rcar_du_crtc.c 19.0 KB
Newer Older
1 2 3
/*
 * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
 *
4
 * Copyright (C) 2013-2014 Renesas Electronics Corporation
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/clk.h>
#include <linux/mutex.h>

#include <drm/drmP.h>
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_gem_cma_helper.h>
22
#include <drm/drm_plane_helper.h>
23 24 25 26 27 28 29 30 31

#include "rcar_du_crtc.h"
#include "rcar_du_drv.h"
#include "rcar_du_kms.h"
#include "rcar_du_plane.h"
#include "rcar_du_regs.h"

static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
{
32
	struct rcar_du_device *rcdu = rcrtc->group->dev;
33 34 35 36 37 38

	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
}

static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
{
39
	struct rcar_du_device *rcdu = rcrtc->group->dev;
40 41 42 43 44 45

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
}

static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
{
46
	struct rcar_du_device *rcdu = rcrtc->group->dev;
47 48 49 50 51 52 53

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
}

static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
{
54
	struct rcar_du_device *rcdu = rcrtc->group->dev;
55 56 57 58 59 60 61 62

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
}

static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
				 u32 clr, u32 set)
{
63
	struct rcar_du_device *rcdu = rcrtc->group->dev;
64 65 66 67 68
	u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
}

69 70 71 72 73 74 75 76
static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
{
	int ret;

	ret = clk_prepare_enable(rcrtc->clock);
	if (ret < 0)
		return ret;

77 78 79 80
	ret = clk_prepare_enable(rcrtc->extclock);
	if (ret < 0)
		goto error_clock;

81
	ret = rcar_du_group_get(rcrtc->group);
82
	if (ret < 0)
83 84 85
		goto error_group;

	return 0;
86

87 88 89 90
error_group:
	clk_disable_unprepare(rcrtc->extclock);
error_clock:
	clk_disable_unprepare(rcrtc->clock);
91 92 93 94 95
	return ret;
}

static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
{
96
	rcar_du_group_put(rcrtc->group);
97 98

	clk_disable_unprepare(rcrtc->extclock);
99 100 101
	clk_disable_unprepare(rcrtc->clock);
}

102 103 104 105
/* -----------------------------------------------------------------------------
 * Hardware Setup
 */

106 107
static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
{
108
	const struct drm_display_mode *mode = &rcrtc->crtc.mode;
109
	unsigned long mode_clock = mode->clock * 1000;
110 111
	unsigned long clk;
	u32 value;
112
	u32 escr;
113 114
	u32 div;

115 116 117
	/* Compute the clock divisor and select the internal or external dot
	 * clock based on the requested frequency.
	 */
118
	clk = clk_get_rate(rcrtc->clock);
119
	div = DIV_ROUND_CLOSEST(clk, mode_clock);
120
	div = clamp(div, 1U, 64U) - 1;
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
	escr = div | ESCR_DCLKSEL_CLKS;

	if (rcrtc->extclock) {
		unsigned long extclk;
		unsigned long extrate;
		unsigned long rate;
		u32 extdiv;

		extclk = clk_get_rate(rcrtc->extclock);
		extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock);
		extdiv = clamp(extdiv, 1U, 64U) - 1;

		rate = clk / (div + 1);
		extrate = extclk / (extdiv + 1);

		if (abs((long)extrate - (long)mode_clock) <
		    abs((long)rate - (long)mode_clock)) {
			dev_dbg(rcrtc->group->dev->dev,
				"crtc%u: using external clock\n", rcrtc->index);
			escr = extdiv | ESCR_DCLKSEL_DCLKIN;
		}
	}
143

144
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
145
			    escr);
146
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
147 148 149 150

	/* Signal polarities */
	value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? 0 : DSMR_VSL)
	      | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? 0 : DSMR_HSL)
151
	      | DSMR_DIPM_DE | DSMR_CSPM;
152 153 154 155 156 157 158 159 160 161
	rcar_du_crtc_write(rcrtc, DSMR, value);

	/* Display timings */
	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
					mode->hdisplay - 19);
	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
					mode->hsync_start - 1);
	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);

162 163 164 165 166 167 168 169 170
	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
					mode->crtc_vsync_end - 2);
	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vdisplay - 2);
	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vsync_start - 1);
	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
171 172 173 174 175

	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start);
	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
}

176 177
void rcar_du_crtc_route_output(struct drm_crtc *crtc,
			       enum rcar_du_output output)
178 179
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
180
	struct rcar_du_device *rcdu = rcrtc->group->dev;
181 182 183 184

	/* Store the route from the CRTC output to the DU output. The DU will be
	 * configured when starting the CRTC.
	 */
185
	rcrtc->outputs |= BIT(output);
186

187 188 189 190
	/* Store RGB routing to DPAD0, the hardware will be configured when
	 * starting the CRTC.
	 */
	if (output == RCAR_DU_OUTPUT_DPAD0)
191
		rcdu->dpad0_source = rcrtc->index;
192 193 194 195 196 197 198 199 200 201 202 203
}

void rcar_du_crtc_update_planes(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
	unsigned int num_planes = 0;
	unsigned int prio = 0;
	unsigned int i;
	u32 dptsr = 0;
	u32 dspr = 0;

204 205
	for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
		struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
		unsigned int j;

		if (plane->crtc != &rcrtc->crtc || !plane->enabled)
			continue;

		/* Insert the plane in the sorted planes array. */
		for (j = num_planes++; j > 0; --j) {
			if (planes[j-1]->zpos <= plane->zpos)
				break;
			planes[j] = planes[j-1];
		}

		planes[j] = plane;
		prio += plane->format->planes * 4;
	}

	for (i = 0; i < num_planes; ++i) {
		struct rcar_du_plane *plane = planes[i];
		unsigned int index = plane->hwindex;

		prio -= 4;
		dspr |= (index + 1) << prio;
		dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);

		if (plane->format->planes == 2) {
			index = (index + 1) % 8;

			prio -= 4;
			dspr |= (index + 1) << prio;
			dptsr |= DPTSR_PnDK(index) |  DPTSR_PnTS(index);
		}
	}

	/* Select display timing and dot clock generator 2 for planes associated
	 * with superposition controller 2.
	 */
242 243
	if (rcrtc->index % 2) {
		u32 value = rcar_du_group_read(rcrtc->group, DPTSR);
244 245 246 247 248 249 250 251 252

		/* The DPTSR register is updated when the display controller is
		 * stopped. We thus need to restart the DU. Once again, sorry
		 * for the flicker. One way to mitigate the issue would be to
		 * pre-associate planes with CRTCs (either with a fixed 4/4
		 * split, or through a module parameter). Flicker would then
		 * occur only if we need to break the pre-association.
		 */
		if (value != dptsr) {
253
			rcar_du_group_write(rcrtc->group, DPTSR, dptsr);
254 255
			if (rcrtc->group->used_crtcs)
				rcar_du_group_restart(rcrtc->group);
256 257 258
		}
	}

259 260
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
			    dspr);
261 262
}

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
/* -----------------------------------------------------------------------------
 * Page Flip
 */

void rcar_du_crtc_cancel_page_flip(struct rcar_du_crtc *rcrtc,
				   struct drm_file *file)
{
	struct drm_pending_vblank_event *event;
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;

	/* Destroy the pending vertical blanking event associated with the
	 * pending page flip, if any, and disable vertical blanking interrupts.
	 */
	spin_lock_irqsave(&dev->event_lock, flags);
	event = rcrtc->event;
	if (event && event->base.file_priv == file) {
		rcrtc->event = NULL;
		event->base.destroy(&event->base);
282
		drm_crtc_vblank_put(&rcrtc->crtc);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	}
	spin_unlock_irqrestore(&dev->event_lock, flags);
}

static void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
{
	struct drm_pending_vblank_event *event;
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	event = rcrtc->event;
	rcrtc->event = NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	if (event == NULL)
		return;

	spin_lock_irqsave(&dev->event_lock, flags);
	drm_send_vblank_event(dev, rcrtc->index, event);
303
	wake_up(&rcrtc->flip_wait);
304 305
	spin_unlock_irqrestore(&dev->event_lock, flags);

306
	drm_crtc_vblank_put(&rcrtc->crtc);
307 308
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
{
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;
	bool pending;

	spin_lock_irqsave(&dev->event_lock, flags);
	pending = rcrtc->event != NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	return pending;
}

static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_device *rcdu = rcrtc->group->dev;

	if (wait_event_timeout(rcrtc->flip_wait,
			       !rcar_du_crtc_page_flip_pending(rcrtc),
			       msecs_to_jiffies(50)))
		return;

	dev_warn(rcdu->dev, "page flip timeout\n");

	rcar_du_crtc_finish_page_flip(rcrtc);
}

336 337 338 339
/* -----------------------------------------------------------------------------
 * Start/Stop and Suspend/Resume
 */

340 341 342
static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
{
	struct drm_crtc *crtc = &rcrtc->crtc;
343
	bool interlaced;
344 345 346 347 348 349 350 351 352 353 354 355 356 357
	unsigned int i;

	if (rcrtc->started)
		return;

	if (WARN_ON(rcrtc->plane->format == NULL))
		return;

	/* Set display off and background to black */
	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));

	/* Configure display timings and output routing */
	rcar_du_crtc_set_display_timing(rcrtc);
358
	rcar_du_group_set_routing(rcrtc->group);
359

360
	mutex_lock(&rcrtc->group->planes.lock);
361 362
	rcrtc->plane->enabled = true;
	rcar_du_crtc_update_planes(crtc);
363
	mutex_unlock(&rcrtc->group->planes.lock);
364 365

	/* Setup planes. */
366 367
	for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
		struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
368 369 370 371 372 373 374 375 376 377 378

		if (plane->crtc != crtc || !plane->enabled)
			continue;

		rcar_du_plane_setup(plane);
	}

	/* Select master sync mode. This enables display operation in master
	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
	 * actively driven).
	 */
379 380 381 382
	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
	rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
			     (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
			     DSYSR_TVM_MASTER);
383

384
	rcar_du_group_start_stop(rcrtc->group, true);
385

386 387 388
	/* Turn vertical blanking interrupt reporting back on. */
	drm_crtc_vblank_on(crtc);

389 390 391 392 393 394 395 396 397 398
	rcrtc->started = true;
}

static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
{
	struct drm_crtc *crtc = &rcrtc->crtc;

	if (!rcrtc->started)
		return;

399 400 401
	/* Disable vertical blanking interrupt reporting. We first need to wait
	 * for page flip completion before stopping the CRTC as userspace
	 * expects page flips to eventually complete.
402 403
	 */
	rcar_du_crtc_wait_page_flip(rcrtc);
404
	drm_crtc_vblank_off(crtc);
405

406
	mutex_lock(&rcrtc->group->planes.lock);
407 408
	rcrtc->plane->enabled = false;
	rcar_du_crtc_update_planes(crtc);
409
	mutex_unlock(&rcrtc->group->planes.lock);
410 411 412 413 414 415

	/* Select switch sync mode. This stops display operation and configures
	 * the HSYNC and VSYNC signals as inputs.
	 */
	rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);

416
	rcar_du_group_start_stop(rcrtc->group, false);
417 418 419 420 421 422 423

	rcrtc->started = false;
}

void rcar_du_crtc_suspend(struct rcar_du_crtc *rcrtc)
{
	rcar_du_crtc_stop(rcrtc);
424
	rcar_du_crtc_put(rcrtc);
425 426 427 428 429 430 431
}

void rcar_du_crtc_resume(struct rcar_du_crtc *rcrtc)
{
	if (rcrtc->dpms != DRM_MODE_DPMS_ON)
		return;

432
	rcar_du_crtc_get(rcrtc);
433 434 435 436 437 438 439
	rcar_du_crtc_start(rcrtc);
}

static void rcar_du_crtc_update_base(struct rcar_du_crtc *rcrtc)
{
	struct drm_crtc *crtc = &rcrtc->crtc;

440
	rcar_du_plane_compute_base(rcrtc->plane, crtc->primary->fb);
441 442 443
	rcar_du_plane_update_base(rcrtc->plane);
}

444 445 446 447
/* -----------------------------------------------------------------------------
 * CRTC Functions
 */

448 449 450 451
static void rcar_du_crtc_dpms(struct drm_crtc *crtc, int mode)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

452 453 454
	if (mode != DRM_MODE_DPMS_ON)
		mode = DRM_MODE_DPMS_OFF;

455 456 457 458
	if (rcrtc->dpms == mode)
		return;

	if (mode == DRM_MODE_DPMS_ON) {
459
		rcar_du_crtc_get(rcrtc);
460 461 462
		rcar_du_crtc_start(rcrtc);
	} else {
		rcar_du_crtc_stop(rcrtc);
463
		rcar_du_crtc_put(rcrtc);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	}

	rcrtc->dpms = mode;
}

static bool rcar_du_crtc_mode_fixup(struct drm_crtc *crtc,
				    const struct drm_display_mode *mode,
				    struct drm_display_mode *adjusted_mode)
{
	/* TODO Fixup modes */
	return true;
}

static void rcar_du_crtc_mode_prepare(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	/* We need to access the hardware during mode set, acquire a reference
482
	 * to the CRTC.
483
	 */
484
	rcar_du_crtc_get(rcrtc);
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501

	/* Stop the CRTC and release the plane. Force the DPMS mode to off as a
	 * result.
	 */
	rcar_du_crtc_stop(rcrtc);
	rcar_du_plane_release(rcrtc->plane);

	rcrtc->dpms = DRM_MODE_DPMS_OFF;
}

static int rcar_du_crtc_mode_set(struct drm_crtc *crtc,
				 struct drm_display_mode *mode,
				 struct drm_display_mode *adjusted_mode,
				 int x, int y,
				 struct drm_framebuffer *old_fb)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
502
	struct rcar_du_device *rcdu = rcrtc->group->dev;
503 504 505
	const struct rcar_du_format_info *format;
	int ret;

506
	format = rcar_du_format_info(crtc->primary->fb->pixel_format);
507 508
	if (format == NULL) {
		dev_dbg(rcdu->dev, "mode_set: unsupported format %08x\n",
509
			crtc->primary->fb->pixel_format);
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
		ret = -EINVAL;
		goto error;
	}

	ret = rcar_du_plane_reserve(rcrtc->plane, format);
	if (ret < 0)
		goto error;

	rcrtc->plane->format = format;

	rcrtc->plane->src_x = x;
	rcrtc->plane->src_y = y;
	rcrtc->plane->width = mode->hdisplay;
	rcrtc->plane->height = mode->vdisplay;

525
	rcar_du_plane_compute_base(rcrtc->plane, crtc->primary->fb);
526 527 528 529 530 531 532

	rcrtc->outputs = 0;

	return 0;

error:
	/* There's no rollback/abort operation to clean up in case of error. We
533
	 * thus need to release the reference to the CRTC acquired in prepare()
534 535
	 * here.
	 */
536
	rcar_du_crtc_put(rcrtc);
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	return ret;
}

static void rcar_du_crtc_mode_commit(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	/* We're done, restart the CRTC and set the DPMS mode to on. The
	 * reference to the DU acquired at prepare() time will thus be released
	 * by the DPMS handler (possibly called by the disable() handler).
	 */
	rcar_du_crtc_start(rcrtc);
	rcrtc->dpms = DRM_MODE_DPMS_ON;
}

static int rcar_du_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
				      struct drm_framebuffer *old_fb)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcrtc->plane->src_x = x;
	rcrtc->plane->src_y = y;

560
	rcar_du_crtc_update_base(rcrtc);
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

	return 0;
}

static void rcar_du_crtc_disable(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
	rcar_du_plane_release(rcrtc->plane);
}

static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
	.dpms = rcar_du_crtc_dpms,
	.mode_fixup = rcar_du_crtc_mode_fixup,
	.prepare = rcar_du_crtc_mode_prepare,
	.commit = rcar_du_crtc_mode_commit,
	.mode_set = rcar_du_crtc_mode_set,
	.mode_set_base = rcar_du_crtc_mode_set_base,
	.disable = rcar_du_crtc_disable,
};

static int rcar_du_crtc_page_flip(struct drm_crtc *crtc,
				  struct drm_framebuffer *fb,
585 586
				  struct drm_pending_vblank_event *event,
				  uint32_t page_flip_flags)
587 588 589 590 591 592 593 594 595 596 597 598
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	if (rcrtc->event != NULL) {
		spin_unlock_irqrestore(&dev->event_lock, flags);
		return -EBUSY;
	}
	spin_unlock_irqrestore(&dev->event_lock, flags);

599
	crtc->primary->fb = fb;
600 601 602 603
	rcar_du_crtc_update_base(rcrtc);

	if (event) {
		event->pipe = rcrtc->index;
604
		drm_crtc_vblank_get(crtc);
605 606 607 608 609 610 611 612 613 614 615 616 617 618
		spin_lock_irqsave(&dev->event_lock, flags);
		rcrtc->event = event;
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}

	return 0;
}

static const struct drm_crtc_funcs crtc_funcs = {
	.destroy = drm_crtc_cleanup,
	.set_config = drm_crtc_helper_set_config,
	.page_flip = rcar_du_crtc_page_flip,
};

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
/* -----------------------------------------------------------------------------
 * Interrupt Handling
 */

static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
{
	struct rcar_du_crtc *rcrtc = arg;
	irqreturn_t ret = IRQ_NONE;
	u32 status;

	status = rcar_du_crtc_read(rcrtc, DSSR);
	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);

	if (status & DSSR_FRM) {
		drm_handle_vblank(rcrtc->crtc.dev, rcrtc->index);
		rcar_du_crtc_finish_page_flip(rcrtc);
		ret = IRQ_HANDLED;
	}

	return ret;
}

/* -----------------------------------------------------------------------------
 * Initialization
 */

645
int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int index)
646
{
647 648 649 650
	static const unsigned int mmio_offsets[] = {
		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET
	};

651
	struct rcar_du_device *rcdu = rgrp->dev;
652
	struct platform_device *pdev = to_platform_device(rcdu->dev);
653 654
	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[index];
	struct drm_crtc *crtc = &rcrtc->crtc;
655
	unsigned int irqflags;
656 657
	struct clk *clk;
	char clk_name[9];
658 659
	char *name;
	int irq;
660 661
	int ret;

662
	/* Get the CRTC clock and the optional external clock. */
663 664 665 666 667 668 669 670 671 672 673 674 675
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
		sprintf(clk_name, "du.%u", index);
		name = clk_name;
	} else {
		name = NULL;
	}

	rcrtc->clock = devm_clk_get(rcdu->dev, name);
	if (IS_ERR(rcrtc->clock)) {
		dev_err(rcdu->dev, "no clock for CRTC %u\n", index);
		return PTR_ERR(rcrtc->clock);
	}

676 677 678 679 680 681 682 683 684
	sprintf(clk_name, "dclkin.%u", index);
	clk = devm_clk_get(rcdu->dev, clk_name);
	if (!IS_ERR(clk)) {
		rcrtc->extclock = clk;
	} else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
		dev_info(rcdu->dev, "can't get external clock %u\n", index);
		return -EPROBE_DEFER;
	}

685 686
	init_waitqueue_head(&rcrtc->flip_wait);

687
	rcrtc->group = rgrp;
688
	rcrtc->mmio_offset = mmio_offsets[index];
689 690
	rcrtc->index = index;
	rcrtc->dpms = DRM_MODE_DPMS_OFF;
691
	rcrtc->plane = &rgrp->planes.planes[index % 2];
692 693 694

	rcrtc->plane->crtc = crtc;

695 696
	ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, &rcrtc->plane->plane,
					NULL, &crtc_funcs);
697 698 699 700 701
	if (ret < 0)
		return ret;

	drm_crtc_helper_add(crtc, &crtc_helper_funcs);

702 703 704
	/* Start with vertical blanking interrupt reporting disabled. */
	drm_crtc_vblank_off(crtc);

705 706 707 708 709 710 711 712 713 714 715
	/* Register the interrupt handler. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
		irq = platform_get_irq(pdev, index);
		irqflags = 0;
	} else {
		irq = platform_get_irq(pdev, 0);
		irqflags = IRQF_SHARED;
	}

	if (irq < 0) {
		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", index);
J
Julia Lawall 已提交
716
		return irq;
717 718 719 720 721 722 723 724 725 726
	}

	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
			       dev_name(rcdu->dev), rcrtc);
	if (ret < 0) {
		dev_err(rcdu->dev,
			"failed to register IRQ for CRTC %u\n", index);
		return ret;
	}

727 728 729 730 731 732 733 734 735 736 737 738
	return 0;
}

void rcar_du_crtc_enable_vblank(struct rcar_du_crtc *rcrtc, bool enable)
{
	if (enable) {
		rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
		rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
	} else {
		rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
	}
}