intel-pt.c 46.0 KB
Newer Older
A
Adrian Hunter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
/*
 * intel_pt.c: Intel Processor Trace support
 * Copyright (c) 2013-2015, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 */

#include <stdio.h>
#include <stdbool.h>
#include <errno.h>
#include <linux/kernel.h>
#include <linux/types.h>

#include "../perf.h"
#include "session.h"
#include "machine.h"
#include "tool.h"
#include "event.h"
#include "evlist.h"
#include "evsel.h"
#include "map.h"
#include "color.h"
#include "util.h"
#include "thread.h"
#include "thread-stack.h"
#include "symbol.h"
#include "callchain.h"
#include "dso.h"
#include "debug.h"
#include "auxtrace.h"
#include "tsc.h"
#include "intel-pt.h"

#include "intel-pt-decoder/intel-pt-log.h"
#include "intel-pt-decoder/intel-pt-decoder.h"
#include "intel-pt-decoder/intel-pt-insn-decoder.h"
#include "intel-pt-decoder/intel-pt-pkt-decoder.h"

#define MAX_TIMESTAMP (~0ULL)

struct intel_pt {
	struct auxtrace auxtrace;
	struct auxtrace_queues queues;
	struct auxtrace_heap heap;
	u32 auxtrace_type;
	struct perf_session *session;
	struct machine *machine;
	struct perf_evsel *switch_evsel;
	struct thread *unknown_thread;
	bool timeless_decoding;
	bool sampling_mode;
	bool snapshot_mode;
	bool per_cpu_mmaps;
	bool have_tsc;
	bool data_queued;
	bool est_tsc;
	bool sync_switch;
	int have_sched_switch;
	u32 pmu_type;
	u64 kernel_start;
	u64 switch_ip;
	u64 ptss_ip;

	struct perf_tsc_conversion tc;
	bool cap_user_time_zero;

	struct itrace_synth_opts synth_opts;

	bool sample_instructions;
	u64 instructions_sample_type;
	u64 instructions_sample_period;
	u64 instructions_id;

	bool sample_branches;
	u32 branches_filter;
	u64 branches_sample_type;
	u64 branches_id;

	bool sample_transactions;
	u64 transactions_sample_type;
	u64 transactions_id;

	bool synth_needs_swap;

	u64 tsc_bit;
	u64 noretcomp_bit;
	unsigned max_non_turbo_ratio;
};

enum switch_state {
	INTEL_PT_SS_NOT_TRACING,
	INTEL_PT_SS_UNKNOWN,
	INTEL_PT_SS_TRACING,
	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
	INTEL_PT_SS_EXPECTING_SWITCH_IP,
};

struct intel_pt_queue {
	struct intel_pt *pt;
	unsigned int queue_nr;
	struct auxtrace_buffer *buffer;
	void *decoder;
	const struct intel_pt_state *state;
	struct ip_callchain *chain;
	union perf_event *event_buf;
	bool on_heap;
	bool stop;
	bool step_through_buffers;
	bool use_buffer_pid_tid;
	pid_t pid, tid;
	int cpu;
	int switch_state;
	pid_t next_tid;
	struct thread *thread;
	bool exclude_kernel;
	bool have_sample;
	u64 time;
	u64 timestamp;
	u32 flags;
	u16 insn_len;
};

static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
			  unsigned char *buf, size_t len)
{
	struct intel_pt_pkt packet;
	size_t pos = 0;
	int ret, pkt_len, i;
	char desc[INTEL_PT_PKT_DESC_MAX];
	const char *color = PERF_COLOR_BLUE;

	color_fprintf(stdout, color,
		      ". ... Intel Processor Trace data: size %zu bytes\n",
		      len);

	while (len) {
		ret = intel_pt_get_packet(buf, len, &packet);
		if (ret > 0)
			pkt_len = ret;
		else
			pkt_len = 1;
		printf(".");
		color_fprintf(stdout, color, "  %08x: ", pos);
		for (i = 0; i < pkt_len; i++)
			color_fprintf(stdout, color, " %02x", buf[i]);
		for (; i < 16; i++)
			color_fprintf(stdout, color, "   ");
		if (ret > 0) {
			ret = intel_pt_pkt_desc(&packet, desc,
						INTEL_PT_PKT_DESC_MAX);
			if (ret > 0)
				color_fprintf(stdout, color, " %s\n", desc);
		} else {
			color_fprintf(stdout, color, " Bad packet!\n");
		}
		pos += pkt_len;
		buf += pkt_len;
		len -= pkt_len;
	}
}

static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
				size_t len)
{
	printf(".\n");
	intel_pt_dump(pt, buf, len);
}

static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
				   struct auxtrace_buffer *b)
{
	void *start;

	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
				      pt->have_tsc);
	if (!start)
		return -EINVAL;
	b->use_size = b->data + b->size - start;
	b->use_data = start;
	return 0;
}

static void intel_pt_use_buffer_pid_tid(struct intel_pt_queue *ptq,
					struct auxtrace_queue *queue,
					struct auxtrace_buffer *buffer)
{
	if (queue->cpu == -1 && buffer->cpu != -1)
		ptq->cpu = buffer->cpu;

	ptq->pid = buffer->pid;
	ptq->tid = buffer->tid;

	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);

	thread__zput(ptq->thread);

	if (ptq->tid != -1) {
		if (ptq->pid != -1)
			ptq->thread = machine__findnew_thread(ptq->pt->machine,
							      ptq->pid,
							      ptq->tid);
		else
			ptq->thread = machine__find_thread(ptq->pt->machine, -1,
							   ptq->tid);
	}
}

/* This function assumes data is processed sequentially only */
static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
{
	struct intel_pt_queue *ptq = data;
	struct auxtrace_buffer *buffer = ptq->buffer, *old_buffer = buffer;
	struct auxtrace_queue *queue;

	if (ptq->stop) {
		b->len = 0;
		return 0;
	}

	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];

	buffer = auxtrace_buffer__next(queue, buffer);
	if (!buffer) {
		if (old_buffer)
			auxtrace_buffer__drop_data(old_buffer);
		b->len = 0;
		return 0;
	}

	ptq->buffer = buffer;

	if (!buffer->data) {
		int fd = perf_data_file__fd(ptq->pt->session->file);

		buffer->data = auxtrace_buffer__get_data(buffer, fd);
		if (!buffer->data)
			return -ENOMEM;
	}

	if (ptq->pt->snapshot_mode && !buffer->consecutive && old_buffer &&
	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
		return -ENOMEM;

	if (old_buffer)
		auxtrace_buffer__drop_data(old_buffer);

	if (buffer->use_data) {
		b->len = buffer->use_size;
		b->buf = buffer->use_data;
	} else {
		b->len = buffer->size;
		b->buf = buffer->data;
	}
	b->ref_timestamp = buffer->reference;

	if (!old_buffer || ptq->pt->sampling_mode || (ptq->pt->snapshot_mode &&
						      !buffer->consecutive)) {
		b->consecutive = false;
		b->trace_nr = buffer->buffer_nr + 1;
	} else {
		b->consecutive = true;
	}

	if (ptq->use_buffer_pid_tid && (ptq->pid != buffer->pid ||
					ptq->tid != buffer->tid))
		intel_pt_use_buffer_pid_tid(ptq, queue, buffer);

	if (ptq->step_through_buffers)
		ptq->stop = true;

	if (!b->len)
		return intel_pt_get_trace(b, data);

	return 0;
}

struct intel_pt_cache_entry {
	struct auxtrace_cache_entry	entry;
	u64				insn_cnt;
	u64				byte_cnt;
	enum intel_pt_insn_op		op;
	enum intel_pt_insn_branch	branch;
	int				length;
	int32_t				rel;
};

static int intel_pt_config_div(const char *var, const char *value, void *data)
{
	int *d = data;
	long val;

	if (!strcmp(var, "intel-pt.cache-divisor")) {
		val = strtol(value, NULL, 0);
		if (val > 0 && val <= INT_MAX)
			*d = val;
	}

	return 0;
}

static int intel_pt_cache_divisor(void)
{
	static int d;

	if (d)
		return d;

	perf_config(intel_pt_config_div, &d);

	if (!d)
		d = 64;

	return d;
}

static unsigned int intel_pt_cache_size(struct dso *dso,
					struct machine *machine)
{
	off_t size;

	size = dso__data_size(dso, machine);
	size /= intel_pt_cache_divisor();
	if (size < 1000)
		return 10;
	if (size > (1 << 21))
		return 21;
	return 32 - __builtin_clz(size);
}

static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
					     struct machine *machine)
{
	struct auxtrace_cache *c;
	unsigned int bits;

	if (dso->auxtrace_cache)
		return dso->auxtrace_cache;

	bits = intel_pt_cache_size(dso, machine);

	/* Ignoring cache creation failure */
	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);

	dso->auxtrace_cache = c;

	return c;
}

static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
			      u64 offset, u64 insn_cnt, u64 byte_cnt,
			      struct intel_pt_insn *intel_pt_insn)
{
	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
	struct intel_pt_cache_entry *e;
	int err;

	if (!c)
		return -ENOMEM;

	e = auxtrace_cache__alloc_entry(c);
	if (!e)
		return -ENOMEM;

	e->insn_cnt = insn_cnt;
	e->byte_cnt = byte_cnt;
	e->op = intel_pt_insn->op;
	e->branch = intel_pt_insn->branch;
	e->length = intel_pt_insn->length;
	e->rel = intel_pt_insn->rel;

	err = auxtrace_cache__add(c, offset, &e->entry);
	if (err)
		auxtrace_cache__free_entry(c, e);

	return err;
}

static struct intel_pt_cache_entry *
intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
{
	struct auxtrace_cache *c = intel_pt_cache(dso, machine);

	if (!c)
		return NULL;

	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
}

static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
				   uint64_t *insn_cnt_ptr, uint64_t *ip,
				   uint64_t to_ip, uint64_t max_insn_cnt,
				   void *data)
{
	struct intel_pt_queue *ptq = data;
	struct machine *machine = ptq->pt->machine;
	struct thread *thread;
	struct addr_location al;
	unsigned char buf[1024];
	size_t bufsz;
	ssize_t len;
	int x86_64;
	u8 cpumode;
	u64 offset, start_offset, start_ip;
	u64 insn_cnt = 0;
	bool one_map = true;

	if (to_ip && *ip == to_ip)
		goto out_no_cache;

	bufsz = intel_pt_insn_max_size();

	if (*ip >= ptq->pt->kernel_start)
		cpumode = PERF_RECORD_MISC_KERNEL;
	else
		cpumode = PERF_RECORD_MISC_USER;

	thread = ptq->thread;
	if (!thread) {
		if (cpumode != PERF_RECORD_MISC_KERNEL)
			return -EINVAL;
		thread = ptq->pt->unknown_thread;
	}

	while (1) {
		thread__find_addr_map(thread, cpumode, MAP__FUNCTION, *ip, &al);
		if (!al.map || !al.map->dso)
			return -EINVAL;

		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
		    dso__data_status_seen(al.map->dso,
					  DSO_DATA_STATUS_SEEN_ITRACE))
			return -ENOENT;

		offset = al.map->map_ip(al.map, *ip);

		if (!to_ip && one_map) {
			struct intel_pt_cache_entry *e;

			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
			if (e &&
			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
				*insn_cnt_ptr = e->insn_cnt;
				*ip += e->byte_cnt;
				intel_pt_insn->op = e->op;
				intel_pt_insn->branch = e->branch;
				intel_pt_insn->length = e->length;
				intel_pt_insn->rel = e->rel;
				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
				return 0;
			}
		}

		start_offset = offset;
		start_ip = *ip;

		/* Load maps to ensure dso->is_64_bit has been updated */
		map__load(al.map, machine->symbol_filter);

		x86_64 = al.map->dso->is_64_bit;

		while (1) {
			len = dso__data_read_offset(al.map->dso, machine,
						    offset, buf, bufsz);
			if (len <= 0)
				return -EINVAL;

			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
				return -EINVAL;

			intel_pt_log_insn(intel_pt_insn, *ip);

			insn_cnt += 1;

			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
				goto out;

			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
				goto out_no_cache;

			*ip += intel_pt_insn->length;

			if (to_ip && *ip == to_ip)
				goto out_no_cache;

			if (*ip >= al.map->end)
				break;

			offset += intel_pt_insn->length;
		}
		one_map = false;
	}
out:
	*insn_cnt_ptr = insn_cnt;

	if (!one_map)
		goto out_no_cache;

	/*
	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
	 * entries.
	 */
	if (to_ip) {
		struct intel_pt_cache_entry *e;

		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
		if (e)
			return 0;
	}

	/* Ignore cache errors */
	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
			   *ip - start_ip, intel_pt_insn);

	return 0;

out_no_cache:
	*insn_cnt_ptr = insn_cnt;
	return 0;
}

static bool intel_pt_get_config(struct intel_pt *pt,
				struct perf_event_attr *attr, u64 *config)
{
	if (attr->type == pt->pmu_type) {
		if (config)
			*config = attr->config;
		return true;
	}

	return false;
}

static bool intel_pt_exclude_kernel(struct intel_pt *pt)
{
	struct perf_evsel *evsel;

	evlist__for_each(pt->session->evlist, evsel) {
		if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
		    !evsel->attr.exclude_kernel)
			return false;
	}
	return true;
}

static bool intel_pt_return_compression(struct intel_pt *pt)
{
	struct perf_evsel *evsel;
	u64 config;

	if (!pt->noretcomp_bit)
		return true;

	evlist__for_each(pt->session->evlist, evsel) {
		if (intel_pt_get_config(pt, &evsel->attr, &config) &&
		    (config & pt->noretcomp_bit))
			return false;
	}
	return true;
}

static bool intel_pt_timeless_decoding(struct intel_pt *pt)
{
	struct perf_evsel *evsel;
	bool timeless_decoding = true;
	u64 config;

	if (!pt->tsc_bit || !pt->cap_user_time_zero)
		return true;

	evlist__for_each(pt->session->evlist, evsel) {
		if (!(evsel->attr.sample_type & PERF_SAMPLE_TIME))
			return true;
		if (intel_pt_get_config(pt, &evsel->attr, &config)) {
			if (config & pt->tsc_bit)
				timeless_decoding = false;
			else
				return true;
		}
	}
	return timeless_decoding;
}

static bool intel_pt_tracing_kernel(struct intel_pt *pt)
{
	struct perf_evsel *evsel;

	evlist__for_each(pt->session->evlist, evsel) {
		if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
		    !evsel->attr.exclude_kernel)
			return true;
	}
	return false;
}

static bool intel_pt_have_tsc(struct intel_pt *pt)
{
	struct perf_evsel *evsel;
	bool have_tsc = false;
	u64 config;

	if (!pt->tsc_bit)
		return false;

	evlist__for_each(pt->session->evlist, evsel) {
		if (intel_pt_get_config(pt, &evsel->attr, &config)) {
			if (config & pt->tsc_bit)
				have_tsc = true;
			else
				return false;
		}
	}
	return have_tsc;
}

static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
{
	u64 quot, rem;

	quot = ns / pt->tc.time_mult;
	rem  = ns % pt->tc.time_mult;
	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
		pt->tc.time_mult;
}

static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
						   unsigned int queue_nr)
{
	struct intel_pt_params params = { .get_trace = 0, };
	struct intel_pt_queue *ptq;

	ptq = zalloc(sizeof(struct intel_pt_queue));
	if (!ptq)
		return NULL;

	if (pt->synth_opts.callchain) {
		size_t sz = sizeof(struct ip_callchain);

		sz += pt->synth_opts.callchain_sz * sizeof(u64);
		ptq->chain = zalloc(sz);
		if (!ptq->chain)
			goto out_free;
	}

	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
	if (!ptq->event_buf)
		goto out_free;

	ptq->pt = pt;
	ptq->queue_nr = queue_nr;
	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
	ptq->pid = -1;
	ptq->tid = -1;
	ptq->cpu = -1;
	ptq->next_tid = -1;

	params.get_trace = intel_pt_get_trace;
	params.walk_insn = intel_pt_walk_next_insn;
	params.data = ptq;
	params.return_compression = intel_pt_return_compression(pt);
	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;

	if (pt->synth_opts.instructions) {
		if (pt->synth_opts.period) {
			switch (pt->synth_opts.period_type) {
			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
				params.period_type =
						INTEL_PT_PERIOD_INSTRUCTIONS;
				params.period = pt->synth_opts.period;
				break;
			case PERF_ITRACE_PERIOD_TICKS:
				params.period_type = INTEL_PT_PERIOD_TICKS;
				params.period = pt->synth_opts.period;
				break;
			case PERF_ITRACE_PERIOD_NANOSECS:
				params.period_type = INTEL_PT_PERIOD_TICKS;
				params.period = intel_pt_ns_to_ticks(pt,
							pt->synth_opts.period);
				break;
			default:
				break;
			}
		}

		if (!params.period) {
			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
			params.period = 1000;
		}
	}

	ptq->decoder = intel_pt_decoder_new(&params);
	if (!ptq->decoder)
		goto out_free;

	return ptq;

out_free:
	zfree(&ptq->event_buf);
	zfree(&ptq->chain);
	free(ptq);
	return NULL;
}

static void intel_pt_free_queue(void *priv)
{
	struct intel_pt_queue *ptq = priv;

	if (!ptq)
		return;
	thread__zput(ptq->thread);
	intel_pt_decoder_free(ptq->decoder);
	zfree(&ptq->event_buf);
	zfree(&ptq->chain);
	free(ptq);
}

static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
				     struct auxtrace_queue *queue)
{
	struct intel_pt_queue *ptq = queue->priv;

	if (queue->tid == -1 || pt->have_sched_switch) {
		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
		thread__zput(ptq->thread);
	}

	if (!ptq->thread && ptq->tid != -1)
		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);

	if (ptq->thread) {
		ptq->pid = ptq->thread->pid_;
		if (queue->cpu == -1)
			ptq->cpu = ptq->thread->cpu;
	}
}

static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
{
	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
		if (ptq->state->to_ip)
			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
				     PERF_IP_FLAG_ASYNC |
				     PERF_IP_FLAG_INTERRUPT;
		else
			ptq->flags = PERF_IP_FLAG_BRANCH |
				     PERF_IP_FLAG_TRACE_END;
		ptq->insn_len = 0;
	} else {
		if (ptq->state->from_ip)
			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
		else
			ptq->flags = PERF_IP_FLAG_BRANCH |
				     PERF_IP_FLAG_TRACE_BEGIN;
		if (ptq->state->flags & INTEL_PT_IN_TX)
			ptq->flags |= PERF_IP_FLAG_IN_TX;
		ptq->insn_len = ptq->state->insn_len;
	}
}

static int intel_pt_setup_queue(struct intel_pt *pt,
				struct auxtrace_queue *queue,
				unsigned int queue_nr)
{
	struct intel_pt_queue *ptq = queue->priv;

	if (list_empty(&queue->head))
		return 0;

	if (!ptq) {
		ptq = intel_pt_alloc_queue(pt, queue_nr);
		if (!ptq)
			return -ENOMEM;
		queue->priv = ptq;

		if (queue->cpu != -1)
			ptq->cpu = queue->cpu;
		ptq->tid = queue->tid;

		if (pt->sampling_mode) {
			if (pt->timeless_decoding)
				ptq->step_through_buffers = true;
			if (pt->timeless_decoding || !pt->have_sched_switch)
				ptq->use_buffer_pid_tid = true;
		}
	}

	if (!ptq->on_heap &&
	    (!pt->sync_switch ||
	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
		const struct intel_pt_state *state;
		int ret;

		if (pt->timeless_decoding)
			return 0;

		intel_pt_log("queue %u getting timestamp\n", queue_nr);
		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
		while (1) {
			state = intel_pt_decode(ptq->decoder);
			if (state->err) {
				if (state->err == INTEL_PT_ERR_NODATA) {
					intel_pt_log("queue %u has no timestamp\n",
						     queue_nr);
					return 0;
				}
				continue;
			}
			if (state->timestamp)
				break;
		}

		ptq->timestamp = state->timestamp;
		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
			     queue_nr, ptq->timestamp);
		ptq->state = state;
		ptq->have_sample = true;
		intel_pt_sample_flags(ptq);
		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
		if (ret)
			return ret;
		ptq->on_heap = true;
	}

	return 0;
}

static int intel_pt_setup_queues(struct intel_pt *pt)
{
	unsigned int i;
	int ret;

	for (i = 0; i < pt->queues.nr_queues; i++) {
		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
		if (ret)
			return ret;
	}
	return 0;
}

static int intel_pt_inject_event(union perf_event *event,
				 struct perf_sample *sample, u64 type,
				 bool swapped)
{
	event->header.size = perf_event__sample_event_size(sample, type, 0);
	return perf_event__synthesize_sample(event, type, 0, sample, swapped);
}

static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
{
	int ret;
	struct intel_pt *pt = ptq->pt;
	union perf_event *event = ptq->event_buf;
	struct perf_sample sample = { .ip = 0, };

	event->sample.header.type = PERF_RECORD_SAMPLE;
	event->sample.header.misc = PERF_RECORD_MISC_USER;
	event->sample.header.size = sizeof(struct perf_event_header);

	if (!pt->timeless_decoding)
		sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);

	sample.ip = ptq->state->from_ip;
	sample.pid = ptq->pid;
	sample.tid = ptq->tid;
	sample.addr = ptq->state->to_ip;
	sample.id = ptq->pt->branches_id;
	sample.stream_id = ptq->pt->branches_id;
	sample.period = 1;
	sample.cpu = ptq->cpu;
	sample.flags = ptq->flags;
	sample.insn_len = ptq->insn_len;

	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
		return 0;

	if (pt->synth_opts.inject) {
		ret = intel_pt_inject_event(event, &sample,
					    pt->branches_sample_type,
					    pt->synth_needs_swap);
		if (ret)
			return ret;
	}

	ret = perf_session__deliver_synth_event(pt->session, event, &sample);
	if (ret)
		pr_err("Intel Processor Trace: failed to deliver branch event, error %d\n",
		       ret);

	return ret;
}

static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
{
	int ret;
	struct intel_pt *pt = ptq->pt;
	union perf_event *event = ptq->event_buf;
	struct perf_sample sample = { .ip = 0, };

	event->sample.header.type = PERF_RECORD_SAMPLE;
	event->sample.header.misc = PERF_RECORD_MISC_USER;
	event->sample.header.size = sizeof(struct perf_event_header);

	if (!pt->timeless_decoding)
		sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);

	sample.ip = ptq->state->from_ip;
	sample.pid = ptq->pid;
	sample.tid = ptq->tid;
	sample.addr = ptq->state->to_ip;
	sample.id = ptq->pt->instructions_id;
	sample.stream_id = ptq->pt->instructions_id;
	sample.period = ptq->pt->instructions_sample_period;
	sample.cpu = ptq->cpu;
	sample.flags = ptq->flags;
	sample.insn_len = ptq->insn_len;

	if (pt->synth_opts.callchain) {
		thread_stack__sample(ptq->thread, ptq->chain,
				     pt->synth_opts.callchain_sz, sample.ip);
		sample.callchain = ptq->chain;
	}

	if (pt->synth_opts.inject) {
		ret = intel_pt_inject_event(event, &sample,
					    pt->instructions_sample_type,
					    pt->synth_needs_swap);
		if (ret)
			return ret;
	}

	ret = perf_session__deliver_synth_event(pt->session, event, &sample);
	if (ret)
		pr_err("Intel Processor Trace: failed to deliver instruction event, error %d\n",
		       ret);

	return ret;
}

static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
{
	int ret;
	struct intel_pt *pt = ptq->pt;
	union perf_event *event = ptq->event_buf;
	struct perf_sample sample = { .ip = 0, };

	event->sample.header.type = PERF_RECORD_SAMPLE;
	event->sample.header.misc = PERF_RECORD_MISC_USER;
	event->sample.header.size = sizeof(struct perf_event_header);

	if (!pt->timeless_decoding)
		sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);

	sample.ip = ptq->state->from_ip;
	sample.pid = ptq->pid;
	sample.tid = ptq->tid;
	sample.addr = ptq->state->to_ip;
	sample.id = ptq->pt->transactions_id;
	sample.stream_id = ptq->pt->transactions_id;
	sample.period = 1;
	sample.cpu = ptq->cpu;
	sample.flags = ptq->flags;
	sample.insn_len = ptq->insn_len;

	if (pt->synth_opts.callchain) {
		thread_stack__sample(ptq->thread, ptq->chain,
				     pt->synth_opts.callchain_sz, sample.ip);
		sample.callchain = ptq->chain;
	}

	if (pt->synth_opts.inject) {
		ret = intel_pt_inject_event(event, &sample,
					    pt->transactions_sample_type,
					    pt->synth_needs_swap);
		if (ret)
			return ret;
	}

	ret = perf_session__deliver_synth_event(pt->session, event, &sample);
	if (ret)
		pr_err("Intel Processor Trace: failed to deliver transaction event, error %d\n",
		       ret);

	return ret;
}

static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
				pid_t pid, pid_t tid, u64 ip)
{
	union perf_event event;
	char msg[MAX_AUXTRACE_ERROR_MSG];
	int err;

	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);

	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
			     code, cpu, pid, tid, ip, msg);

	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
	if (err)
		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
		       err);

	return err;
}

static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
{
	struct auxtrace_queue *queue;
	pid_t tid = ptq->next_tid;
	int err;

	if (tid == -1)
		return 0;

	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);

	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);

	queue = &pt->queues.queue_array[ptq->queue_nr];
	intel_pt_set_pid_tid_cpu(pt, queue);

	ptq->next_tid = -1;

	return err;
}

static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
{
	struct intel_pt *pt = ptq->pt;

	return ip == pt->switch_ip &&
	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
}

static int intel_pt_sample(struct intel_pt_queue *ptq)
{
	const struct intel_pt_state *state = ptq->state;
	struct intel_pt *pt = ptq->pt;
	int err;

	if (!ptq->have_sample)
		return 0;

	ptq->have_sample = false;

	if (pt->sample_instructions &&
	    (state->type & INTEL_PT_INSTRUCTION)) {
		err = intel_pt_synth_instruction_sample(ptq);
		if (err)
			return err;
	}

	if (pt->sample_transactions &&
	    (state->type & INTEL_PT_TRANSACTION)) {
		err = intel_pt_synth_transaction_sample(ptq);
		if (err)
			return err;
	}

	if (!(state->type & INTEL_PT_BRANCH))
		return 0;

	if (pt->synth_opts.callchain)
		thread_stack__event(ptq->thread, ptq->flags, state->from_ip,
				    state->to_ip, ptq->insn_len,
				    state->trace_nr);
	else
		thread_stack__set_trace_nr(ptq->thread, state->trace_nr);

	if (pt->sample_branches) {
		err = intel_pt_synth_branch_sample(ptq);
		if (err)
			return err;
	}

	if (!pt->sync_switch)
		return 0;

	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
		switch (ptq->switch_state) {
		case INTEL_PT_SS_UNKNOWN:
		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
			err = intel_pt_next_tid(pt, ptq);
			if (err)
				return err;
			ptq->switch_state = INTEL_PT_SS_TRACING;
			break;
		default:
			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
			return 1;
		}
	} else if (!state->to_ip) {
		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
		   state->to_ip == pt->ptss_ip &&
		   (ptq->flags & PERF_IP_FLAG_CALL)) {
		ptq->switch_state = INTEL_PT_SS_TRACING;
	}

	return 0;
}

static u64 intel_pt_switch_ip(struct machine *machine, u64 *ptss_ip)
{
	struct map *map;
	struct symbol *sym, *start;
	u64 ip, switch_ip = 0;

	if (ptss_ip)
		*ptss_ip = 0;

	map = machine__kernel_map(machine, MAP__FUNCTION);
	if (!map)
		return 0;

	if (map__load(map, machine->symbol_filter))
		return 0;

	start = dso__first_symbol(map->dso, MAP__FUNCTION);

	for (sym = start; sym; sym = dso__next_symbol(sym)) {
		if (sym->binding == STB_GLOBAL &&
		    !strcmp(sym->name, "__switch_to")) {
			ip = map->unmap_ip(map, sym->start);
			if (ip >= map->start && ip < map->end) {
				switch_ip = ip;
				break;
			}
		}
	}

	if (!switch_ip || !ptss_ip)
		return 0;

	for (sym = start; sym; sym = dso__next_symbol(sym)) {
		if (!strcmp(sym->name, "perf_trace_sched_switch")) {
			ip = map->unmap_ip(map, sym->start);
			if (ip >= map->start && ip < map->end) {
				*ptss_ip = ip;
				break;
			}
		}
	}

	return switch_ip;
}

static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
{
	const struct intel_pt_state *state = ptq->state;
	struct intel_pt *pt = ptq->pt;
	int err;

	if (!pt->kernel_start) {
		pt->kernel_start = machine__kernel_start(pt->machine);
		if (pt->per_cpu_mmaps && pt->have_sched_switch &&
		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
		    !pt->sampling_mode) {
			pt->switch_ip = intel_pt_switch_ip(pt->machine,
							   &pt->ptss_ip);
			if (pt->switch_ip) {
				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
					     pt->switch_ip, pt->ptss_ip);
				pt->sync_switch = true;
			}
		}
	}

	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
	while (1) {
		err = intel_pt_sample(ptq);
		if (err)
			return err;

		state = intel_pt_decode(ptq->decoder);
		if (state->err) {
			if (state->err == INTEL_PT_ERR_NODATA)
				return 1;
			if (pt->sync_switch &&
			    state->from_ip >= pt->kernel_start) {
				pt->sync_switch = false;
				intel_pt_next_tid(pt, ptq);
			}
			if (pt->synth_opts.errors) {
				err = intel_pt_synth_error(pt, state->err,
							   ptq->cpu, ptq->pid,
							   ptq->tid,
							   state->from_ip);
				if (err)
					return err;
			}
			continue;
		}

		ptq->state = state;
		ptq->have_sample = true;
		intel_pt_sample_flags(ptq);

		/* Use estimated TSC upon return to user space */
		if (pt->est_tsc &&
		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
		    state->to_ip && state->to_ip < pt->kernel_start) {
			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
				     state->timestamp, state->est_timestamp);
			ptq->timestamp = state->est_timestamp;
		/* Use estimated TSC in unknown switch state */
		} else if (pt->sync_switch &&
			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
			   ptq->next_tid == -1) {
			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
				     state->timestamp, state->est_timestamp);
			ptq->timestamp = state->est_timestamp;
		} else if (state->timestamp > ptq->timestamp) {
			ptq->timestamp = state->timestamp;
		}

		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
			*timestamp = ptq->timestamp;
			return 0;
		}
	}
	return 0;
}

static inline int intel_pt_update_queues(struct intel_pt *pt)
{
	if (pt->queues.new_data) {
		pt->queues.new_data = false;
		return intel_pt_setup_queues(pt);
	}
	return 0;
}

static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
{
	unsigned int queue_nr;
	u64 ts;
	int ret;

	while (1) {
		struct auxtrace_queue *queue;
		struct intel_pt_queue *ptq;

		if (!pt->heap.heap_cnt)
			return 0;

		if (pt->heap.heap_array[0].ordinal >= timestamp)
			return 0;

		queue_nr = pt->heap.heap_array[0].queue_nr;
		queue = &pt->queues.queue_array[queue_nr];
		ptq = queue->priv;

		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
			     queue_nr, pt->heap.heap_array[0].ordinal,
			     timestamp);

		auxtrace_heap__pop(&pt->heap);

		if (pt->heap.heap_cnt) {
			ts = pt->heap.heap_array[0].ordinal + 1;
			if (ts > timestamp)
				ts = timestamp;
		} else {
			ts = timestamp;
		}

		intel_pt_set_pid_tid_cpu(pt, queue);

		ret = intel_pt_run_decoder(ptq, &ts);

		if (ret < 0) {
			auxtrace_heap__add(&pt->heap, queue_nr, ts);
			return ret;
		}

		if (!ret) {
			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
			if (ret < 0)
				return ret;
		} else {
			ptq->on_heap = false;
		}
	}

	return 0;
}

static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
					    u64 time_)
{
	struct auxtrace_queues *queues = &pt->queues;
	unsigned int i;
	u64 ts = 0;

	for (i = 0; i < queues->nr_queues; i++) {
		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
		struct intel_pt_queue *ptq = queue->priv;

		if (ptq && (tid == -1 || ptq->tid == tid)) {
			ptq->time = time_;
			intel_pt_set_pid_tid_cpu(pt, queue);
			intel_pt_run_decoder(ptq, &ts);
		}
	}
	return 0;
}

static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
{
	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
				    sample->pid, sample->tid, 0);
}

static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
{
	unsigned i, j;

	if (cpu < 0 || !pt->queues.nr_queues)
		return NULL;

	if ((unsigned)cpu >= pt->queues.nr_queues)
		i = pt->queues.nr_queues - 1;
	else
		i = cpu;

	if (pt->queues.queue_array[i].cpu == cpu)
		return pt->queues.queue_array[i].priv;

	for (j = 0; i > 0; j++) {
		if (pt->queues.queue_array[--i].cpu == cpu)
			return pt->queues.queue_array[i].priv;
	}

	for (; j < pt->queues.nr_queues; j++) {
		if (pt->queues.queue_array[j].cpu == cpu)
			return pt->queues.queue_array[j].priv;
	}

	return NULL;
}

static int intel_pt_process_switch(struct intel_pt *pt,
				   struct perf_sample *sample)
{
	struct intel_pt_queue *ptq;
	struct perf_evsel *evsel;
	pid_t tid;
	int cpu, err;

	evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
	if (evsel != pt->switch_evsel)
		return 0;

	tid = perf_evsel__intval(evsel, sample, "next_pid");
	cpu = sample->cpu;

	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
		     &pt->tc));

	if (!pt->sync_switch)
		goto out;

	ptq = intel_pt_cpu_to_ptq(pt, cpu);
	if (!ptq)
		goto out;

	switch (ptq->switch_state) {
	case INTEL_PT_SS_NOT_TRACING:
		ptq->next_tid = -1;
		break;
	case INTEL_PT_SS_UNKNOWN:
	case INTEL_PT_SS_TRACING:
		ptq->next_tid = tid;
		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
		return 0;
	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
		if (!ptq->on_heap) {
			ptq->timestamp = perf_time_to_tsc(sample->time,
							  &pt->tc);
			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
						 ptq->timestamp);
			if (err)
				return err;
			ptq->on_heap = true;
		}
		ptq->switch_state = INTEL_PT_SS_TRACING;
		break;
	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
		ptq->next_tid = tid;
		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
		break;
	default:
		break;
	}
out:
	return machine__set_current_tid(pt->machine, cpu, -1, tid);
}

static int intel_pt_process_itrace_start(struct intel_pt *pt,
					 union perf_event *event,
					 struct perf_sample *sample)
{
	if (!pt->per_cpu_mmaps)
		return 0;

	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
		     sample->cpu, event->itrace_start.pid,
		     event->itrace_start.tid, sample->time,
		     perf_time_to_tsc(sample->time, &pt->tc));

	return machine__set_current_tid(pt->machine, sample->cpu,
					event->itrace_start.pid,
					event->itrace_start.tid);
}

static int intel_pt_process_event(struct perf_session *session,
				  union perf_event *event,
				  struct perf_sample *sample,
				  struct perf_tool *tool)
{
	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
					   auxtrace);
	u64 timestamp;
	int err = 0;

	if (dump_trace)
		return 0;

	if (!tool->ordered_events) {
		pr_err("Intel Processor Trace requires ordered events\n");
		return -EINVAL;
	}

	if (sample->time)
		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
	else
		timestamp = 0;

	if (timestamp || pt->timeless_decoding) {
		err = intel_pt_update_queues(pt);
		if (err)
			return err;
	}

	if (pt->timeless_decoding) {
		if (event->header.type == PERF_RECORD_EXIT) {
			err = intel_pt_process_timeless_queues(pt,
							       event->comm.tid,
							       sample->time);
		}
	} else if (timestamp) {
		err = intel_pt_process_queues(pt, timestamp);
	}
	if (err)
		return err;

	if (event->header.type == PERF_RECORD_AUX &&
	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
	    pt->synth_opts.errors) {
		err = intel_pt_lost(pt, sample);
		if (err)
			return err;
	}

	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
		err = intel_pt_process_switch(pt, sample);
	else if (event->header.type == PERF_RECORD_ITRACE_START)
		err = intel_pt_process_itrace_start(pt, event, sample);

	intel_pt_log("event %s (%u): cpu %d time %"PRIu64" tsc %#"PRIx64"\n",
		     perf_event__name(event->header.type), event->header.type,
		     sample->cpu, sample->time, timestamp);

	return err;
}

static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
{
	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
					   auxtrace);
	int ret;

	if (dump_trace)
		return 0;

	if (!tool->ordered_events)
		return -EINVAL;

	ret = intel_pt_update_queues(pt);
	if (ret < 0)
		return ret;

	if (pt->timeless_decoding)
		return intel_pt_process_timeless_queues(pt, -1,
							MAX_TIMESTAMP - 1);

	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
}

static void intel_pt_free_events(struct perf_session *session)
{
	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
					   auxtrace);
	struct auxtrace_queues *queues = &pt->queues;
	unsigned int i;

	for (i = 0; i < queues->nr_queues; i++) {
		intel_pt_free_queue(queues->queue_array[i].priv);
		queues->queue_array[i].priv = NULL;
	}
	intel_pt_log_disable();
	auxtrace_queues__free(queues);
}

static void intel_pt_free(struct perf_session *session)
{
	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
					   auxtrace);

	auxtrace_heap__free(&pt->heap);
	intel_pt_free_events(session);
	session->auxtrace = NULL;
	thread__delete(pt->unknown_thread);
	free(pt);
}

static int intel_pt_process_auxtrace_event(struct perf_session *session,
					   union perf_event *event,
					   struct perf_tool *tool __maybe_unused)
{
	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
					   auxtrace);

	if (pt->sampling_mode)
		return 0;

	if (!pt->data_queued) {
		struct auxtrace_buffer *buffer;
		off_t data_offset;
		int fd = perf_data_file__fd(session->file);
		int err;

		if (perf_data_file__is_pipe(session->file)) {
			data_offset = 0;
		} else {
			data_offset = lseek(fd, 0, SEEK_CUR);
			if (data_offset == -1)
				return -errno;
		}

		err = auxtrace_queues__add_event(&pt->queues, session, event,
						 data_offset, &buffer);
		if (err)
			return err;

		/* Dump here now we have copied a piped trace out of the pipe */
		if (dump_trace) {
			if (auxtrace_buffer__get_data(buffer, fd)) {
				intel_pt_dump_event(pt, buffer->data,
						    buffer->size);
				auxtrace_buffer__put_data(buffer);
			}
		}
	}

	return 0;
}

struct intel_pt_synth {
	struct perf_tool dummy_tool;
	struct perf_session *session;
};

static int intel_pt_event_synth(struct perf_tool *tool,
				union perf_event *event,
				struct perf_sample *sample __maybe_unused,
				struct machine *machine __maybe_unused)
{
	struct intel_pt_synth *intel_pt_synth =
			container_of(tool, struct intel_pt_synth, dummy_tool);

	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
						 NULL);
}

static int intel_pt_synth_event(struct perf_session *session,
				struct perf_event_attr *attr, u64 id)
{
	struct intel_pt_synth intel_pt_synth;

	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
	intel_pt_synth.session = session;

	return perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
					   &id, intel_pt_event_synth);
}

static int intel_pt_synth_events(struct intel_pt *pt,
				 struct perf_session *session)
{
	struct perf_evlist *evlist = session->evlist;
	struct perf_evsel *evsel;
	struct perf_event_attr attr;
	bool found = false;
	u64 id;
	int err;

	evlist__for_each(evlist, evsel) {
		if (evsel->attr.type == pt->pmu_type && evsel->ids) {
			found = true;
			break;
		}
	}

	if (!found) {
		pr_debug("There are no selected events with Intel Processor Trace data\n");
		return 0;
	}

	memset(&attr, 0, sizeof(struct perf_event_attr));
	attr.size = sizeof(struct perf_event_attr);
	attr.type = PERF_TYPE_HARDWARE;
	attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
			    PERF_SAMPLE_PERIOD;
	if (pt->timeless_decoding)
		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
	else
		attr.sample_type |= PERF_SAMPLE_TIME;
	if (!pt->per_cpu_mmaps)
		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
	attr.exclude_user = evsel->attr.exclude_user;
	attr.exclude_kernel = evsel->attr.exclude_kernel;
	attr.exclude_hv = evsel->attr.exclude_hv;
	attr.exclude_host = evsel->attr.exclude_host;
	attr.exclude_guest = evsel->attr.exclude_guest;
	attr.sample_id_all = evsel->attr.sample_id_all;
	attr.read_format = evsel->attr.read_format;

	id = evsel->id[0] + 1000000000;
	if (!id)
		id = 1;

	if (pt->synth_opts.instructions) {
		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
			attr.sample_period =
				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
		else
			attr.sample_period = pt->synth_opts.period;
		pt->instructions_sample_period = attr.sample_period;
		if (pt->synth_opts.callchain)
			attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
		pr_debug("Synthesizing 'instructions' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
			 id, (u64)attr.sample_type);
		err = intel_pt_synth_event(session, &attr, id);
		if (err) {
			pr_err("%s: failed to synthesize 'instructions' event type\n",
			       __func__);
			return err;
		}
		pt->sample_instructions = true;
		pt->instructions_sample_type = attr.sample_type;
		pt->instructions_id = id;
		id += 1;
	}

	if (pt->synth_opts.transactions) {
		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
		attr.sample_period = 1;
		if (pt->synth_opts.callchain)
			attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
		pr_debug("Synthesizing 'transactions' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
			 id, (u64)attr.sample_type);
		err = intel_pt_synth_event(session, &attr, id);
		if (err) {
			pr_err("%s: failed to synthesize 'transactions' event type\n",
			       __func__);
			return err;
		}
		pt->sample_transactions = true;
		pt->transactions_id = id;
		id += 1;
		evlist__for_each(evlist, evsel) {
			if (evsel->id && evsel->id[0] == pt->transactions_id) {
				if (evsel->name)
					zfree(&evsel->name);
				evsel->name = strdup("transactions");
				break;
			}
		}
	}

	if (pt->synth_opts.branches) {
		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
		attr.sample_period = 1;
		attr.sample_type |= PERF_SAMPLE_ADDR;
		attr.sample_type &= ~(u64)PERF_SAMPLE_CALLCHAIN;
		pr_debug("Synthesizing 'branches' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
			 id, (u64)attr.sample_type);
		err = intel_pt_synth_event(session, &attr, id);
		if (err) {
			pr_err("%s: failed to synthesize 'branches' event type\n",
			       __func__);
			return err;
		}
		pt->sample_branches = true;
		pt->branches_sample_type = attr.sample_type;
		pt->branches_id = id;
	}

	pt->synth_needs_swap = evsel->needs_swap;

	return 0;
}

static struct perf_evsel *intel_pt_find_sched_switch(struct perf_evlist *evlist)
{
	struct perf_evsel *evsel;

	evlist__for_each_reverse(evlist, evsel) {
		const char *name = perf_evsel__name(evsel);

		if (!strcmp(name, "sched:sched_switch"))
			return evsel;
	}

	return NULL;
}

static const char * const intel_pt_info_fmts[] = {
	[INTEL_PT_PMU_TYPE]		= "  PMU Type           %"PRId64"\n",
	[INTEL_PT_TIME_SHIFT]		= "  Time Shift         %"PRIu64"\n",
	[INTEL_PT_TIME_MULT]		= "  Time Muliplier     %"PRIu64"\n",
	[INTEL_PT_TIME_ZERO]		= "  Time Zero          %"PRIu64"\n",
	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero      %"PRId64"\n",
	[INTEL_PT_TSC_BIT]		= "  TSC bit            %#"PRIx64"\n",
	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit      %#"PRIx64"\n",
	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch  %"PRId64"\n",
	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode      %"PRId64"\n",
	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps       %"PRId64"\n",
};

static void intel_pt_print_info(u64 *arr, int start, int finish)
{
	int i;

	if (!dump_trace)
		return;

	for (i = start; i <= finish; i++)
		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
}

int intel_pt_process_auxtrace_info(union perf_event *event,
				   struct perf_session *session)
{
	struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
	struct intel_pt *pt;
	int err;

	if (auxtrace_info->header.size < sizeof(struct auxtrace_info_event) +
					min_sz)
		return -EINVAL;

	pt = zalloc(sizeof(struct intel_pt));
	if (!pt)
		return -ENOMEM;

	err = auxtrace_queues__init(&pt->queues);
	if (err)
		goto err_free;

	intel_pt_log_set_name(INTEL_PT_PMU_NAME);

	pt->session = session;
	pt->machine = &session->machines.host; /* No kvm support */
	pt->auxtrace_type = auxtrace_info->type;
	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
			    INTEL_PT_PER_CPU_MMAPS);

	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
	pt->have_tsc = intel_pt_have_tsc(pt);
	pt->sampling_mode = false;
	pt->est_tsc = !pt->timeless_decoding;

	pt->unknown_thread = thread__new(999999999, 999999999);
	if (!pt->unknown_thread) {
		err = -ENOMEM;
		goto err_free_queues;
	}
	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
	if (err)
		goto err_delete_thread;
	if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
		err = -ENOMEM;
		goto err_delete_thread;
	}

	pt->auxtrace.process_event = intel_pt_process_event;
	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
	pt->auxtrace.flush_events = intel_pt_flush;
	pt->auxtrace.free_events = intel_pt_free_events;
	pt->auxtrace.free = intel_pt_free;
	session->auxtrace = &pt->auxtrace;

	if (dump_trace)
		return 0;

	if (pt->have_sched_switch == 1) {
		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
		if (!pt->switch_evsel) {
			pr_err("%s: missing sched_switch event\n", __func__);
			goto err_delete_thread;
		}
	}

	if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
		pt->synth_opts = *session->itrace_synth_opts;
	} else {
		itrace_synth_opts__set_default(&pt->synth_opts);
		if (use_browser != -1) {
			pt->synth_opts.branches = false;
			pt->synth_opts.callchain = true;
		}
	}

	if (pt->synth_opts.log)
		intel_pt_log_enable();

	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
	if (pt->tc.time_mult) {
		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);

		pt->max_non_turbo_ratio = (tsc_freq + 50000000) / 100000000;
		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
		intel_pt_log("Maximum non-turbo ratio %u\n",
			     pt->max_non_turbo_ratio);
	}

	if (pt->synth_opts.calls)
		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
				       PERF_IP_FLAG_TRACE_END;
	if (pt->synth_opts.returns)
		pt->branches_filter |= PERF_IP_FLAG_RETURN |
				       PERF_IP_FLAG_TRACE_BEGIN;

	if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
		symbol_conf.use_callchain = true;
		if (callchain_register_param(&callchain_param) < 0) {
			symbol_conf.use_callchain = false;
			pt->synth_opts.callchain = false;
		}
	}

	err = intel_pt_synth_events(pt, session);
	if (err)
		goto err_delete_thread;

	err = auxtrace_queues__process_index(&pt->queues, session);
	if (err)
		goto err_delete_thread;

	if (pt->queues.populated)
		pt->data_queued = true;

	if (pt->timeless_decoding)
		pr_debug2("Intel PT decoding without timestamps\n");

	return 0;

err_delete_thread:
	thread__delete(pt->unknown_thread);
err_free_queues:
	intel_pt_log_disable();
	auxtrace_queues__free(&pt->queues);
	session->auxtrace = NULL;
err_free:
	free(pt);
	return err;
}