroup) {
		struct task_struct *c;

		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1407
			ret = security_task_setscheduler(c);
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
			if (ret) {
				rcu_read_unlock();
				return ret;
			}
		}
		rcu_read_unlock();
	}
	return 0;
}

static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to,
			       struct cpuset *cs)
{
	int err;
	/*
	 * can_attach beforehand should guarantee that this doesn't fail.
	 * TODO: have a better way to handle failure here
	 */
	err = set_cpus_allowed_ptr(tsk, cpus_attach);
	WARN_ON_ONCE(err);

	cpuset_change_task_nodemask(tsk, to);
	cpuset_update_task_spread_flag(cs, tsk);

1432
}
L
Linus Torvalds 已提交
1433

1434 1435 1436
static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont,
			  struct cgroup *oldcont, struct task_struct *tsk,
			  bool threadgroup)
1437 1438 1439 1440
{
	struct mm_struct *mm;
	struct cpuset *cs = cgroup_cs(cont);
	struct cpuset *oldcs = cgroup_cs(oldcont);
1441 1442 1443 1444 1445
	NODEMASK_ALLOC(nodemask_t, from, GFP_KERNEL);
	NODEMASK_ALLOC(nodemask_t, to, GFP_KERNEL);

	if (from == NULL || to == NULL)
		goto alloc_fail;
1446

1447
	if (cs == &top_cpuset) {
1448
		cpumask_copy(cpus_attach, cpu_possible_mask);
1449
	} else {
1450
		guarantee_online_cpus(cs, cpus_attach);
1451
	}
1452
	guarantee_online_mems(cs, to);
L
Linus Torvalds 已提交
1453

1454
	/* do per-task migration stuff possibly for each in the threadgroup */
1455
	cpuset_attach_task(tsk, to, cs);
1456 1457 1458 1459
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1460
			cpuset_attach_task(c, to, cs);
1461 1462 1463
		}
		rcu_read_unlock();
	}
1464

1465
	/* change mm; only needs to be done once even if threadgroup */
1466 1467
	*from = oldcs->mems_allowed;
	*to = cs->mems_allowed;
1468 1469
	mm = get_task_mm(tsk);
	if (mm) {
1470
		mpol_rebind_mm(mm, to);
1471
		if (is_memory_migrate(cs))
1472
			cpuset_migrate_mm(mm, from, to);
1473 1474
		mmput(mm);
	}
1475 1476 1477 1478

alloc_fail:
	NODEMASK_FREE(from);
	NODEMASK_FREE(to);
L
Linus Torvalds 已提交
1479 1480 1481 1482 1483
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1484
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1485 1486 1487 1488
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1489
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1490
	FILE_SCHED_LOAD_BALANCE,
1491
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1492 1493
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1494 1495
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1496 1497
} cpuset_filetype_t;

1498 1499 1500 1501 1502 1503
static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
{
	int retval = 0;
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;

1504
	if (!cgroup_lock_live_group(cgrp))
1505 1506 1507
		return -ENODEV;

	switch (type) {
L
Linus Torvalds 已提交
1508
	case FILE_CPU_EXCLUSIVE:
1509
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1510 1511
		break;
	case FILE_MEM_EXCLUSIVE:
1512
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1513
		break;
1514 1515 1516
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1517
	case FILE_SCHED_LOAD_BALANCE:
1518
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1519
		break;
1520
	case FILE_MEMORY_MIGRATE:
1521
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1522
		break;
1523
	case FILE_MEMORY_PRESSURE_ENABLED:
1524
		cpuset_memory_pressure_enabled = !!val;
1525 1526 1527 1528
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1529
	case FILE_SPREAD_PAGE:
1530
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1531 1532
		break;
	case FILE_SPREAD_SLAB:
1533
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1534
		break;
L
Linus Torvalds 已提交
1535 1536
	default:
		retval = -EINVAL;
1537
		break;
L
Linus Torvalds 已提交
1538
	}
1539
	cgroup_unlock();
L
Linus Torvalds 已提交
1540 1541 1542
	return retval;
}

1543 1544 1545 1546 1547 1548
static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
{
	int retval = 0;
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;

1549
	if (!cgroup_lock_live_group(cgrp))
1550
		return -ENODEV;
1551

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
	cgroup_unlock();
	return retval;
}

1564 1565 1566 1567 1568 1569 1570
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
				const char *buf)
{
	int retval = 0;
1571 1572
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *trialcs;
1573 1574 1575 1576

	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

1577
	trialcs = alloc_trial_cpuset(cs);
1578 1579 1580 1581
	if (!trialcs) {
		retval = -ENOMEM;
		goto out;
	}
1582

1583 1584
	switch (cft->private) {
	case FILE_CPULIST:
1585
		retval = update_cpumask(cs, trialcs, buf);
1586 1587
		break;
	case FILE_MEMLIST:
1588
		retval = update_nodemask(cs, trialcs, buf);
1589 1590 1591 1592 1593
		break;
	default:
		retval = -EINVAL;
		break;
	}
1594 1595

	free_trial_cpuset(trialcs);
1596
out:
1597 1598 1599 1600
	cgroup_unlock();
	return retval;
}

L
Linus Torvalds 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

1613
static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
L
Linus Torvalds 已提交
1614
{
1615
	size_t count;
L
Linus Torvalds 已提交
1616

1617
	mutex_lock(&callback_mutex);
1618
	count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1619
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1620

1621
	return count;
L
Linus Torvalds 已提交
1622 1623
}

1624
static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
L
Linus Torvalds 已提交
1625
{
1626
	size_t count;
L
Linus Torvalds 已提交
1627

1628
	mutex_lock(&callback_mutex);
1629
	count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1630
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1631

1632
	return count;
L
Linus Torvalds 已提交
1633 1634
}

1635 1636 1637 1638 1639
static ssize_t cpuset_common_file_read(struct cgroup *cont,
				       struct cftype *cft,
				       struct file *file,
				       char __user *buf,
				       size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1640
{
1641
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1642 1643 1644 1645 1646
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

1647
	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
L
Linus Torvalds 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

A
Al Viro 已提交
1665
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
L
Linus Torvalds 已提交
1666 1667 1668 1669 1670
out:
	free_page((unsigned long)page);
	return retval;
}

1671 1672 1673 1674 1675 1676 1677 1678 1679
static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1680 1681
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1697 1698 1699

	/* Unreachable but makes gcc happy */
	return 0;
1700
}
L
Linus Torvalds 已提交
1701

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1712 1713 1714

	/* Unrechable but makes gcc happy */
	return 0;
1715 1716
}

L
Linus Torvalds 已提交
1717 1718 1719 1720 1721

/*
 * for the common functions, 'private' gives the type of file
 */

1722 1723 1724 1725
static struct cftype files[] = {
	{
		.name = "cpus",
		.read = cpuset_common_file_read,
1726 1727
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * NR_CPUS),
1728 1729 1730 1731 1732 1733
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
		.read = cpuset_common_file_read,
1734 1735
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
		.private = FILE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1753 1754 1755 1756 1757 1758 1759
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1760 1761 1762 1763 1764 1765 1766 1767 1768
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1769 1770
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1786
		.mode = S_IRUGO,
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1802 1803
};

1804 1805
static struct cftype cft_memory_pressure_enabled = {
	.name = "memory_pressure_enabled",
1806 1807
	.read_u64 = cpuset_read_u64,
	.write_u64 = cpuset_write_u64,
1808 1809 1810
	.private = FILE_MEMORY_PRESSURE_ENABLED,
};

1811
static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
L
Linus Torvalds 已提交
1812 1813 1814
{
	int err;

1815 1816
	err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
	if (err)
L
Linus Torvalds 已提交
1817
		return err;
1818
	/* memory_pressure_enabled is in root cpuset only */
1819
	if (!cont->parent)
1820
		err = cgroup_add_file(cont, ss,
1821 1822
				      &cft_memory_pressure_enabled);
	return err;
L
Linus Torvalds 已提交
1823 1824
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
/*
 * post_clone() is called at the end of cgroup_clone().
 * 'cgroup' was just created automatically as a result of
 * a cgroup_clone(), and the current task is about to
 * be moved into 'cgroup'.
 *
 * Currently we refuse to set up the cgroup - thereby
 * refusing the task to be entered, and as a result refusing
 * the sys_unshare() or clone() which initiated it - if any
 * sibling cpusets have exclusive cpus or mem.
 *
 * If this becomes a problem for some users who wish to
 * allow that scenario, then cpuset_post_clone() could be
 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1839 1840
 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
 * held.
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
 */
static void cpuset_post_clone(struct cgroup_subsys *ss,
			      struct cgroup *cgroup)
{
	struct cgroup *parent, *child;
	struct cpuset *cs, *parent_cs;

	parent = cgroup->parent;
	list_for_each_entry(child, &parent->children, sibling) {
		cs = cgroup_cs(child);
		if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
			return;
	}
	cs = cgroup_cs(cgroup);
	parent_cs = cgroup_cs(parent);

	cs->mems_allowed = parent_cs->mems_allowed;
1858
	cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1859 1860 1861
	return;
}

L
Linus Torvalds 已提交
1862 1863
/*
 *	cpuset_create - create a cpuset
1864 1865
 *	ss:	cpuset cgroup subsystem
 *	cont:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1866 1867
 */

1868 1869 1870
static struct cgroup_subsys_state *cpuset_create(
	struct cgroup_subsys *ss,
	struct cgroup *cont)
L
Linus Torvalds 已提交
1871 1872
{
	struct cpuset *cs;
1873
	struct cpuset *parent;
L
Linus Torvalds 已提交
1874

1875 1876 1877 1878
	if (!cont->parent) {
		return &top_cpuset.css;
	}
	parent = cgroup_cs(cont->parent);
L
Linus Torvalds 已提交
1879 1880
	cs = kmalloc(sizeof(*cs), GFP_KERNEL);
	if (!cs)
1881
		return ERR_PTR(-ENOMEM);
1882 1883 1884 1885
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
		kfree(cs);
		return ERR_PTR(-ENOMEM);
	}
L
Linus Torvalds 已提交
1886 1887

	cs->flags = 0;
1888 1889 1890 1891
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
P
Paul Jackson 已提交
1892
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1893
	cpumask_clear(cs->cpus_allowed);
1894
	nodes_clear(cs->mems_allowed);
1895
	fmeter_init(&cs->fmeter);
1896
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1897 1898

	cs->parent = parent;
1899
	number_of_cpusets++;
1900
	return &cs->css ;
L
Linus Torvalds 已提交
1901 1902
}

P
Paul Jackson 已提交
1903 1904 1905
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
1906
 * will call async_rebuild_sched_domains().
P
Paul Jackson 已提交
1907 1908
 */

1909
static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
L
Linus Torvalds 已提交
1910
{
1911
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1912

P
Paul Jackson 已提交
1913
	if (is_sched_load_balance(cs))
1914
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
P
Paul Jackson 已提交
1915

1916
	number_of_cpusets--;
1917
	free_cpumask_var(cs->cpus_allowed);
1918
	kfree(cs);
L
Linus Torvalds 已提交
1919 1920
}

1921 1922 1923
struct cgroup_subsys cpuset_subsys = {
	.name = "cpuset",
	.create = cpuset_create,
1924
	.destroy = cpuset_destroy,
1925 1926 1927 1928 1929 1930 1931 1932
	.can_attach = cpuset_can_attach,
	.attach = cpuset_attach,
	.populate = cpuset_populate,
	.post_clone = cpuset_post_clone,
	.subsys_id = cpuset_subsys_id,
	.early_init = 1,
};

L
Linus Torvalds 已提交
1933 1934 1935 1936 1937 1938 1939 1940
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
1941
	int err = 0;
L
Linus Torvalds 已提交
1942

1943 1944 1945
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();

1946
	cpumask_setall(top_cpuset.cpus_allowed);
1947
	nodes_setall(top_cpuset.mems_allowed);
L
Linus Torvalds 已提交
1948

1949
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
1950
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1951
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
1952 1953 1954

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
1955 1956
		return err;

1957 1958 1959
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

1960
	number_of_cpusets = 1;
1961
	return 0;
L
Linus Torvalds 已提交
1962 1963
}

1964 1965 1966 1967 1968 1969 1970 1971
/**
 * cpuset_do_move_task - move a given task to another cpuset
 * @tsk: pointer to task_struct the task to move
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 * Return nonzero to stop the walk through the tasks.
 */
1972 1973
static void cpuset_do_move_task(struct task_struct *tsk,
				struct cgroup_scanner *scan)
1974
{
1975
	struct cgroup *new_cgroup = scan->data;
1976

1977
	cgroup_attach_task(new_cgroup, tsk);
1978 1979 1980 1981 1982 1983 1984
}

/**
 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
 * @from: cpuset in which the tasks currently reside
 * @to: cpuset to which the tasks will be moved
 *
1985 1986
 * Called with cgroup_mutex held
 * callback_mutex must not be held, as cpuset_attach() will take it.
1987 1988 1989 1990 1991 1992
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 */
static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
{
1993
	struct cgroup_scanner scan;
1994

1995 1996 1997 1998 1999
	scan.cg = from->css.cgroup;
	scan.test_task = NULL; /* select all tasks in cgroup */
	scan.process_task = cpuset_do_move_task;
	scan.heap = NULL;
	scan.data = to->css.cgroup;
2000

2001
	if (cgroup_scan_tasks(&scan))
2002 2003 2004 2005
		printk(KERN_ERR "move_member_tasks_to_cpuset: "
				"cgroup_scan_tasks failed\n");
}

2006
/*
2007
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2008 2009
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2010 2011
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2012
 *
2013 2014
 * Called with cgroup_mutex held
 * callback_mutex must not be held, as cpuset_attach() will take it.
2015
 */
2016 2017 2018 2019
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

2020 2021 2022 2023 2024
	/*
	 * The cgroup's css_sets list is in use if there are tasks
	 * in the cpuset; the list is empty if there are none;
	 * the cs->css.refcnt seems always 0.
	 */
2025 2026
	if (list_empty(&cs->css.cgroup->css_sets))
		return;
2027

2028 2029 2030 2031 2032
	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
	parent = cs->parent;
2033
	while (cpumask_empty(parent->cpus_allowed) ||
2034
			nodes_empty(parent->mems_allowed))
2035 2036 2037 2038 2039 2040 2041 2042 2043
		parent = parent->parent;

	move_member_tasks_to_cpuset(cs, parent);
}

/*
 * Walk the specified cpuset subtree and look for empty cpusets.
 * The tasks of such cpuset must be moved to a parent cpuset.
 *
2044
 * Called with cgroup_mutex held.  We take callback_mutex to modify
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
 * cpus_allowed and mems_allowed.
 *
 * This walk processes the tree from top to bottom, completing one layer
 * before dropping down to the next.  It always processes a node before
 * any of its children.
 *
 * For now, since we lack memory hot unplug, we'll never see a cpuset
 * that has tasks along with an empty 'mems'.  But if we did see such
 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
 */
2055
static void scan_for_empty_cpusets(struct cpuset *root)
2056
{
2057
	LIST_HEAD(queue);
2058 2059
	struct cpuset *cp;	/* scans cpusets being updated */
	struct cpuset *child;	/* scans child cpusets of cp */
2060
	struct cgroup *cont;
2061 2062 2063 2064
	NODEMASK_ALLOC(nodemask_t, oldmems, GFP_KERNEL);

	if (oldmems == NULL)
		return;
2065

2066 2067 2068
	list_add_tail((struct list_head *)&root->stack_list, &queue);

	while (!list_empty(&queue)) {
2069
		cp = list_first_entry(&queue, struct cpuset, stack_list);
2070 2071 2072 2073 2074
		list_del(queue.next);
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			list_add_tail(&child->stack_list, &queue);
		}
2075 2076

		/* Continue past cpusets with all cpus, mems online */
2077
		if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) &&
2078 2079 2080
		    nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
			continue;

2081
		*oldmems = cp->mems_allowed;
2082

2083
		/* Remove offline cpus and mems from this cpuset. */
2084
		mutex_lock(&callback_mutex);
2085
		cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2086
			    cpu_active_mask);
2087 2088
		nodes_and(cp->mems_allowed, cp->mems_allowed,
						node_states[N_HIGH_MEMORY]);
2089 2090 2091
		mutex_unlock(&callback_mutex);

		/* Move tasks from the empty cpuset to a parent */
2092
		if (cpumask_empty(cp->cpus_allowed) ||
2093
		     nodes_empty(cp->mems_allowed))
2094
			remove_tasks_in_empty_cpuset(cp);
2095
		else {
2096
			update_tasks_cpumask(cp, NULL);
2097
			update_tasks_nodemask(cp, oldmems, NULL);
2098
		}
2099
	}
2100
	NODEMASK_FREE(oldmems);
2101 2102
}

2103 2104 2105 2106 2107 2108
/*
 * The top_cpuset tracks what CPUs and Memory Nodes are online,
 * period.  This is necessary in order to make cpusets transparent
 * (of no affect) on systems that are actively using CPU hotplug
 * but making no active use of cpusets.
 *
2109
 * This routine ensures that top_cpuset.cpus_allowed tracks
2110
 * cpu_active_mask on each CPU hotplug (cpuhp) event.
2111 2112 2113
 *
 * Called within get_online_cpus().  Needs to call cgroup_lock()
 * before calling generate_sched_domains().
2114
 */
2115
void cpuset_update_active_cpus(void)
2116
{
2117
	struct sched_domain_attr *attr;
2118
	cpumask_var_t *doms;
2119 2120 2121
	int ndoms;

	cgroup_lock();
2122
	mutex_lock(&callback_mutex);
2123
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2124
	mutex_unlock(&callback_mutex);
2125 2126 2127 2128 2129 2130
	scan_for_empty_cpusets(&top_cpuset);
	ndoms = generate_sched_domains(&doms, &attr);
	cgroup_unlock();

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
2131 2132
}

2133
#ifdef CONFIG_MEMORY_HOTPLUG
2134
/*
2135
 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2136 2137
 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
 * See also the previous routine cpuset_track_online_cpus().
2138
 */
2139 2140
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2141
{
2142 2143 2144 2145
	NODEMASK_ALLOC(nodemask_t, oldmems, GFP_KERNEL);

	if (oldmems == NULL)
		return NOTIFY_DONE;
2146

2147
	cgroup_lock();
2148 2149
	switch (action) {
	case MEM_ONLINE:
2150
		*oldmems = top_cpuset.mems_allowed;
2151
		mutex_lock(&callback_mutex);
2152
		top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2153
		mutex_unlock(&callback_mutex);
2154
		update_tasks_nodemask(&top_cpuset, oldmems, NULL);
2155 2156 2157 2158 2159 2160 2161
		break;
	case MEM_OFFLINE:
		/*
		 * needn't update top_cpuset.mems_allowed explicitly because
		 * scan_for_empty_cpusets() will update it.
		 */
		scan_for_empty_cpusets(&top_cpuset);
2162 2163 2164 2165
		break;
	default:
		break;
	}
2166
	cgroup_unlock();
2167 2168

	NODEMASK_FREE(oldmems);
2169
	return NOTIFY_OK;
2170 2171 2172
}
#endif

L
Linus Torvalds 已提交
2173 2174 2175 2176 2177 2178 2179 2180
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
 **/

void __init cpuset_init_smp(void)
{
2181
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2182
	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2183

2184
	hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2185 2186 2187

	cpuset_wq = create_singlethread_workqueue("cpuset");
	BUG_ON(!cpuset_wq);
L
Linus Torvalds 已提交
2188 2189 2190 2191 2192
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2193
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2194
 *
2195
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2196 2197 2198 2199 2200
 * attached to the specified @tsk.  Guaranteed to return some non-empty
 * subset of cpu_online_map, even if this means going outside the
 * tasks cpuset.
 **/

2201
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2202
{
2203
	mutex_lock(&callback_mutex);
2204
	task_lock(tsk);
2205
	guarantee_online_cpus(task_cs(tsk), pmask);
2206
	task_unlock(tsk);
2207
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2208 2209
}

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
int cpuset_cpus_allowed_fallback(struct task_struct *tsk)
{
	const struct cpuset *cs;
	int cpu;

	rcu_read_lock();
	cs = task_cs(tsk);
	if (cs)
		cpumask_copy(&tsk->cpus_allowed, cs->cpus_allowed);
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
	 */

	cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask);
	if (cpu >= nr_cpu_ids) {
		/*
		 * Either tsk->cpus_allowed is wrong (see above) or it
		 * is actually empty. The latter case is only possible
		 * if we are racing with remove_tasks_in_empty_cpuset().
		 * Like above we can temporary set any mask and rely on
		 * set_cpus_allowed_ptr() as synchronization point.
		 */
		cpumask_copy(&tsk->cpus_allowed, cpu_possible_mask);
		cpu = cpumask_any(cpu_active_mask);
	}

	return cpu;
}

L
Linus Torvalds 已提交
2252 2253
void cpuset_init_current_mems_allowed(void)
{
2254
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2255 2256
}

2257 2258 2259 2260 2261 2262
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2263
 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2264 2265 2266 2267 2268 2269 2270
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;

2271
	mutex_lock(&callback_mutex);
2272
	task_lock(tsk);
2273
	guarantee_online_mems(task_cs(tsk), &mask);
2274
	task_unlock(tsk);
2275
	mutex_unlock(&callback_mutex);
2276 2277 2278 2279

	return mask;
}

2280
/**
2281 2282
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2283
 *
2284
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2285
 */
2286
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2287
{
2288
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2289 2290
}

2291
/*
2292 2293 2294 2295
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2296
 */
2297
static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2298
{
2299
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2300 2301 2302 2303
		cs = cs->parent;
	return cs;
}

2304
/**
2305 2306
 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2307
 * @gfp_mask: memory allocation flags
2308
 *
2309 2310 2311 2312 2313 2314
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2315 2316
 * Otherwise, no.
 *
2317 2318 2319
 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 * might sleep, and might allow a node from an enclosing cpuset.
2320
 *
2321 2322
 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 * cpusets, and never sleeps.
2323 2324 2325 2326 2327 2328 2329
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2330
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2331 2332
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2333
 * GFP_KERNEL allocations are not so marked, so can escape to the
2334
 * nearest enclosing hardwalled ancestor cpuset.
2335
 *
2336 2337 2338 2339 2340 2341 2342
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2343
 *
2344
 * The first call here from mm/page_alloc:get_page_from_freelist()
2345 2346 2347
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2348 2349 2350 2351 2352 2353
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2354 2355
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2356
 *	TIF_MEMDIE   - any node ok
2357
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2358
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2359 2360
 *
 * Rule:
2361
 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2362 2363
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2364
 */
2365
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2366
{
2367
	const struct cpuset *cs;	/* current cpuset ancestors */
2368
	int allowed;			/* is allocation in zone z allowed? */
2369

2370
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2371
		return 1;
2372
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2373 2374
	if (node_isset(node, current->mems_allowed))
		return 1;
2375 2376 2377 2378 2379 2380
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2381 2382 2383
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2384 2385 2386
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2387
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2388
	mutex_lock(&callback_mutex);
2389 2390

	task_lock(current);
2391
	cs = nearest_hardwall_ancestor(task_cs(current));
2392 2393
	task_unlock(current);

2394
	allowed = node_isset(node, cs->mems_allowed);
2395
	mutex_unlock(&callback_mutex);
2396
	return allowed;
L
Linus Torvalds 已提交
2397 2398
}

2399
/*
2400 2401
 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2402 2403
 * @gfp_mask: memory allocation flags
 *
2404 2405 2406 2407 2408
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If the task has been OOM killed and has access to memory reserves as
 * specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
2409 2410 2411 2412 2413 2414 2415
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2416 2417
 * Unlike the cpuset_node_allowed_softwall() variant, above,
 * this variant requires that the node be in the current task's
2418 2419 2420 2421
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */
2422
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2423 2424 2425 2426 2427
{
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2428 2429 2430 2431 2432 2433
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2434 2435 2436
	return 0;
}

P
Paul Jackson 已提交
2437 2438 2439 2440 2441 2442 2443 2444
/**
 * cpuset_unlock - release lock on cpuset changes
 *
 * Undo the lock taken in a previous cpuset_lock() call.
 */

void cpuset_unlock(void)
{
2445
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
2446 2447
}

2448
/**
2449 2450
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2475
static int cpuset_spread_node(int *rotor)
2476 2477 2478
{
	int node;

2479
	node = next_node(*rotor, current->mems_allowed);
2480 2481
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2482
	*rotor = node;
2483 2484
	return node;
}
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

int cpuset_mem_spread_node(void)
{
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2496 2497
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2498
/**
2499 2500 2501 2502 2503 2504 2505 2506
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2507 2508
 **/

2509 2510
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2511
{
2512
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2513 2514
}

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
 * @task: pointer to task_struct of some task.
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
 * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
 * dereferencing task_cs(task).
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
	struct dentry *dentry;

	dentry = task_cs(tsk)->css.cgroup->dentry;
	spin_lock(&cpuset_buffer_lock);
	snprintf(cpuset_name, CPUSET_NAME_LEN,
		 dentry ? (const char *)dentry->d_name.name : "/");
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
	       tsk->comm, cpuset_name, cpuset_nodelist);
	spin_unlock(&cpuset_buffer_lock);
}

2538 2539 2540 2541 2542 2543
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2544
int cpuset_memory_pressure_enabled __read_mostly;
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	task_lock(current);
2567
	fmeter_markevent(&task_cs(current)->fmeter);
2568 2569 2570
	task_unlock(current);
}

2571
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2572 2573 2574 2575
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2576 2577
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2578
 *    and we take cgroup_mutex, keeping cpuset_attach() from changing it
2579
 *    anyway.
L
Linus Torvalds 已提交
2580
 */
P
Paul Jackson 已提交
2581
static int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2582
{
2583
	struct pid *pid;
L
Linus Torvalds 已提交
2584 2585
	struct task_struct *tsk;
	char *buf;
2586
	struct cgroup_subsys_state *css;
2587
	int retval;
L
Linus Torvalds 已提交
2588

2589
	retval = -ENOMEM;
L
Linus Torvalds 已提交
2590 2591
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
2592 2593 2594
		goto out;

	retval = -ESRCH;
2595 2596
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2597 2598
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2599

2600
	retval = -EINVAL;
2601 2602 2603
	cgroup_lock();
	css = task_subsys_state(tsk, cpuset_subsys_id);
	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
L
Linus Torvalds 已提交
2604
	if (retval < 0)
2605
		goto out_unlock;
L
Linus Torvalds 已提交
2606 2607
	seq_puts(m, buf);
	seq_putc(m, '\n');
2608
out_unlock:
2609
	cgroup_unlock();
2610 2611
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2612
	kfree(buf);
2613
out:
L
Linus Torvalds 已提交
2614 2615 2616 2617 2618
	return retval;
}

static int cpuset_open(struct inode *inode, struct file *file)
{
2619 2620
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cpuset_show, pid);
L
Linus Torvalds 已提交
2621 2622
}

2623
const struct file_operations proc_cpuset_operations = {
L
Linus Torvalds 已提交
2624 2625 2626 2627 2628
	.open		= cpuset_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};
2629
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2630

2631
/* Display task mems_allowed in /proc/<pid>/status file. */
2632 2633 2634
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
	seq_printf(m, "Mems_allowed:\t");
2635
	seq_nodemask(m, &task->mems_allowed);
2636
	seq_printf(m, "\n");
2637
	seq_printf(m, "Mems_allowed_list:\t");
2638
	seq_nodemask_list(m, &task->mems_allowed);
2639
	seq_printf(m, "\n");
L
Linus Torvalds 已提交
2640
}