efx.c 68.9 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
4
 * Copyright 2005-2009 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24 25
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
26
#include "nic.h"
27

28
#include "mcdi.h"
29
#include "workarounds.h"
30

31 32 33 34 35 36 37 38 39 40 41
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
const char *efx_loopback_mode_names[] = {
	[LOOPBACK_NONE]		= "NONE",
42
	[LOOPBACK_DATA]		= "DATAPATH",
43 44 45 46
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
	[LOOPBACK_XAUI]  	= "XAUI",
47 48 49 50 51 52 53 54
	[LOOPBACK_GMII] 	= "GMII",
	[LOOPBACK_SGMII] 	= "SGMII",
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
55 56 57 58
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
	[LOOPBACK_PCS]	 	= "PCS",
	[LOOPBACK_PMAPMD] 	= "PMA/PMD",
59 60 61 62 63 64 65 66 67
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
	[LOOPBACK_XAUI_WS]  	= "XAUI_WS",
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
	[LOOPBACK_GMII_WS] 	= "GMII_WS",
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
	[LOOPBACK_PHYXS_WS]  	= "PHYXS_WS",
68 69 70 71 72 73 74 75 76 77 78 79 80 81
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
const char *efx_reset_type_names[] = {
	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
	[RESET_TYPE_ALL]           = "ALL",
	[RESET_TYPE_WORLD]         = "WORLD",
	[RESET_TYPE_DISABLE]       = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
82
	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
83 84
};

85 86
#define EFX_MAX_MTU (9 * 1024)

87 88 89 90 91 92
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

93 94 95 96 97 98 99 100 101
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
102 103
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
104
 *
105
 * This is only used in MSI-X interrupt mode
106
 */
107
static unsigned int separate_tx_channels;
108
module_param(separate_tx_channels, uint, 0444);
109 110
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
111 112 113 114 115 116 117

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
118 119 120
 * monitor.  On Falcon-based NICs, this will:
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
121
 */
S
stephen hemminger 已提交
122
static unsigned int efx_monitor_interval = 1 * HZ;
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

/* This controls whether or not the driver will initialise devices
 * with invalid MAC addresses stored in the EEPROM or flash.  If true,
 * such devices will be initialised with a random locally-generated
 * MAC address.  This allows for loading the sfc_mtd driver to
 * reprogram the flash, even if the flash contents (including the MAC
 * address) have previously been erased.
 */
static unsigned int allow_bad_hwaddr;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 * The default (0) means to assign an interrupt to each package (level II cache)
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

170 171 172 173
static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

174 175 176 177 178 179 180 181 182 183
static unsigned irq_adapt_low_thresh = 10000;
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

static unsigned irq_adapt_high_thresh = 20000;
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

184 185 186 187 188 189 190
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

191 192 193 194 195
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
196 197

static void efx_remove_channels(struct efx_nic *efx);
198 199
static void efx_remove_port(struct efx_nic *efx);
static void efx_fini_napi(struct efx_nic *efx);
200 201 202
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
203 204 205

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
206 207
		if ((efx->state == STATE_RUNNING) ||	\
		    (efx->state == STATE_DISABLED))	\
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
			ASSERT_RTNL();			\
	} while (0)

/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
224
static int efx_process_channel(struct efx_channel *channel, int budget)
225
{
B
Ben Hutchings 已提交
226
	struct efx_nic *efx = channel->efx;
227
	int spent;
228

B
Ben Hutchings 已提交
229
	if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
230
		     !channel->enabled))
B
Ben Hutchings 已提交
231
		return 0;
232

233 234
	spent = efx_nic_process_eventq(channel, budget);
	if (spent == 0)
B
Ben Hutchings 已提交
235
		return 0;
236 237 238 239 240 241 242 243 244 245

	/* Deliver last RX packet. */
	if (channel->rx_pkt) {
		__efx_rx_packet(channel, channel->rx_pkt,
				channel->rx_pkt_csummed);
		channel->rx_pkt = NULL;
	}

	efx_rx_strategy(channel);

246
	efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
247

248
	return spent;
249 250 251 252 253 254 255 256 257 258
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
259 260 261
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
262
	channel->work_pending = false;
263 264
	smp_wmb();

265
	efx_nic_eventq_read_ack(channel);
266 267 268 269 270 271 272 273 274 275 276
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
277
	struct efx_nic *efx = channel->efx;
278
	int spent;
279

280 281 282
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
283

284
	spent = efx_process_channel(channel, budget);
285

286
	if (spent < budget) {
B
Ben Hutchings 已提交
287
		if (channel->channel < efx->n_rx_channels &&
288 289 290 291
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
292 293
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
294
					efx->type->push_irq_moderation(channel);
295
				}
296 297
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
298 299 300
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
301
					efx->type->push_irq_moderation(channel);
302
				}
303 304 305 306 307
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

308
		/* There is no race here; although napi_disable() will
309
		 * only wait for napi_complete(), this isn't a problem
310 311 312
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
313
		napi_complete(napi);
314 315 316
		efx_channel_processed(channel);
	}

317
	return spent;
318 319 320 321 322 323 324 325 326 327 328 329 330 331
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
 * Since we are touching interrupts the caller should hold the suspend lock
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

332
	BUG_ON(channel->channel >= efx->n_channels);
333 334 335
	BUG_ON(!channel->enabled);

	/* Disable interrupts and wait for ISRs to complete */
336
	efx_nic_disable_interrupts(efx);
337 338
	if (efx->legacy_irq)
		synchronize_irq(efx->legacy_irq);
339
	if (channel->irq)
340 341 342 343 344 345
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
346
	efx_process_channel(channel, channel->eventq_mask + 1);
347 348 349 350 351 352

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
353
	efx_nic_enable_interrupts(efx);
354 355 356 357 358 359 360 361 362
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
363 364 365
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

366 367
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "chan %d create event queue\n", channel->channel);
368

369 370 371 372 373 374
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

375
	return efx_nic_probe_eventq(channel);
376 377 378
}

/* Prepare channel's event queue */
379
static void efx_init_eventq(struct efx_channel *channel)
380
{
381 382
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
383 384 385

	channel->eventq_read_ptr = 0;

386
	efx_nic_init_eventq(channel);
387 388 389 390
}

static void efx_fini_eventq(struct efx_channel *channel)
{
391 392
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
393

394
	efx_nic_fini_eventq(channel);
395 396 397 398
}

static void efx_remove_eventq(struct efx_channel *channel)
{
399 400
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
401

402
	efx_nic_remove_eventq(channel);
403 404 405 406 407 408 409 410
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
/* Allocate and initialise a channel structure, optionally copying
 * parameters (but not resources) from an old channel structure. */
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

	if (old_channel) {
		channel = kmalloc(sizeof(*channel), GFP_KERNEL);
		if (!channel)
			return NULL;

		*channel = *old_channel;

		memset(&channel->eventq, 0, sizeof(channel->eventq));

		rx_queue = &channel->rx_queue;
		rx_queue->buffer = NULL;
		memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));

		for (j = 0; j < EFX_TXQ_TYPES; j++) {
			tx_queue = &channel->tx_queue[j];
			if (tx_queue->channel)
				tx_queue->channel = channel;
			tx_queue->buffer = NULL;
			memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
		}
	} else {
		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
		if (!channel)
			return NULL;

		channel->efx = efx;
		channel->channel = i;

		for (j = 0; j < EFX_TXQ_TYPES; j++) {
			tx_queue = &channel->tx_queue[j];
			tx_queue->efx = efx;
			tx_queue->queue = i * EFX_TXQ_TYPES + j;
			tx_queue->channel = channel;
		}
	}

	spin_lock_init(&channel->tx_stop_lock);
	atomic_set(&channel->tx_stop_count, 1);

	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

468 469 470 471 472 473
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

474 475
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

	rc = efx_probe_eventq(channel);
	if (rc)
		goto fail1;

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
			goto fail2;
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
			goto fail3;
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

 fail3:
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
 fail2:
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
 fail1:
	return rc;
}


508 509 510 511 512 513 514 515
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;
	const char *type = "";
	int number;

	efx_for_each_channel(channel, efx) {
		number = channel->channel;
B
Ben Hutchings 已提交
516 517
		if (efx->n_channels > efx->n_rx_channels) {
			if (channel->channel < efx->n_rx_channels) {
518 519 520
				type = "-rx";
			} else {
				type = "-tx";
B
Ben Hutchings 已提交
521
				number -= efx->n_rx_channels;
522 523
			}
		}
524 525
		snprintf(efx->channel_name[channel->channel],
			 sizeof(efx->channel_name[0]),
526 527 528 529
			 "%s%s-%d", efx->name, type, number);
	}
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

	efx_for_each_channel(channel, efx) {
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

556 557 558 559
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
560
static void efx_init_channels(struct efx_nic *efx)
561 562 563 564 565
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

566 567 568 569 570 571
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
572
			      efx->type->rx_buffer_hash_size +
573
			      efx->type->rx_buffer_padding);
574 575
	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
					 sizeof(struct efx_rx_page_state));
576 577 578

	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
579 580
		netif_dbg(channel->efx, drv, channel->efx->net_dev,
			  "init chan %d\n", channel->channel);
581

582
		efx_init_eventq(channel);
583

584 585
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
586 587 588 589

		/* The rx buffer allocation strategy is MTU dependent */
		efx_rx_strategy(channel);

590 591
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_init_rx_queue(rx_queue);
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

		WARN_ON(channel->rx_pkt != NULL);
		efx_rx_strategy(channel);
	}
}

/* This enables event queue processing and packet transmission.
 *
 * Note that this function is not allowed to fail, since that would
 * introduce too much complexity into the suspend/resume path.
 */
static void efx_start_channel(struct efx_channel *channel)
{
	struct efx_rx_queue *rx_queue;

607 608
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "starting chan %d\n", channel->channel);
609

610 611 612
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set. */
613 614
	channel->work_pending = false;
	channel->enabled = true;
615
	smp_wmb();
616

617
	/* Fill the queues before enabling NAPI */
618 619
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_fast_push_rx_descriptors(rx_queue);
620 621

	napi_enable(&channel->napi_str);
622 623 624 625 626 627 628 629 630 631 632
}

/* This disables event queue processing and packet transmission.
 * This function does not guarantee that all queue processing
 * (e.g. RX refill) is complete.
 */
static void efx_stop_channel(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

633 634
	netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
		  "stop chan %d\n", channel->channel);
635

636
	channel->enabled = false;
637 638 639 640 641 642 643 644
	napi_disable(&channel->napi_str);
}

static void efx_fini_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
645
	int rc;
646 647 648 649

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

650
	rc = efx_nic_flush_queues(efx);
651 652 653 654 655
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset. */
656 657
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
658 659
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
660
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
661
	} else {
662 663
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
664
	}
665

666
	efx_for_each_channel(channel, efx) {
667 668
		netif_dbg(channel->efx, drv, channel->efx->net_dev,
			  "shut down chan %d\n", channel->channel);
669 670 671 672 673 674 675 676 677 678 679 680 681 682

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_fini_tx_queue(tx_queue);
		efx_fini_eventq(channel);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

683 684
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
685 686 687 688 689 690 691 692

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
}

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
	unsigned i;
	int rc;

	efx_stop_all(efx);
	efx_fini_channels(efx);

	/* Clone channels */
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx_alloc_channel(efx, i, efx->channel[i]);
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

	rc = efx_probe_channels(efx);
	if (rc)
		goto rollback;

	/* Destroy old channels */
	for (i = 0; i < efx->n_channels; i++)
		efx_remove_channel(other_channel[i]);
out:
	/* Free unused channel structures */
	for (i = 0; i < efx->n_channels; i++)
		kfree(other_channel[i]);

	efx_init_channels(efx);
	efx_start_all(efx);
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

762
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
763
{
764
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
765 766 767 768 769 770 771 772 773 774 775 776
}

/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
777
void efx_link_status_changed(struct efx_nic *efx)
778
{
779 780
	struct efx_link_state *link_state = &efx->link_state;

781 782 783 784 785 786 787
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

B
Ben Hutchings 已提交
788 789 790 791 792
	if (efx->port_inhibited) {
		netif_carrier_off(efx->net_dev);
		return;
	}

793
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
794 795
		efx->n_link_state_changes++;

796
		if (link_state->up)
797 798 799 800 801 802
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
803
	if (link_state->up) {
804 805 806 807 808
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
809
	} else {
810
		netif_info(efx, link, efx->net_dev, "link down\n");
811 812 813 814
	}

}

B
Ben Hutchings 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

843 844
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
845 846 847 848 849 850 851 852
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
853
{
B
Ben Hutchings 已提交
854 855
	enum efx_phy_mode phy_mode;
	int rc;
856

B
Ben Hutchings 已提交
857
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
858

859 860 861 862 863 864
	/* Serialise the promiscuous flag with efx_set_multicast_list. */
	if (efx_dev_registered(efx)) {
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
	}

B
Ben Hutchings 已提交
865 866
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
867 868 869 870 871
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
872
	rc = efx->type->reconfigure_port(efx);
873

B
Ben Hutchings 已提交
874 875
	if (rc)
		efx->phy_mode = phy_mode;
876

B
Ben Hutchings 已提交
877
	return rc;
878 879 880 881
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
882
int efx_reconfigure_port(struct efx_nic *efx)
883
{
B
Ben Hutchings 已提交
884 885
	int rc;

886 887 888
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
889
	rc = __efx_reconfigure_port(efx);
890
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
891 892

	return rc;
893 894
}

895 896 897
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
898 899 900 901 902
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
903
	if (efx->port_enabled) {
904
		efx->type->push_multicast_hash(efx);
905 906
		efx->mac_op->reconfigure(efx);
	}
907 908 909
	mutex_unlock(&efx->mac_lock);
}

910 911 912 913
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

914
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
915

916 917 918
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

919 920
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
921
	if (rc)
922
		return rc;
923 924 925 926 927

	/* Sanity check MAC address */
	if (is_valid_ether_addr(efx->mac_address)) {
		memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
	} else {
928 929
		netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
			  efx->mac_address);
930 931 932 933 934
		if (!allow_bad_hwaddr) {
			rc = -EINVAL;
			goto err;
		}
		random_ether_addr(efx->net_dev->dev_addr);
935 936 937
		netif_info(efx, probe, efx->net_dev,
			   "using locally-generated MAC %pM\n",
			   efx->net_dev->dev_addr);
938 939 940 941 942
	}

	return 0;

 err:
943
	efx->type->remove_port(efx);
944 945 946 947 948 949 950
	return rc;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

951
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
952

953 954
	mutex_lock(&efx->mac_lock);

955
	rc = efx->phy_op->init(efx);
956
	if (rc)
957
		goto fail1;
958

959
	efx->port_initialized = true;
960

B
Ben Hutchings 已提交
961 962 963 964 965 966 967 968 969
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
	efx->mac_op->reconfigure(efx);

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

970
	mutex_unlock(&efx->mac_lock);
971
	return 0;
972

973
fail2:
974
	efx->phy_op->fini(efx);
975 976
fail1:
	mutex_unlock(&efx->mac_lock);
977
	return rc;
978 979 980 981
}

static void efx_start_port(struct efx_nic *efx)
{
982
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
983 984 985
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
986
	efx->port_enabled = true;
987 988 989

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
990
	efx->type->push_multicast_hash(efx);
991 992
	efx->mac_op->reconfigure(efx);

993 994 995
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
996
/* Prevent efx_mac_work() and efx_monitor() from working */
997 998
static void efx_stop_port(struct efx_nic *efx)
{
999
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1000 1001

	mutex_lock(&efx->mac_lock);
1002
	efx->port_enabled = false;
1003 1004 1005
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1006
	if (efx_dev_registered(efx)) {
1007 1008
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
1009 1010 1011 1012 1013
	}
}

static void efx_fini_port(struct efx_nic *efx)
{
1014
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1015 1016 1017 1018

	if (!efx->port_initialized)
		return;

1019
	efx->phy_op->fini(efx);
1020
	efx->port_initialized = false;
1021

1022
	efx->link_state.up = false;
1023 1024 1025 1026 1027
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1028
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1029

1030
	efx->type->remove_port(efx);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

1046
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1047 1048 1049

	rc = pci_enable_device(pci_dev);
	if (rc) {
1050 1051
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
		if (pci_dma_supported(pci_dev, dma_mask) &&
		    ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
			break;
		dma_mask >>= 1;
	}
	if (rc) {
1069 1070
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1071 1072
		goto fail2;
	}
1073 1074
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1075 1076 1077 1078 1079 1080
	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
	if (rc) {
		/* pci_set_consistent_dma_mask() is not *allowed* to
		 * fail with a mask that pci_set_dma_mask() accepted,
		 * but just in case...
		 */
1081 1082
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1083 1084 1085
		goto fail2;
	}

1086 1087
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1088
	if (rc) {
1089 1090
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1091 1092 1093 1094 1095 1096
		rc = -EIO;
		goto fail3;
	}
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
	if (!efx->membase) {
1097 1098 1099 1100
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
			  (unsigned long long)efx->membase_phys,
			  efx->type->mem_map_size);
1101 1102 1103
		rc = -ENOMEM;
		goto fail4;
	}
1104 1105 1106 1107
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
		  (unsigned long long)efx->membase_phys,
		  efx->type->mem_map_size, efx->membase);
1108 1109 1110 1111

	return 0;

 fail4:
1112
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1113
 fail3:
1114
	efx->membase_phys = 0;
1115 1116 1117 1118 1119 1120 1121 1122
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1123
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1124 1125 1126 1127 1128 1129 1130

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1131
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1132
		efx->membase_phys = 0;
1133 1134 1135 1136 1137
	}

	pci_disable_device(efx->pci_dev);
}

B
Ben Hutchings 已提交
1138 1139 1140
/* Get number of channels wanted.  Each channel will have its own IRQ,
 * 1 RX queue and/or 2 TX queues. */
static int efx_wanted_channels(void)
1141
{
R
Rusty Russell 已提交
1142
	cpumask_var_t core_mask;
1143 1144 1145
	int count;
	int cpu;

1146
	if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
R
Rusty Russell 已提交
1147
		printk(KERN_WARNING
1148
		       "sfc: RSS disabled due to allocation failure\n");
R
Rusty Russell 已提交
1149 1150 1151
		return 1;
	}

1152 1153
	count = 0;
	for_each_online_cpu(cpu) {
R
Rusty Russell 已提交
1154
		if (!cpumask_test_cpu(cpu, core_mask)) {
1155
			++count;
R
Rusty Russell 已提交
1156
			cpumask_or(core_mask, core_mask,
1157
				   topology_core_cpumask(cpu));
1158 1159 1160
		}
	}

R
Rusty Russell 已提交
1161
	free_cpumask_var(core_mask);
1162 1163 1164 1165 1166 1167
	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1168 1169
static void efx_probe_interrupts(struct efx_nic *efx)
{
1170 1171
	int max_channels =
		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1172 1173 1174
	int rc, i;

	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1175
		struct msix_entry xentries[EFX_MAX_CHANNELS];
B
Ben Hutchings 已提交
1176
		int n_channels;
1177

B
Ben Hutchings 已提交
1178 1179 1180 1181
		n_channels = efx_wanted_channels();
		if (separate_tx_channels)
			n_channels *= 2;
		n_channels = min(n_channels, max_channels);
1182

B
Ben Hutchings 已提交
1183
		for (i = 0; i < n_channels; i++)
1184
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1185
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1186
		if (rc > 0) {
1187 1188 1189 1190 1191
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
				  " available (%d < %d).\n", rc, n_channels);
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1192 1193
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1194
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1195
					     n_channels);
1196 1197 1198
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
			efx->n_channels = n_channels;
			if (separate_tx_channels) {
				efx->n_tx_channels =
					max(efx->n_channels / 2, 1U);
				efx->n_rx_channels =
					max(efx->n_channels -
					    efx->n_tx_channels, 1U);
			} else {
				efx->n_tx_channels = efx->n_channels;
				efx->n_rx_channels = efx->n_channels;
			}
			for (i = 0; i < n_channels; i++)
1211 1212
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1213 1214 1215
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1216 1217
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1218 1219 1220 1221 1222
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1223
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1224 1225
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1226 1227
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1228
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1229
		} else {
1230 1231
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1232 1233 1234 1235 1236 1237
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1238
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1239 1240
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1241 1242 1243 1244 1245 1246 1247 1248 1249
		efx->legacy_irq = efx->pci_dev->irq;
	}
}

static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1250
	efx_for_each_channel(channel, efx)
1251 1252 1253 1254 1255 1256 1257 1258
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
struct efx_tx_queue *
efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
{
	unsigned tx_channel_offset =
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
	EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
			    type >= EFX_TXQ_TYPES);
	return &efx->channel[tx_channel_offset + index]->tx_queue[type];
}

1269
static void efx_set_channels(struct efx_nic *efx)
1270
{
B
Ben Hutchings 已提交
1271
	struct efx_channel *channel;
1272
	struct efx_tx_queue *tx_queue;
B
Ben Hutchings 已提交
1273 1274
	unsigned tx_channel_offset =
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1275

1276 1277
	/* Channel pointers were set in efx_init_struct() but we now
	 * need to clear them for TX queues in any RX-only channels. */
B
Ben Hutchings 已提交
1278
	efx_for_each_channel(channel, efx) {
1279 1280
		if (channel->channel - tx_channel_offset >=
		    efx->n_tx_channels) {
B
Ben Hutchings 已提交
1281
			efx_for_each_channel_tx_queue(tx_queue, channel)
1282
				tx_queue->channel = NULL;
B
Ben Hutchings 已提交
1283
		}
1284
	}
1285 1286 1287 1288
}

static int efx_probe_nic(struct efx_nic *efx)
{
1289
	size_t i;
1290 1291
	int rc;

1292
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1293 1294

	/* Carry out hardware-type specific initialisation */
1295
	rc = efx->type->probe(efx);
1296 1297 1298
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1299
	/* Determine the number of channels and queues by trying to hook
1300 1301 1302
	 * in MSI-X interrupts. */
	efx_probe_interrupts(efx);

1303 1304
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1305 1306
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
		efx->rx_indir_table[i] = i % efx->n_rx_channels;
1307

1308
	efx_set_channels(efx);
1309 1310
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1311 1312

	/* Initialise the interrupt moderation settings */
1313
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1314 1315 1316 1317 1318 1319

	return 0;
}

static void efx_remove_nic(struct efx_nic *efx)
{
1320
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1321 1322

	efx_remove_interrupts(efx);
1323
	efx->type->remove(efx);
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1338
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1339 1340 1341 1342 1343
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1344
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1345 1346 1347
		goto fail2;
	}

1348
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1349 1350 1351
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail3;
1352

B
Ben Hutchings 已提交
1353 1354 1355 1356 1357 1358 1359
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
		goto fail4;
	}

1360 1361
	return 0;

B
Ben Hutchings 已提交
1362 1363
 fail4:
	efx_remove_channels(efx);
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

/* Called after previous invocation(s) of efx_stop_all, restarts the
 * port, kernel transmit queue, NAPI processing and hardware interrupts,
 * and ensures that the port is scheduled to be reconfigured.
 * This function is safe to call multiple times when the NIC is in any
 * state. */
static void efx_start_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
	if (efx->port_enabled)
		return;
	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
		return;
1389
	if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1390 1391 1392 1393 1394 1395
		return;

	/* Mark the port as enabled so port reconfigurations can start, then
	 * restart the transmit interface early so the watchdog timer stops */
	efx_start_port(efx);

B
Ben Hutchings 已提交
1396 1397 1398
	efx_for_each_channel(channel, efx) {
		if (efx_dev_registered(efx))
			efx_wake_queue(channel);
1399
		efx_start_channel(channel);
B
Ben Hutchings 已提交
1400
	}
1401

1402
	efx_nic_enable_interrupts(efx);
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412
	/* Switch to event based MCDI completions after enabling interrupts.
	 * If a reset has been scheduled, then we need to stay in polled mode.
	 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
	 * reset_pending [modified from an atomic context], we instead guarantee
	 * that efx_mcdi_mode_poll() isn't reverted erroneously */
	efx_mcdi_mode_event(efx);
	if (efx->reset_pending != RESET_TYPE_NONE)
		efx_mcdi_mode_poll(efx);

1413 1414 1415 1416
	/* Start the hardware monitor if there is one. Otherwise (we're link
	 * event driven), we have to poll the PHY because after an event queue
	 * flush, we could have a missed a link state change */
	if (efx->type->monitor != NULL) {
1417 1418
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1419 1420 1421 1422 1423 1424
	} else {
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1425

1426
	efx->type->start_stats(efx);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
	/* Make sure the hardware monitor is stopped */
	cancel_delayed_work_sync(&efx->monitor_work);
	/* Stop scheduled port reconfigurations */
1437
	cancel_work_sync(&efx->mac_work);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
}

/* Quiesce hardware and software without bringing the link down.
 * Safe to call multiple times, when the nic and interface is in any
 * state. The caller is guaranteed to subsequently be in a position
 * to modify any hardware and software state they see fit without
 * taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1455
	efx->type->stop_stats(efx);
1456

1457 1458 1459
	/* Switch to MCDI polling on Siena before disabling interrupts */
	efx_mcdi_mode_poll(efx);

1460
	/* Disable interrupts and wait for ISR to complete */
1461
	efx_nic_disable_interrupts(efx);
1462 1463
	if (efx->legacy_irq)
		synchronize_irq(efx->legacy_irq);
1464
	efx_for_each_channel(channel, efx) {
1465 1466
		if (channel->irq)
			synchronize_irq(channel->irq);
1467
	}
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

	/* Stop all NAPI processing and synchronous rx refills */
	efx_for_each_channel(channel, efx)
		efx_stop_channel(channel);

	/* Stop all asynchronous port reconfigurations. Since all
	 * event processing has already been stopped, there is no
	 * window to loose phy events */
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1478
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1479 1480 1481 1482
	efx_flush_all(efx);

	/* Stop the kernel transmit interface late, so the watchdog
	 * timer isn't ticking over the flush */
1483
	if (efx_dev_registered(efx)) {
B
Ben Hutchings 已提交
1484 1485 1486
		struct efx_channel *channel;
		efx_for_each_channel(channel, efx)
			efx_stop_queue(channel);
1487 1488 1489 1490 1491 1492 1493
		netif_tx_lock_bh(efx->net_dev);
		netif_tx_unlock_bh(efx->net_dev);
	}
}

static void efx_remove_all(struct efx_nic *efx)
{
B
Ben Hutchings 已提交
1494
	efx_remove_filters(efx);
1495
	efx_remove_channels(efx);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1506 1507 1508 1509 1510 1511 1512 1513 1514
static unsigned irq_mod_ticks(int usecs, int resolution)
{
	if (usecs <= 0)
		return 0; /* cannot receive interrupts ahead of time :-) */
	if (usecs < resolution)
		return 1; /* never round down to 0 */
	return usecs / resolution;
}

1515
/* Set interrupt moderation parameters */
1516 1517
void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
			     bool rx_adaptive)
1518
{
1519
	struct efx_channel *channel;
1520 1521
	unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
	unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
1522 1523 1524

	EFX_ASSERT_RESET_SERIALISED(efx);

1525
	efx->irq_rx_adaptive = rx_adaptive;
1526
	efx->irq_rx_moderation = rx_ticks;
1527 1528 1529 1530 1531 1532
	efx_for_each_channel(channel, efx) {
		if (efx_channel_get_rx_queue(channel))
			channel->irq_moderation = rx_ticks;
		else if (efx_channel_get_tx_queue(channel, 0))
			channel->irq_moderation = tx_ticks;
	}
1533 1534 1535 1536 1537 1538 1539 1540
}

/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1541
/* Run periodically off the general workqueue */
1542 1543 1544 1545 1546
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1547 1548 1549
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1550
	BUG_ON(efx->type->monitor == NULL);
1551 1552 1553

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1554 1555 1556 1557 1558 1559
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1576
	struct efx_nic *efx = netdev_priv(net_dev);
1577
	struct mii_ioctl_data *data = if_mii(ifr);
1578 1579 1580

	EFX_ASSERT_RESET_SERIALISED(efx);

1581 1582 1583 1584 1585 1586
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

static int efx_init_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
		channel->napi_dev = efx->net_dev;
1601 1602
		netif_napi_add(channel->napi_dev, &channel->napi_str,
			       efx_poll, napi_weight);
1603 1604 1605 1606 1607 1608 1609 1610 1611
	}
	return 0;
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
1612 1613
		if (channel->napi_dev)
			netif_napi_del(&channel->napi_str);
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
		channel->napi_dev = NULL;
	}
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1632
	struct efx_nic *efx = netdev_priv(net_dev);
1633 1634
	struct efx_channel *channel;

1635
	efx_for_each_channel(channel, efx)
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1650
	struct efx_nic *efx = netdev_priv(net_dev);
1651 1652
	EFX_ASSERT_RESET_SERIALISED(efx);

1653 1654
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1655

1656 1657
	if (efx->state == STATE_DISABLED)
		return -EIO;
1658 1659
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1660 1661
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1662

1663 1664 1665 1666
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	efx_start_all(efx);
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1677
	struct efx_nic *efx = netdev_priv(net_dev);
1678

1679 1680
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1681

1682 1683 1684 1685 1686 1687
	if (efx->state != STATE_DISABLED) {
		/* Stop the device and flush all the channels */
		efx_stop_all(efx);
		efx_fini_channels(efx);
		efx_init_channels(efx);
	}
1688 1689 1690 1691

	return 0;
}

1692
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1693
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
1694
{
1695
	struct efx_nic *efx = netdev_priv(net_dev);
1696 1697
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1698
	spin_lock_bh(&efx->stats_lock);
1699
	efx->type->update_stats(efx);
1700
	spin_unlock_bh(&efx->stats_lock);
1701 1702 1703 1704 1705

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1706
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1730
	struct efx_nic *efx = netdev_priv(net_dev);
1731

1732 1733 1734
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1735

1736
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1737 1738 1739 1740 1741 1742
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1743
	struct efx_nic *efx = netdev_priv(net_dev);
1744 1745 1746 1747 1748 1749 1750 1751 1752
	int rc = 0;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

	efx_stop_all(efx);

1753
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1754 1755

	efx_fini_channels(efx);
B
Ben Hutchings 已提交
1756 1757 1758 1759

	mutex_lock(&efx->mac_lock);
	/* Reconfigure the MAC before enabling the dma queues so that
	 * the RX buffers don't overflow */
1760
	net_dev->mtu = new_mtu;
B
Ben Hutchings 已提交
1761 1762 1763
	efx->mac_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

1764
	efx_init_channels(efx);
1765 1766 1767 1768 1769 1770 1771

	efx_start_all(efx);
	return rc;
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1772
	struct efx_nic *efx = netdev_priv(net_dev);
1773 1774 1775 1776 1777 1778
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (!is_valid_ether_addr(new_addr)) {
1779 1780 1781
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
1782 1783 1784 1785 1786 1787
		return -EINVAL;
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
1788 1789 1790
	mutex_lock(&efx->mac_lock);
	efx->mac_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);
1791 1792 1793 1794

	return 0;
}

1795
/* Context: netif_addr_lock held, BHs disabled. */
1796 1797
static void efx_set_multicast_list(struct net_device *net_dev)
{
1798
	struct efx_nic *efx = netdev_priv(net_dev);
1799
	struct netdev_hw_addr *ha;
1800 1801 1802 1803
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

1804
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1805 1806

	/* Build multicast hash table */
1807
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1808 1809 1810
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
1811 1812
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
1813 1814 1815 1816
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
			set_bit_le(bit, mc_hash->byte);
		}

1817 1818 1819 1820 1821 1822
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
		set_bit_le(0xff, mc_hash->byte);
	}
1823

1824 1825 1826
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
1827 1828
}

S
Stephen Hemminger 已提交
1829 1830 1831
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
1832
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
	.ndo_set_multicast_list = efx_set_multicast_list,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
};

1845 1846 1847 1848 1849 1850 1851
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

1852 1853 1854
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
1855
	struct net_device *net_dev = ptr;
1856

1857 1858 1859
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
1860 1861 1862 1863 1864 1865 1866 1867

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
1868 1869 1870 1871 1872 1873 1874 1875
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

1876 1877 1878 1879 1880 1881 1882
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
1883
	net_dev->netdev_ops = &efx_netdev_ops;
1884 1885 1886
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);

	/* Clear MAC statistics */
1887
	efx->mac_op->update_stats(efx);
1888 1889
	memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));

1890
	rtnl_lock();
1891 1892 1893 1894

	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
1895
	efx_update_name(efx);
1896 1897 1898 1899 1900 1901 1902 1903

	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(efx->net_dev);

1904
	rtnl_unlock();
1905

B
Ben Hutchings 已提交
1906 1907
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
1908 1909
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
1910 1911 1912
		goto fail_registered;
	}

1913
	return 0;
B
Ben Hutchings 已提交
1914

1915 1916
fail_locked:
	rtnl_unlock();
1917
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
1918 1919
	return rc;

B
Ben Hutchings 已提交
1920 1921 1922
fail_registered:
	unregister_netdev(net_dev);
	return rc;
1923 1924 1925 1926
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
1927
	struct efx_channel *channel;
1928 1929 1930 1931 1932
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

1933
	BUG_ON(netdev_priv(efx->net_dev) != efx);
1934 1935 1936 1937

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
1938 1939 1940 1941
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_release_tx_buffers(tx_queue);
	}
1942

1943
	if (efx_dev_registered(efx)) {
1944
		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
B
Ben Hutchings 已提交
1945
		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
		unregister_netdev(efx->net_dev);
	}
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
1956 1957
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
1958
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
1959 1960 1961
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
1962 1963
	efx_stop_all(efx);
	mutex_lock(&efx->mac_lock);
1964
	mutex_lock(&efx->spi_lock);
B
Ben Hutchings 已提交
1965

1966
	efx_fini_channels(efx);
1967 1968
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
1969
	efx->type->fini(efx);
1970 1971
}

B
Ben Hutchings 已提交
1972 1973 1974 1975 1976
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
1977
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
1978 1979 1980
{
	int rc;

B
Ben Hutchings 已提交
1981
	EFX_ASSERT_RESET_SERIALISED(efx);
1982

1983
	rc = efx->type->init(efx);
1984
	if (rc) {
1985
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
1986
		goto fail;
1987 1988
	}

1989 1990 1991
	if (!ok)
		goto fail;

1992
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1993 1994 1995 1996
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
1997 1998
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
1999 2000
	}

2001
	efx->mac_op->reconfigure(efx);
2002

2003
	efx_init_channels(efx);
B
Ben Hutchings 已提交
2004
	efx_restore_filters(efx);
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

	mutex_unlock(&efx->spi_lock);
	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2015

2016
	mutex_unlock(&efx->spi_lock);
B
Ben Hutchings 已提交
2017 2018
	mutex_unlock(&efx->mac_lock);

2019 2020 2021
	return rc;
}

2022 2023
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2024
 *
2025
 * Caller must hold the rtnl_lock.
2026
 */
2027
int efx_reset(struct efx_nic *efx, enum reset_type method)
2028
{
2029 2030
	int rc, rc2;
	bool disabled;
2031

2032 2033
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2034

B
Ben Hutchings 已提交
2035
	efx_reset_down(efx, method);
2036

2037
	rc = efx->type->reset(efx, method);
2038
	if (rc) {
2039
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2040
		goto out;
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	}

	/* Allow resets to be rescheduled. */
	efx->reset_pending = RESET_TYPE_NONE;

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2052
out:
2053
	/* Leave device stopped if necessary */
2054 2055 2056 2057 2058 2059
	disabled = rc || method == RESET_TYPE_DISABLE;
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2060 2061
	}

2062
	if (disabled) {
2063
		dev_close(efx->net_dev);
2064
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2065 2066
		efx->state = STATE_DISABLED;
	} else {
2067
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2068
	}
2069 2070 2071 2072 2073 2074 2075 2076
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2077
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2078

2079 2080 2081
	if (efx->reset_pending == RESET_TYPE_NONE)
		return;

2082 2083 2084
	/* If we're not RUNNING then don't reset. Leave the reset_pending
	 * flag set so that efx_pci_probe_main will be retried */
	if (efx->state != STATE_RUNNING) {
2085 2086
		netif_info(efx, drv, efx->net_dev,
			   "scheduled reset quenched. NIC not RUNNING\n");
2087 2088 2089 2090
		return;
	}

	rtnl_lock();
2091
	(void)efx_reset(efx, efx->reset_pending);
2092
	rtnl_unlock();
2093 2094 2095 2096 2097 2098 2099
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	if (efx->reset_pending != RESET_TYPE_NONE) {
2100 2101
		netif_info(efx, drv, efx->net_dev,
			   "quenching already scheduled reset\n");
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
		return;
	}

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
		break;
	case RESET_TYPE_RX_RECOVERY:
	case RESET_TYPE_RX_DESC_FETCH:
	case RESET_TYPE_TX_DESC_FETCH:
	case RESET_TYPE_TX_SKIP:
		method = RESET_TYPE_INVISIBLE;
		break;
2118
	case RESET_TYPE_MC_FAILURE:
2119 2120 2121 2122 2123 2124
	default:
		method = RESET_TYPE_ALL;
		break;
	}

	if (method != type)
2125 2126 2127
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2128
	else
2129 2130
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2131 2132 2133

	efx->reset_pending = method;

2134 2135 2136 2137
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2138
	queue_work(reset_workqueue, &efx->reset_work);
2139 2140 2141 2142 2143 2144 2145 2146 2147
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2148
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2149
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
2150
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2151
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
2152
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2153 2154 2155 2156
	{PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
	 .driver_data = (unsigned long) &siena_a0_nic_type},
	{PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2157 2158 2159 2160 2161
	{0}			/* end of list */
};

/**************************************************************************
 *
2162
 * Dummy PHY/MAC operations
2163
 *
2164
 * Can be used for some unimplemented operations
2165 2166 2167 2168 2169 2170 2171 2172 2173
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2174 2175

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2176 2177 2178
{
	return false;
}
2179 2180 2181

static struct efx_phy_operations efx_dummy_phy_operations = {
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2182
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2183
	.poll		 = efx_port_dummy_op_poll,
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2199
	int i;
2200 2201 2202 2203

	/* Initialise common structures */
	memset(efx, 0, sizeof(*efx));
	spin_lock_init(&efx->biu_lock);
2204
	mutex_init(&efx->mdio_lock);
2205
	mutex_init(&efx->spi_lock);
2206 2207 2208
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2209 2210 2211
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
	efx->pci_dev = pci_dev;
2212
	efx->msg_enable = debug;
2213 2214 2215 2216 2217
	efx->state = STATE_INIT;
	efx->reset_pending = RESET_TYPE_NONE;
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2218
	efx->rx_checksum_enabled = true;
2219 2220
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
2221
	efx->mac_op = type->default_mac_ops;
2222
	efx->phy_op = &efx_dummy_phy_operations;
2223
	efx->mdio.dev = net_dev;
2224
	INIT_WORK(&efx->mac_work, efx_mac_work);
2225 2226

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2227 2228 2229
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
	}

	efx->type = type;

	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2240 2241 2242 2243
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2244
	if (!efx->workqueue)
2245
		goto fail;
2246

2247
	return 0;
2248 2249 2250 2251

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2252 2253 2254 2255
}

static void efx_fini_struct(struct efx_nic *efx)
{
2256 2257 2258 2259 2260
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2278
	efx_nic_fini_interrupt(efx);
2279 2280
	efx_fini_channels(efx);
	efx_fini_port(efx);
2281
	efx->type->fini(efx);
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	efx->state = STATE_FINI;
	dev_close(efx->net_dev);

	/* Allow any queued efx_resets() to complete */
	rtnl_unlock();

	efx_unregister_netdev(efx);

2307 2308
	efx_mtd_remove(efx);

2309 2310 2311 2312
	/* Wait for any scheduled resets to complete. No more will be
	 * scheduled from this point because efx_stop_all() has been
	 * called, we are no longer registered with driverlink, and
	 * the net_device's have been removed. */
2313
	cancel_work_sync(&efx->reset_work);
2314 2315 2316 2317

	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2318
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

	pci_set_drvdata(pci_dev, NULL);
	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
};

/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

	rc = efx_init_napi(efx);
	if (rc)
		goto fail2;

2341
	rc = efx->type->init(efx);
2342
	if (rc) {
2343 2344
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2345
		goto fail3;
2346 2347 2348 2349
	}

	rc = efx_init_port(efx);
	if (rc) {
2350 2351
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2352
		goto fail4;
2353 2354
	}

2355
	efx_init_channels(efx);
2356

2357
	rc = efx_nic_init_interrupt(efx);
2358
	if (rc)
2359
		goto fail5;
2360 2361 2362

	return 0;

2363
 fail5:
2364
	efx_fini_channels(efx);
2365 2366
	efx_fini_port(efx);
 fail4:
2367
	efx->type->fini(efx);
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
 fail3:
	efx_fini_napi(efx);
 fail2:
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
 * theoretically).  It sets up PCI mappings, tests and resets the NIC,
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
				   const struct pci_device_id *entry)
{
	struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
	struct net_device *net_dev;
	struct efx_nic *efx;
	int i, rc;

	/* Allocate and initialise a struct net_device and struct efx_nic */
B
Ben Hutchings 已提交
2394
	net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
2395 2396
	if (!net_dev)
		return -ENOMEM;
2397
	net_dev->features |= (type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2398 2399
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
			      NETIF_F_GRO);
B
Ben Hutchings 已提交
2400 2401
	if (type->offload_features & NETIF_F_V6_CSUM)
		net_dev->features |= NETIF_F_TSO6;
2402 2403
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2404
				   NETIF_F_HIGHDMA | NETIF_F_TSO);
2405
	efx = netdev_priv(net_dev);
2406
	pci_set_drvdata(pci_dev, efx);
2407
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2408 2409 2410 2411
	rc = efx_init_struct(efx, type, pci_dev, net_dev);
	if (rc)
		goto fail1;

2412 2413
	netif_info(efx, probe, efx->net_dev,
		   "Solarflare Communications NIC detected\n");
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428

	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

	/* No serialisation is required with the reset path because
	 * we're in STATE_INIT. */
	for (i = 0; i < 5; i++) {
		rc = efx_pci_probe_main(efx);

		/* Serialise against efx_reset(). No more resets will be
		 * scheduled since efx_stop_all() has been called, and we
		 * have not and never have been registered with either
		 * the rtnetlink or driverlink layers. */
2429
		cancel_work_sync(&efx->reset_work);
2430

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
		if (rc == 0) {
			if (efx->reset_pending != RESET_TYPE_NONE) {
				/* If there was a scheduled reset during
				 * probe, the NIC is probably hosed anyway */
				efx_pci_remove_main(efx);
				rc = -EIO;
			} else {
				break;
			}
		}

2442 2443 2444 2445 2446 2447 2448 2449 2450
		/* Retry if a recoverably reset event has been scheduled */
		if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
		    (efx->reset_pending != RESET_TYPE_ALL))
			goto fail3;

		efx->reset_pending = RESET_TYPE_NONE;
	}

	if (rc) {
2451
		netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
2452 2453 2454
		goto fail4;
	}

2455 2456
	/* Switch to the running state before we expose the device to the OS,
	 * so that dev_open()|efx_start_all() will actually start the device */
2457
	efx->state = STATE_RUNNING;
2458

2459 2460 2461 2462
	rc = efx_register_netdev(efx);
	if (rc)
		goto fail5;

2463
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2464 2465 2466 2467

	rtnl_lock();
	efx_mtd_probe(efx); /* allowed to fail */
	rtnl_unlock();
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
	return 0;

 fail5:
	efx_pci_remove_main(efx);
 fail4:
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
2478
	WARN_ON(rc > 0);
2479
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2480 2481 2482 2483
	free_netdev(net_dev);
	return rc;
}

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_FINI;

	netif_device_detach(efx->net_dev);

	efx_stop_all(efx);
	efx_fini_channels(efx);

	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_INIT;

	efx_init_channels(efx);

	mutex_lock(&efx->mac_lock);
	efx->phy_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	netif_device_attach(efx->net_dev);

	efx->state = STATE_RUNNING;

	efx->type->resume_wol(efx);

2518 2519 2520
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

	efx->reset_pending = RESET_TYPE_NONE;

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

static struct dev_pm_ops efx_pm_ops = {
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2582
static struct pci_driver efx_pci_driver = {
2583
	.name		= KBUILD_MODNAME,
2584 2585 2586
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2587
	.driver.pm	= &efx_pm_ops,
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

2610 2611 2612 2613 2614
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
2615 2616 2617 2618 2619 2620 2621 2622

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
2623 2624
	destroy_workqueue(reset_workqueue);
 err_reset:
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
2635
	destroy_workqueue(reset_workqueue);
2636 2637 2638 2639 2640 2641 2642
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

2643 2644
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
2645 2646 2647
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);