fault.c 16.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  Derived from "arch/i386/mm/fault.c"
 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Modified by Cort Dougan and Paul Mackerras.
 *
 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/signal.h>
#include <linux/sched.h>
20
#include <linux/sched/task_stack.h>
21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/highmem.h>
30
#include <linux/extable.h>
31
#include <linux/kprobes.h>
32
#include <linux/kdebug.h>
33
#include <linux/perf_event.h>
34
#include <linux/ratelimit.h>
35
#include <linux/context_tracking.h>
36
#include <linux/hugetlb.h>
37
#include <linux/uaccess.h>
38

39
#include <asm/firmware.h>
40 41 42 43 44 45
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include <asm/siginfo.h>
46
#include <asm/debug.h>
47

48 49
#include "icswx.h"

50 51
#ifdef CONFIG_KPROBES
static inline int notify_page_fault(struct pt_regs *regs)
52
{
53 54 55 56 57 58 59 60 61
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
	if (!user_mode(regs)) {
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, 11))
			ret = 1;
		preempt_enable();
	}
62

63
	return ret;
64 65
}
#else
66
static inline int notify_page_fault(struct pt_regs *regs)
67
{
68
	return 0;
69 70 71
}
#endif

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/*
 * Check whether the instruction at regs->nip is a store using
 * an update addressing form which will update r1.
 */
static int store_updates_sp(struct pt_regs *regs)
{
	unsigned int inst;

	if (get_user(inst, (unsigned int __user *)regs->nip))
		return 0;
	/* check for 1 in the rA field */
	if (((inst >> 16) & 0x1f) != 1)
		return 0;
	/* check major opcode */
	switch (inst >> 26) {
	case 37:	/* stwu */
	case 39:	/* stbu */
	case 45:	/* sthu */
	case 53:	/* stfsu */
	case 55:	/* stfdu */
		return 1;
	case 62:	/* std or stdu */
		return (inst & 3) == 1;
	case 31:
		/* check minor opcode */
		switch ((inst >> 1) & 0x3ff) {
		case 181:	/* stdux */
		case 183:	/* stwux */
		case 247:	/* stbux */
		case 439:	/* sthux */
		case 695:	/* stfsux */
		case 759:	/* stfdux */
			return 1;
		}
	}
	return 0;
}
109 110 111 112 113 114 115 116
/*
 * do_page_fault error handling helpers
 */

#define MM_FAULT_RETURN		0
#define MM_FAULT_CONTINUE	-1
#define MM_FAULT_ERR(sig)	(sig)

117 118
static int do_sigbus(struct pt_regs *regs, unsigned long address,
		     unsigned int fault)
119 120
{
	siginfo_t info;
121
	unsigned int lsb = 0;
122

A
Anton Blanchard 已提交
123 124 125 126 127 128 129 130
	if (!user_mode(regs))
		return MM_FAULT_ERR(SIGBUS);

	current->thread.trap_nr = BUS_ADRERR;
	info.si_signo = SIGBUS;
	info.si_errno = 0;
	info.si_code = BUS_ADRERR;
	info.si_addr = (void __user *)address;
131 132 133 134 135 136
#ifdef CONFIG_MEMORY_FAILURE
	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
			current->comm, current->pid, address);
		info.si_code = BUS_MCEERR_AR;
	}
137 138 139 140 141

	if (fault & VM_FAULT_HWPOISON_LARGE)
		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
	if (fault & VM_FAULT_HWPOISON)
		lsb = PAGE_SHIFT;
142
#endif
143
	info.si_addr_lsb = lsb;
A
Anton Blanchard 已提交
144 145
	force_sig_info(SIGBUS, &info, current);
	return MM_FAULT_RETURN;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
}

static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
{
	/*
	 * Pagefault was interrupted by SIGKILL. We have no reason to
	 * continue the pagefault.
	 */
	if (fatal_signal_pending(current)) {
		/* Coming from kernel, we need to deal with uaccess fixups */
		if (user_mode(regs))
			return MM_FAULT_RETURN;
		return MM_FAULT_ERR(SIGKILL);
	}

	/* No fault: be happy */
	if (!(fault & VM_FAULT_ERROR))
		return MM_FAULT_CONTINUE;

	/* Out of memory */
166 167 168 169 170 171 172 173 174 175
	if (fault & VM_FAULT_OOM) {
		/*
		 * We ran out of memory, or some other thing happened to us that
		 * made us unable to handle the page fault gracefully.
		 */
		if (!user_mode(regs))
			return MM_FAULT_ERR(SIGKILL);
		pagefault_out_of_memory();
		return MM_FAULT_RETURN;
	}
176

177
	if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE))
178
		return do_sigbus(regs, addr, fault);
179 180 181 182 183

	/* We don't understand the fault code, this is fatal */
	BUG();
	return MM_FAULT_CONTINUE;
}
184 185 186 187 188 189 190 191 192 193 194 195 196 197

/*
 * For 600- and 800-family processors, the error_code parameter is DSISR
 * for a data fault, SRR1 for an instruction fault. For 400-family processors
 * the error_code parameter is ESR for a data fault, 0 for an instruction
 * fault.
 * For 64-bit processors, the error_code parameter is
 *  - DSISR for a non-SLB data access fault,
 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
 *  - 0 any SLB fault.
 *
 * The return value is 0 if the fault was handled, or the signal
 * number if this is a kernel fault that can't be handled here.
 */
198
int do_page_fault(struct pt_regs *regs, unsigned long address,
199 200
			    unsigned long error_code)
{
201
	enum ctx_state prev_state = exception_enter();
202 203
	struct vm_area_struct * vma;
	struct mm_struct *mm = current->mm;
204
	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
205
	int code = SEGV_MAPERR;
206
	int is_write = 0;
207 208
	int trap = TRAP(regs);
 	int is_exec = trap == 0x400;
209
	int is_user = user_mode(regs);
210
	int fault;
211
	int rc = 0, store_update_sp = 0;
212 213 214 215 216 217 218 219

#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
	/*
	 * Fortunately the bit assignments in SRR1 for an instruction
	 * fault and DSISR for a data fault are mostly the same for the
	 * bits we are interested in.  But there are some bits which
	 * indicate errors in DSISR but can validly be set in SRR1.
	 */
220
	if (is_exec)
221 222 223 224 225 226 227
		error_code &= 0x48200000;
	else
		is_write = error_code & DSISR_ISSTORE;
#else
	is_write = error_code & ESR_DST;
#endif /* CONFIG_4xx || CONFIG_BOOKE */

228 229 230 231 232 233 234
#ifdef CONFIG_PPC_ICSWX
	/*
	 * we need to do this early because this "data storage
	 * interrupt" does not update the DAR/DEAR so we don't want to
	 * look at it
	 */
	if (error_code & ICSWX_DSI_UCT) {
235
		rc = acop_handle_fault(regs, address, error_code);
236
		if (rc)
237
			goto bail;
238
	}
239
#endif /* CONFIG_PPC_ICSWX */
240

241
	if (notify_page_fault(regs))
242
		goto bail;
243

244
	if (unlikely(debugger_fault_handler(regs)))
245
		goto bail;
246

247 248 249 250
	/*
	 * The kernel should never take an execute fault nor should it
	 * take a page fault to a kernel address.
	 */
251
	if (!is_user && (is_exec || (address >= TASK_SIZE))) {
252 253 254
		rc = SIGSEGV;
		goto bail;
	}
255

256
#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
257
      defined(CONFIG_PPC_BOOK3S_64) || defined(CONFIG_PPC_8xx))
258
  	if (error_code & DSISR_DABRMATCH) {
259 260
		/* breakpoint match */
		do_break(regs, address, error_code);
261
		goto bail;
262
	}
263
#endif
264

265 266 267 268
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();

269
	if (faulthandler_disabled() || mm == NULL) {
270
		if (!is_user) {
271 272 273
			rc = SIGSEGV;
			goto bail;
		}
274
		/* faulthandler_disabled() in user mode is really bad,
275
		   as is current->mm == NULL. */
276
		printk(KERN_EMERG "Page fault in user mode with "
277 278
		       "faulthandler_disabled() = %d mm = %p\n",
		       faulthandler_disabled(), mm);
279 280 281 282 283
		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
		       regs->nip, regs->msr);
		die("Weird page fault", regs, SIGSEGV);
	}

284
	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
285

286 287 288 289 290
	/*
	 * We want to do this outside mmap_sem, because reading code around nip
	 * can result in fault, which will cause a deadlock when called with
	 * mmap_sem held
	 */
291
	if (is_write && is_user)
292 293
		store_update_sp = store_updates_sp(regs);

294
	if (is_user)
295 296
		flags |= FAULT_FLAG_USER;

297 298
	/* When running in the kernel we expect faults to occur only to
	 * addresses in user space.  All other faults represent errors in the
299 300
	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
	 * erroneous fault occurring in a code path which already holds mmap_sem
301 302 303 304 305 306
	 * we will deadlock attempting to validate the fault against the
	 * address space.  Luckily the kernel only validly references user
	 * space from well defined areas of code, which are listed in the
	 * exceptions table.
	 *
	 * As the vast majority of faults will be valid we will only perform
307
	 * the source reference check when there is a possibility of a deadlock.
308 309 310 311 312
	 * Attempt to lock the address space, if we cannot we then validate the
	 * source.  If this is invalid we can skip the address space check,
	 * thus avoiding the deadlock.
	 */
	if (!down_read_trylock(&mm->mmap_sem)) {
313
		if (!is_user && !search_exception_tables(regs->nip))
314 315
			goto bad_area_nosemaphore;

316
retry:
317
		down_read(&mm->mmap_sem);
318 319 320 321 322 323 324
	} else {
		/*
		 * The above down_read_trylock() might have succeeded in
		 * which case we'll have missed the might_sleep() from
		 * down_read():
		 */
		might_sleep();
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	}

	vma = find_vma(mm, address);
	if (!vma)
		goto bad_area;
	if (vma->vm_start <= address)
		goto good_area;
	if (!(vma->vm_flags & VM_GROWSDOWN))
		goto bad_area;

	/*
	 * N.B. The POWER/Open ABI allows programs to access up to
	 * 288 bytes below the stack pointer.
	 * The kernel signal delivery code writes up to about 1.5kB
	 * below the stack pointer (r1) before decrementing it.
	 * The exec code can write slightly over 640kB to the stack
	 * before setting the user r1.  Thus we allow the stack to
	 * expand to 1MB without further checks.
	 */
	if (address + 0x100000 < vma->vm_end) {
		/* get user regs even if this fault is in kernel mode */
		struct pt_regs *uregs = current->thread.regs;
		if (uregs == NULL)
			goto bad_area;

		/*
		 * A user-mode access to an address a long way below
		 * the stack pointer is only valid if the instruction
		 * is one which would update the stack pointer to the
		 * address accessed if the instruction completed,
		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
		 * (or the byte, halfword, float or double forms).
		 *
		 * If we don't check this then any write to the area
		 * between the last mapped region and the stack will
		 * expand the stack rather than segfaulting.
		 */
362
		if (address + 2048 < uregs->gpr[1] && !store_update_sp)
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
			goto bad_area;
	}
	if (expand_stack(vma, address))
		goto bad_area;

good_area:
	code = SEGV_ACCERR;
#if defined(CONFIG_6xx)
	if (error_code & 0x95700000)
		/* an error such as lwarx to I/O controller space,
		   address matching DABR, eciwx, etc. */
		goto bad_area;
#endif /* CONFIG_6xx */
#if defined(CONFIG_8xx)
        /* The MPC8xx seems to always set 0x80000000, which is
         * "undefined".  Of those that can be set, this is the only
         * one which seems bad.
         */
	if (error_code & 0x10000000)
                /* Guarded storage error. */
		goto bad_area;
#endif /* CONFIG_8xx */

	if (is_exec) {
387 388 389
		/*
		 * Allow execution from readable areas if the MMU does not
		 * provide separate controls over reading and executing.
390 391 392 393 394 395
		 *
		 * Note: That code used to not be enabled for 4xx/BookE.
		 * It is now as I/D cache coherency for these is done at
		 * set_pte_at() time and I see no reason why the test
		 * below wouldn't be valid on those processors. This -may-
		 * break programs compiled with a really old ABI though.
396 397 398 399
		 */
		if (!(vma->vm_flags & VM_EXEC) &&
		    (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
		     !(vma->vm_flags & (VM_READ | VM_WRITE))))
400 401 402 403 404
			goto bad_area;
	/* a write */
	} else if (is_write) {
		if (!(vma->vm_flags & VM_WRITE))
			goto bad_area;
405
		flags |= FAULT_FLAG_WRITE;
406 407
	/* a read */
	} else {
408
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
409 410
			goto bad_area;
	}
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
#ifdef CONFIG_PPC_STD_MMU
	/*
	 * For hash translation mode, we should never get a
	 * PROTFAULT. Any update to pte to reduce access will result in us
	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
	 * fault instead of DSISR_PROTFAULT.
	 *
	 * A pte update to relax the access will not result in a hash page table
	 * entry invalidate and hence can result in DSISR_PROTFAULT.
	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
	 * the special !is_write in the below conditional.
	 *
	 * For platforms that doesn't supports coherent icache and do support
	 * per page noexec bit, we do setup things such that we do the
	 * sync between D/I cache via fault. But that is handled via low level
	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
	 * here in such case.
	 *
	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
	 * check should handle those and hence we should fall to the bad_area
	 * handling correctly.
	 *
	 * For embedded with per page exec support that doesn't support coherent
	 * icache we do get PROTFAULT and we handle that D/I cache sync in
	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
	 * is conditional for server MMU.
	 *
	 * For radix, we can get prot fault for autonuma case, because radix
	 * page table will have them marked noaccess for user.
	 */
	if (!radix_enabled() && !is_write)
		WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
#endif /* CONFIG_PPC_STD_MMU */
444 445 446 447 448 449

	/*
	 * If for any reason at all we couldn't handle the fault,
	 * make sure we exit gracefully rather than endlessly redo
	 * the fault.
	 */
450
	fault = handle_mm_fault(vma, address, flags);
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

	/*
	 * Handle the retry right now, the mmap_sem has been released in that
	 * case.
	 */
	if (unlikely(fault & VM_FAULT_RETRY)) {
		/* We retry only once */
		if (flags & FAULT_FLAG_ALLOW_RETRY) {
			/*
			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
			 * of starvation.
			 */
			flags &= ~FAULT_FLAG_ALLOW_RETRY;
			flags |= FAULT_FLAG_TRIED;
			if (!fatal_signal_pending(current))
				goto retry;
		}
		/* We will enter mm_fault_error() below */
469 470
	} else
		up_read(&current->mm->mmap_sem);
471

472
	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
473
		if (fault & VM_FAULT_SIGSEGV)
474
			goto bad_area_nosemaphore;
475
		rc = mm_fault_error(regs, address, fault);
476
		if (rc >= MM_FAULT_RETURN)
477 478 479
			goto bail;
		else
			rc = 0;
480
	}
481 482

	/*
483
	 * Major/minor page fault accounting.
484
	 */
485 486 487 488
	if (fault & VM_FAULT_MAJOR) {
		current->maj_flt++;
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
			      regs, address);
489
#ifdef CONFIG_PPC_SMLPAR
490 491 492 493 494 495 496 497
		if (firmware_has_feature(FW_FEATURE_CMO)) {
			u32 page_ins;

			preempt_disable();
			page_ins = be32_to_cpu(get_lppaca()->page_ins);
			page_ins += 1 << PAGE_FACTOR;
			get_lppaca()->page_ins = cpu_to_be32(page_ins);
			preempt_enable();
498
		}
499 500 501 502 503
#endif /* CONFIG_PPC_SMLPAR */
	} else {
		current->min_flt++;
		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
			      regs, address);
504
	}
505

506
	goto bail;
507 508 509 510 511 512

bad_area:
	up_read(&mm->mmap_sem);

bad_area_nosemaphore:
	/* User mode accesses cause a SIGSEGV */
513
	if (is_user) {
514
		_exception(SIGSEGV, regs, code, address);
515
		goto bail;
516 517
	}

518 519 520
	if (is_exec && (error_code & DSISR_PROTFAULT))
		printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
				   " page (%lx) - exploit attempt? (uid: %d)\n",
521
				   address, from_kuid(&init_user_ns, current_uid()));
522

523 524 525 526 527
	rc = SIGSEGV;

bail:
	exception_exit(prev_state);
	return rc;
528
}
529
NOKPROBE_SYMBOL(do_page_fault);
530 531 532 533 534 535 536 537 538 539 540 541

/*
 * bad_page_fault is called when we have a bad access from the kernel.
 * It is called from the DSI and ISI handlers in head.S and from some
 * of the procedures in traps.c.
 */
void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
{
	const struct exception_table_entry *entry;

	/* Are we prepared to handle this fault?  */
	if ((entry = search_exception_tables(regs->nip)) != NULL) {
542
		regs->nip = extable_fixup(entry);
543 544 545 546
		return;
	}

	/* kernel has accessed a bad area */
547 548

	switch (regs->trap) {
549 550 551 552 553 554 555 556 557 558
	case 0x300:
	case 0x380:
		printk(KERN_ALERT "Unable to handle kernel paging request for "
			"data at address 0x%08lx\n", regs->dar);
		break;
	case 0x400:
	case 0x480:
		printk(KERN_ALERT "Unable to handle kernel paging request for "
			"instruction fetch\n");
		break;
559 560 561 562
	case 0x600:
		printk(KERN_ALERT "Unable to handle kernel paging request for "
			"unaligned access at address 0x%08lx\n", regs->dar);
		break;
563 564 565 566
	default:
		printk(KERN_ALERT "Unable to handle kernel paging request for "
			"unknown fault\n");
		break;
567 568 569 570
	}
	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
		regs->nip);

571
	if (task_stack_end_corrupted(current))
572 573
		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");

574 575
	die("Kernel access of bad area", regs, sig);
}