dma-mapping.c 17.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  linux/arch/arm/mm/dma-mapping.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
#include <linux/module.h>
#include <linux/mm.h>
14
#include <linux/gfp.h>
L
Linus Torvalds 已提交
15 16 17 18 19
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
20
#include <linux/highmem.h>
21
#include <linux/slab.h>
L
Linus Torvalds 已提交
22

23
#include <asm/memory.h>
24
#include <asm/highmem.h>
L
Linus Torvalds 已提交
25 26
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
27
#include <asm/sizes.h>
28
#include <asm/mach/arch.h>
29

30 31
#include "mm.h"

32 33
static u64 get_coherent_dma_mask(struct device *dev)
{
34
	u64 mask = (u64)arm_dma_limit;
35 36 37 38 39 40 41 42 43 44 45 46 47

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

48
		if ((~mask) & (u64)arm_dma_limit) {
49 50
			dev_warn(dev, "coherent DMA mask %#llx is smaller "
				 "than system GFP_DMA mask %#llx\n",
51
				 mask, (u64)arm_dma_limit);
52 53 54
			return 0;
		}
	}
L
Linus Torvalds 已提交
55

56 57 58
	return mask;
}

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;
	void *ptr;
	u64 mask = get_coherent_dma_mask(dev);

#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
	ptr = page_address(page);
	memset(ptr, 0, size);
	dmac_flush_range(ptr, ptr + size);
	outer_flush_range(__pa(ptr), __pa(ptr) + size);

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

121
#ifdef CONFIG_MMU
122

123 124 125

#define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PGDIR_SHIFT)
126

L
Linus Torvalds 已提交
127
/*
128
 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
L
Linus Torvalds 已提交
129
 */
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
static pte_t **consistent_pte;

#define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M

unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;

void __init init_consistent_dma_size(unsigned long size)
{
	unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);

	BUG_ON(consistent_pte); /* Check we're called before DMA region init */
	BUG_ON(base < VMALLOC_END);

	/* Grow region to accommodate specified size  */
	if (base < consistent_base)
		consistent_base = base;
}
L
Linus Torvalds 已提交
147

148
#include "vmregion.h"
L
Linus Torvalds 已提交
149

150 151
static struct arm_vmregion_head consistent_head = {
	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
L
Linus Torvalds 已提交
152 153 154 155 156 157 158 159
	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
	.vm_end		= CONSISTENT_END,
};

#ifdef CONFIG_HUGETLB_PAGE
#error ARM Coherent DMA allocator does not (yet) support huge TLB
#endif

160 161 162 163 164 165 166
/*
 * Initialise the consistent memory allocation.
 */
static int __init consistent_init(void)
{
	int ret = 0;
	pgd_t *pgd;
R
Russell King 已提交
167
	pud_t *pud;
168 169 170
	pmd_t *pmd;
	pte_t *pte;
	int i = 0;
171 172 173 174 175 176 177 178 179 180 181
	unsigned long base = consistent_base;
	unsigned long num_ptes = (CONSISTENT_END - base) >> PGDIR_SHIFT;

	consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
	if (!consistent_pte) {
		pr_err("%s: no memory\n", __func__);
		return -ENOMEM;
	}

	pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
	consistent_head.vm_start = base;
182 183 184

	do {
		pgd = pgd_offset(&init_mm, base);
R
Russell King 已提交
185 186 187 188 189 190 191 192 193

		pud = pud_alloc(&init_mm, pgd, base);
		if (!pud) {
			printk(KERN_ERR "%s: no pud tables\n", __func__);
			ret = -ENOMEM;
			break;
		}

		pmd = pmd_alloc(&init_mm, pud, base);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
		if (!pmd) {
			printk(KERN_ERR "%s: no pmd tables\n", __func__);
			ret = -ENOMEM;
			break;
		}
		WARN_ON(!pmd_none(*pmd));

		pte = pte_alloc_kernel(pmd, base);
		if (!pte) {
			printk(KERN_ERR "%s: no pte tables\n", __func__);
			ret = -ENOMEM;
			break;
		}

		consistent_pte[i++] = pte;
		base += (1 << PGDIR_SHIFT);
	} while (base < CONSISTENT_END);

	return ret;
}

core_initcall(consistent_init);

L
Linus Torvalds 已提交
217
static void *
218
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
L
Linus Torvalds 已提交
219
{
220
	struct arm_vmregion *c;
221 222
	size_t align;
	int bit;
L
Linus Torvalds 已提交
223

224
	if (!consistent_pte) {
225 226 227 228 229
		printk(KERN_ERR "%s: not initialised\n", __func__);
		dump_stack();
		return NULL;
	}

230 231 232 233 234 235
	/*
	 * Align the virtual region allocation - maximum alignment is
	 * a section size, minimum is a page size.  This helps reduce
	 * fragmentation of the DMA space, and also prevents allocations
	 * smaller than a section from crossing a section boundary.
	 */
236
	bit = fls(size - 1);
237 238 239 240
	if (bit > SECTION_SHIFT)
		bit = SECTION_SHIFT;
	align = 1 << bit;

L
Linus Torvalds 已提交
241 242 243
	/*
	 * Allocate a virtual address in the consistent mapping region.
	 */
244
	c = arm_vmregion_alloc(&consistent_head, align, size,
L
Linus Torvalds 已提交
245 246
			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
	if (c) {
247 248 249
		pte_t *pte;
		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
L
Linus Torvalds 已提交
250

251
		pte = consistent_pte[idx] + off;
L
Linus Torvalds 已提交
252 253 254 255 256
		c->vm_pages = page;

		do {
			BUG_ON(!pte_none(*pte));

R
Russell King 已提交
257
			set_pte_ext(pte, mk_pte(page, prot), 0);
L
Linus Torvalds 已提交
258 259
			page++;
			pte++;
260 261 262 263 264
			off++;
			if (off >= PTRS_PER_PTE) {
				off = 0;
				pte = consistent_pte[++idx];
			}
L
Linus Torvalds 已提交
265 266
		} while (size -= PAGE_SIZE);

267 268
		dsb();

L
Linus Torvalds 已提交
269 270 271 272
		return (void *)c->vm_start;
	}
	return NULL;
}
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

static void __dma_free_remap(void *cpu_addr, size_t size)
{
	struct arm_vmregion *c;
	unsigned long addr;
	pte_t *ptep;
	int idx;
	u32 off;

	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
	if (!c) {
		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
		       __func__, cpu_addr);
		dump_stack();
		return;
	}

	if ((c->vm_end - c->vm_start) != size) {
		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
		       __func__, c->vm_end - c->vm_start, size);
		dump_stack();
		size = c->vm_end - c->vm_start;
	}

	idx = CONSISTENT_PTE_INDEX(c->vm_start);
	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
	ptep = consistent_pte[idx] + off;
	addr = c->vm_start;
	do {
		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);

		ptep++;
		addr += PAGE_SIZE;
		off++;
		if (off >= PTRS_PER_PTE) {
			off = 0;
			ptep = consistent_pte[++idx];
		}

312 313 314
		if (pte_none(pte) || !pte_present(pte))
			printk(KERN_CRIT "%s: bad page in kernel page table\n",
			       __func__);
315 316 317 318 319 320 321
	} while (size -= PAGE_SIZE);

	flush_tlb_kernel_range(c->vm_start, c->vm_end);

	arm_vmregion_free(&consistent_head, c);
}

322
#else	/* !CONFIG_MMU */
323

324 325 326 327 328
#define __dma_alloc_remap(page, size, gfp, prot)	page_address(page)
#define __dma_free_remap(addr, size)			do { } while (0)

#endif	/* CONFIG_MMU */

329 330 331 332
static void *
__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
	    pgprot_t prot)
{
333
	struct page *page;
334
	void *addr;
335

336 337
	*handle = ~0;
	size = PAGE_ALIGN(size);
338

339 340 341
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;
342

343 344 345 346
	if (!arch_is_coherent())
		addr = __dma_alloc_remap(page, size, gfp, prot);
	else
		addr = page_address(page);
347

348
	if (addr)
349
		*handle = pfn_to_dma(dev, page_to_pfn(page));
350 351
	else
		__dma_free_buffer(page, size);
352

353 354
	return addr;
}
L
Linus Torvalds 已提交
355 356 357 358 359 360

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
void *
A
Al Viro 已提交
361
dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
L
Linus Torvalds 已提交
362
{
363 364 365 366 367
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

L
Linus Torvalds 已提交
368
	return __dma_alloc(dev, size, handle, gfp,
369
			   pgprot_dmacoherent(pgprot_kernel));
L
Linus Torvalds 已提交
370 371 372 373 374 375 376 377
}
EXPORT_SYMBOL(dma_alloc_coherent);

/*
 * Allocate a writecombining region, in much the same way as
 * dma_alloc_coherent above.
 */
void *
A
Al Viro 已提交
378
dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
L
Linus Torvalds 已提交
379 380 381 382 383 384 385 386 387
{
	return __dma_alloc(dev, size, handle, gfp,
			   pgprot_writecombine(pgprot_kernel));
}
EXPORT_SYMBOL(dma_alloc_writecombine);

static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
388 389
	int ret = -ENXIO;
#ifdef CONFIG_MMU
390 391
	unsigned long user_size, kern_size;
	struct arm_vmregion *c;
L
Linus Torvalds 已提交
392 393 394

	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;

395
	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
L
Linus Torvalds 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408
	if (c) {
		unsigned long off = vma->vm_pgoff;

		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;

		if (off < kern_size &&
		    user_size <= (kern_size - off)) {
			ret = remap_pfn_range(vma, vma->vm_start,
					      page_to_pfn(c->vm_pages) + off,
					      user_size << PAGE_SHIFT,
					      vma->vm_page_prot);
		}
	}
409
#endif	/* CONFIG_MMU */
L
Linus Torvalds 已提交
410 411 412 413 414 415 416

	return ret;
}

int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
417
	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
L
Linus Torvalds 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431
	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
}
EXPORT_SYMBOL(dma_mmap_coherent);

int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
}
EXPORT_SYMBOL(dma_mmap_writecombine);

/*
 * free a page as defined by the above mapping.
432
 * Must not be called with IRQs disabled.
L
Linus Torvalds 已提交
433 434 435
 */
void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
{
436 437
	WARN_ON(irqs_disabled());

438 439 440
	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
		return;

441 442
	size = PAGE_ALIGN(size);

443 444
	if (!arch_is_coherent())
		__dma_free_remap(cpu_addr, size);
445

446
	__dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
L
Linus Torvalds 已提交
447 448 449 450 451
}
EXPORT_SYMBOL(dma_free_coherent);

/*
 * Make an area consistent for devices.
452 453 454
 * Note: Drivers should NOT use this function directly, as it will break
 * platforms with CONFIG_DMABOUNCE.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
L
Linus Torvalds 已提交
455
 */
456 457 458
void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
	enum dma_data_direction dir)
{
459 460
	unsigned long paddr;

461 462 463
	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));

	dmac_map_area(kaddr, size, dir);
464 465 466 467 468 469 470 471

	paddr = __pa(kaddr);
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
472 473 474 475 476 477
}
EXPORT_SYMBOL(___dma_single_cpu_to_dev);

void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
	enum dma_data_direction dir)
{
478 479
	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));

480 481 482 483 484 485 486
	/* FIXME: non-speculating: not required */
	/* don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE) {
		unsigned long paddr = __pa(kaddr);
		outer_inv_range(paddr, paddr + size);
	}

487
	dmac_unmap_area(kaddr, size, dir);
488 489
}
EXPORT_SYMBOL(___dma_single_dev_to_cpu);
490

491
static void dma_cache_maint_page(struct page *page, unsigned long offset,
492 493
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
494 495 496 497 498 499 500 501 502 503
{
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	size_t left = size;
	do {
		size_t len = left;
504 505 506 507 508 509 510 511 512 513 514 515 516
		void *vaddr;

		if (PageHighMem(page)) {
			if (len + offset > PAGE_SIZE) {
				if (offset >= PAGE_SIZE) {
					page += offset / PAGE_SIZE;
					offset %= PAGE_SIZE;
				}
				len = PAGE_SIZE - offset;
			}
			vaddr = kmap_high_get(page);
			if (vaddr) {
				vaddr += offset;
517
				op(vaddr, len, dir);
518
				kunmap_high(page);
519
			} else if (cache_is_vipt()) {
520 521
				/* unmapped pages might still be cached */
				vaddr = kmap_atomic(page);
522
				op(vaddr + offset, len, dir);
523
				kunmap_atomic(vaddr);
524
			}
525 526
		} else {
			vaddr = page_address(page) + offset;
527
			op(vaddr, len, dir);
528 529 530 531 532 533
		}
		offset = 0;
		page++;
		left -= len;
	} while (left);
}
534 535 536 537

void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
	size_t size, enum dma_data_direction dir)
{
538 539
	unsigned long paddr;

540
	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
541 542

	paddr = page_to_phys(page) + off;
543 544 545 546 547 548
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
549 550 551 552 553 554
}
EXPORT_SYMBOL(___dma_page_cpu_to_dev);

void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
	size_t size, enum dma_data_direction dir)
{
555 556 557 558 559 560 561
	unsigned long paddr = page_to_phys(page) + off;

	/* FIXME: non-speculating: not required */
	/* don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE)
		outer_inv_range(paddr, paddr + size);

562
	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
563 564 565 566 567 568

	/*
	 * Mark the D-cache clean for this page to avoid extra flushing.
	 */
	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
		set_bit(PG_dcache_clean, &page->flags);
569 570
}
EXPORT_SYMBOL(___dma_page_dev_to_cpu);
571

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
/**
 * dma_map_sg - map a set of SG buffers for streaming mode DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir)
{
	struct scatterlist *s;
592
	int i, j;
593

594 595
	BUG_ON(!valid_dma_direction(dir));

596
	for_each_sg(sg, s, nents, i) {
597
		s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
598 599 600
						s->length, dir);
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
601
	}
602
	debug_dma_map_sg(dev, sg, nents, nents, dir);
603
	return nents;
604 605 606

 bad_mapping:
	for_each_sg(sg, s, i, j)
607
		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
608
	return 0;
609 610 611 612 613 614 615
}
EXPORT_SYMBOL(dma_map_sg);

/**
 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
616
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
617 618 619 620 621 622 623 624
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir)
{
625 626 627
	struct scatterlist *s;
	int i;

628 629
	debug_dma_unmap_sg(dev, sg, nents, dir);

630
	for_each_sg(sg, s, nents, i)
631
		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
}
EXPORT_SYMBOL(dma_unmap_sg);

/**
 * dma_sync_sg_for_cpu
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
649 650 651 652 653 654
		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
					    sg_dma_len(s), dir))
			continue;

		__dma_page_dev_to_cpu(sg_page(s), s->offset,
				      s->length, dir);
655
	}
656 657

	debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
}
EXPORT_SYMBOL(dma_sync_sg_for_cpu);

/**
 * dma_sync_sg_for_device
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
675 676 677 678
		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
					sg_dma_len(s), dir))
			continue;

679 680
		__dma_page_cpu_to_dev(sg_page(s), s->offset,
				      s->length, dir);
681
	}
682 683

	debug_dma_sync_sg_for_device(dev, sg, nents, dir);
684 685
}
EXPORT_SYMBOL(dma_sync_sg_for_device);
686

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask
 * to this function.
 */
int dma_supported(struct device *dev, u64 mask)
{
	if (mask < (u64)arm_dma_limit)
		return 0;
	return 1;
}
EXPORT_SYMBOL(dma_supported);

int dma_set_mask(struct device *dev, u64 dma_mask)
{
	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
		return -EIO;

#ifndef CONFIG_DMABOUNCE
	*dev->dma_mask = dma_mask;
#endif

	return 0;
}
EXPORT_SYMBOL(dma_set_mask);

714 715 716 717 718 719 720 721
#define PREALLOC_DMA_DEBUG_ENTRIES	4096

static int __init dma_debug_do_init(void)
{
	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
	return 0;
}
fs_initcall(dma_debug_do_init);