mmu.c 112.9 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31 32
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
33
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
34
#include <linux/hugetlb.h>
35
#include <linux/compiler.h>
36
#include <linux/srcu.h>
37
#include <linux/slab.h>
38
#include <linux/uaccess.h>
A
Avi Kivity 已提交
39

A
Avi Kivity 已提交
40 41
#include <asm/page.h>
#include <asm/cmpxchg.h>
42
#include <asm/io.h>
43
#include <asm/vmx.h>
A
Avi Kivity 已提交
44

45 46 47 48 49 50 51
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
52
bool tdp_enabled = false;
53

54 55 56 57
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
58 59 60
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
61
};
62

63
#undef MMU_DEBUG
64 65 66 67 68 69 70 71 72 73 74 75 76

#ifdef MMU_DEBUG

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)

#else

#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)

#endif

77
#ifdef MMU_DEBUG
78
static bool dbg = 0;
79
module_param(dbg, bool, 0644);
80
#endif
A
Avi Kivity 已提交
81

82 83 84
#ifndef MMU_DEBUG
#define ASSERT(x) do { } while (0)
#else
A
Avi Kivity 已提交
85 86 87 88 89
#define ASSERT(x)							\
	if (!(x)) {							\
		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
		       __FILE__, __LINE__, #x);				\
	}
90
#endif
A
Avi Kivity 已提交
91

92 93
#define PTE_PREFETCH_NUM		8

94
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
95 96 97 98 99
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
100
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
101 102 103 104 105 106 107 108

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
109
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
110

111 112 113
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
114 115 116 117 118

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


119
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
120 121
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
122 123 124 125 126 127
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
128 129 130 131

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 133 134
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
135

136 137
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
138

139 140 141 142 143
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

144 145
#include <trace/events/kvm.h>

146 147 148
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

149 150
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
151

152 153
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

154 155 156
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

157 158 159
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
160 161
};

162 163 164 165
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
166
	int level;
167 168 169 170 171 172 173 174
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

175 176 177 178 179 180
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

181
static struct kmem_cache *pte_list_desc_cache;
182
static struct kmem_cache *mmu_page_header_cache;
183
static struct percpu_counter kvm_total_used_mmu_pages;
184

S
Sheng Yang 已提交
185 186 187 188 189
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
190 191 192
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
193
static void mmu_free_roots(struct kvm_vcpu *vcpu);
194 195 196 197 198 199 200

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

201 202 203 204 205 206 207 208
/*
 * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
 * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
 * number.
 */
#define MMIO_SPTE_GEN_LOW_SHIFT		3
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

209
#define MMIO_GEN_SHIFT			19
210 211
#define MMIO_GEN_LOW_SHIFT		9
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 1)
212 213
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
#define MMIO_MAX_GEN			((1 << MMIO_GEN_SHIFT) - 1)
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

	WARN_ON(gen > MMIO_MAX_GEN);

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

237 238
static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
{
239 240 241 242 243 244
	/*
	 * Init kvm generation close to MMIO_MAX_GEN to easily test the
	 * code of handling generation number wrap-around.
	 */
	return (kvm_memslots(kvm)->generation +
		      MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
245 246
}

247 248
static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
			   unsigned access)
249
{
250 251
	unsigned int gen = kvm_current_mmio_generation(kvm);
	u64 mask = generation_mmio_spte_mask(gen);
252

253
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
254 255
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

256
	trace_mark_mmio_spte(sptep, gfn, access, gen);
257
	mmu_spte_set(sptep, mask);
258 259 260 261 262 263 264 265 266
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
267 268
	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
	return (spte & ~mask) >> PAGE_SHIFT;
269 270 271 272
}

static unsigned get_mmio_spte_access(u64 spte)
{
273 274
	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
	return (spte & ~mask) & ~PAGE_MASK;
275 276
}

277 278
static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			  pfn_t pfn, unsigned access)
279 280
{
	if (unlikely(is_noslot_pfn(pfn))) {
281
		mark_mmio_spte(kvm, sptep, gfn, access);
282 283 284 285 286
		return true;
	}

	return false;
}
287

288 289
static bool check_mmio_spte(struct kvm *kvm, u64 spte)
{
290 291 292 293 294 295 296
	unsigned int kvm_gen, spte_gen;

	kvm_gen = kvm_current_mmio_generation(kvm);
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
297 298
}

299 300 301 302 303
static inline u64 rsvd_bits(int s, int e)
{
	return ((1ULL << (e - s + 1)) - 1) << s;
}

S
Sheng Yang 已提交
304
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
305
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
306 307 308 309 310 311 312 313 314
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
315 316 317 318 319
static int is_cpuid_PSE36(void)
{
	return 1;
}

320 321
static int is_nx(struct kvm_vcpu *vcpu)
{
322
	return vcpu->arch.efer & EFER_NX;
323 324
}

325 326
static int is_shadow_present_pte(u64 pte)
{
327
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
328 329
}

M
Marcelo Tosatti 已提交
330 331 332 333 334
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

335
static int is_rmap_spte(u64 pte)
336
{
337
	return is_shadow_present_pte(pte);
338 339
}

340 341 342 343
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
344
	if (is_large_pte(pte))
345 346 347 348
		return 1;
	return 0;
}

349
static pfn_t spte_to_pfn(u64 pte)
350
{
351
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
352 353
}

354 355 356 357 358 359 360
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

361
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
362
static void __set_spte(u64 *sptep, u64 spte)
363
{
364
	*sptep = spte;
365 366
}

367
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
368
{
369 370 371 372 373 374 375
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
376 377 378 379 380

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
381 382 383 384 385 386

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	/* It is valid if the spte is zapped. */
	return spte == 0ull;
}
387
#else
388 389 390 391 392 393 394
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
395

396 397 398 399 400 401 402 403 404 405 406 407
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

408 409 410
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
411

412 413 414 415 416 417 418 419 420 421 422 423 424
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
425 426
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
443
	count_spte_clear(sptep, spte);
444 445 446 447 448 449 450 451 452 453 454
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
455 456
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
457
	count_spte_clear(sptep, spte);
458 459 460

	return orig.spte;
}
461 462 463 464

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
465 466 467 468 469 470 471 472 473 474 475 476 477 478
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	union split_spte sspte = (union split_spte)spte;
	u32 high_mmio_mask = shadow_mmio_mask >> 32;

	/* It is valid if the spte is zapped. */
	if (spte == 0ull)
		return true;

	/* It is valid if the spte is being zapped. */
	if (sspte.spte_low == 0ull &&
	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
		return true;

	return false;
}
519 520
#endif

521 522
static bool spte_is_locklessly_modifiable(u64 spte)
{
523 524
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
525 526
}

527 528
static bool spte_has_volatile_bits(u64 spte)
{
529 530 531 532 533 534 535 536 537
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

538 539 540 541 542 543
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

544 545
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
546 547 548 549 550
		return false;

	return true;
}

551 552 553 554 555
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

556 557 558 559 560 561 562 563 564 565 566 567 568 569
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
570 571 572 573 574 575
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
576
 */
577
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
578
{
579
	u64 old_spte = *sptep;
580
	bool ret = false;
581 582

	WARN_ON(!is_rmap_spte(new_spte));
583

584 585 586 587
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
588

589
	if (!spte_has_volatile_bits(old_spte))
590
		__update_clear_spte_fast(sptep, new_spte);
591
	else
592
		old_spte = __update_clear_spte_slow(sptep, new_spte);
593

594 595 596 597 598
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
599 600
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
601 602
		ret = true;

603
	if (!shadow_accessed_mask)
604
		return ret;
605 606 607 608 609

	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
610 611

	return ret;
612 613
}

614 615 616 617 618 619 620 621 622 623 624
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
	pfn_t pfn;
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
625
		__update_clear_spte_fast(sptep, 0ull);
626
	else
627
		old_spte = __update_clear_spte_slow(sptep, 0ull);
628 629 630 631 632

	if (!is_rmap_spte(old_spte))
		return 0;

	pfn = spte_to_pfn(old_spte);
633 634 635 636 637 638 639 640

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
	WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));

641 642 643 644 645 646 647 648 649 650 651 652 653 654
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
655
	__update_clear_spte_fast(sptep, 0ull);
656 657
}

658 659 660 661 662 663 664
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
665 666 667 668 669 670 671 672 673 674 675
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
676 677 678 679
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
680 681 682 683 684 685 686 687
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
688 689
}

690
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
691
				  struct kmem_cache *base_cache, int min)
692 693 694 695
{
	void *obj;

	if (cache->nobjs >= min)
696
		return 0;
697
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
698
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
699
		if (!obj)
700
			return -ENOMEM;
701 702
		cache->objects[cache->nobjs++] = obj;
	}
703
	return 0;
704 705
}

706 707 708 709 710
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

711 712
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
713 714
{
	while (mc->nobjs)
715
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
716 717
}

A
Avi Kivity 已提交
718
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
719
				       int min)
A
Avi Kivity 已提交
720
{
721
	void *page;
A
Avi Kivity 已提交
722 723 724 725

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
726
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
727 728
		if (!page)
			return -ENOMEM;
729
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
730 731 732 733 734 735 736
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
737
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
738 739
}

740
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
741
{
742 743
	int r;

744
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
745
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
746 747
	if (r)
		goto out;
748
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
749 750
	if (r)
		goto out;
751
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
752
				   mmu_page_header_cache, 4);
753 754
out:
	return r;
755 756 757 758
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
759 760
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
761
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
762 763
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
764 765
}

766
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
767 768 769 770 771 772 773 774
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

775
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
776
{
777
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
778 779
}

780
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
781
{
782
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
783 784
}

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
801
/*
802 803
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
804
 */
805 806 807
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
808 809 810
{
	unsigned long idx;

811
	idx = gfn_to_index(gfn, slot->base_gfn, level);
812
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
813 814 815 816
}

static void account_shadowed(struct kvm *kvm, gfn_t gfn)
{
817
	struct kvm_memory_slot *slot;
818
	struct kvm_lpage_info *linfo;
819
	int i;
M
Marcelo Tosatti 已提交
820

A
Avi Kivity 已提交
821
	slot = gfn_to_memslot(kvm, gfn);
822 823
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
824 825
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count += 1;
826
	}
827
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
828 829 830 831
}

static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
{
832
	struct kvm_memory_slot *slot;
833
	struct kvm_lpage_info *linfo;
834
	int i;
M
Marcelo Tosatti 已提交
835

A
Avi Kivity 已提交
836
	slot = gfn_to_memslot(kvm, gfn);
837 838
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
839 840 841
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count -= 1;
		WARN_ON(linfo->write_count < 0);
842
	}
843
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
844 845
}

846 847 848
static int has_wrprotected_page(struct kvm *kvm,
				gfn_t gfn,
				int level)
M
Marcelo Tosatti 已提交
849
{
850
	struct kvm_memory_slot *slot;
851
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
852

A
Avi Kivity 已提交
853
	slot = gfn_to_memslot(kvm, gfn);
M
Marcelo Tosatti 已提交
854
	if (slot) {
855 856
		linfo = lpage_info_slot(gfn, slot, level);
		return linfo->write_count;
M
Marcelo Tosatti 已提交
857 858 859 860 861
	}

	return 1;
}

862
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
863
{
J
Joerg Roedel 已提交
864
	unsigned long page_size;
865
	int i, ret = 0;
M
Marcelo Tosatti 已提交
866

J
Joerg Roedel 已提交
867
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
868

869 870 871 872 873 874 875 876
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

877
	return ret;
M
Marcelo Tosatti 已提交
878 879
}

880 881 882
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
883 884
{
	struct kvm_memory_slot *slot;
885 886 887 888 889 890 891 892 893 894 895

	slot = gfn_to_memslot(vcpu->kvm, gfn);
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
	      (no_dirty_log && slot->dirty_bitmap))
		slot = NULL;

	return slot;
}

static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
896
	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
897 898 899 900 901
}

static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
	int host_level, level, max_level;
M
Marcelo Tosatti 已提交
902

903 904 905 906 907
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
908
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
909 910

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
911 912 913 914
		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
915 916
}

917
/*
918
 * Pte mapping structures:
919
 *
920
 * If pte_list bit zero is zero, then pte_list point to the spte.
921
 *
922 923
 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 * pte_list_desc containing more mappings.
924
 *
925
 * Returns the number of pte entries before the spte was added or zero if
926 927
 * the spte was not added.
 *
928
 */
929 930
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
			unsigned long *pte_list)
931
{
932
	struct pte_list_desc *desc;
933
	int i, count = 0;
934

935 936 937 938 939 940 941
	if (!*pte_list) {
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
		*pte_list = (unsigned long)spte;
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
		desc->sptes[0] = (u64 *)*pte_list;
A
Avi Kivity 已提交
942
		desc->sptes[1] = spte;
943
		*pte_list = (unsigned long)desc | 1;
944
		++count;
945
	} else {
946 947 948
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
949
			desc = desc->more;
950
			count += PTE_LIST_EXT;
951
		}
952 953
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
954 955
			desc = desc->more;
		}
A
Avi Kivity 已提交
956
		for (i = 0; desc->sptes[i]; ++i)
957
			++count;
A
Avi Kivity 已提交
958
		desc->sptes[i] = spte;
959
	}
960
	return count;
961 962
}

963 964 965
static void
pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
			   int i, struct pte_list_desc *prev_desc)
966 967 968
{
	int j;

969
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
970
		;
A
Avi Kivity 已提交
971 972
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
973 974 975
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
976
		*pte_list = (unsigned long)desc->sptes[0];
977 978 979 980
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
981 982
			*pte_list = (unsigned long)desc->more | 1;
	mmu_free_pte_list_desc(desc);
983 984
}

985
static void pte_list_remove(u64 *spte, unsigned long *pte_list)
986
{
987 988
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
989 990
	int i;

991 992
	if (!*pte_list) {
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
993
		BUG();
994 995 996 997
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
		if ((u64 *)*pte_list != spte) {
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
998 999
			BUG();
		}
1000
		*pte_list = 0;
1001
	} else {
1002 1003
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1004 1005
		prev_desc = NULL;
		while (desc) {
1006
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
A
Avi Kivity 已提交
1007
				if (desc->sptes[i] == spte) {
1008
					pte_list_desc_remove_entry(pte_list,
1009
							       desc, i,
1010 1011 1012 1013 1014 1015
							       prev_desc);
					return;
				}
			prev_desc = desc;
			desc = desc->more;
		}
1016
		pr_err("pte_list_remove: %p many->many\n", spte);
1017 1018 1019 1020
		BUG();
	}
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
typedef void (*pte_list_walk_fn) (u64 *spte);
static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
	struct pte_list_desc *desc;
	int i;

	if (!*pte_list)
		return;

	if (!(*pte_list & 1))
		return fn((u64 *)*pte_list);

	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
	while (desc) {
		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
			fn(desc->sptes[i]);
		desc = desc->more;
	}
}

1041
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1042
				    struct kvm_memory_slot *slot)
1043
{
1044
	unsigned long idx;
1045

1046
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1047
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1048 1049
}

1050 1051 1052 1053 1054 1055 1056 1057
/*
 * Take gfn and return the reverse mapping to it.
 */
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
{
	struct kvm_memory_slot *slot;

	slot = gfn_to_memslot(kvm, gfn);
1058
	return __gfn_to_rmap(gfn, level, slot);
1059 1060
}

1061 1062 1063 1064 1065 1066 1067 1068
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
	return pte_list_add(vcpu, spte, rmapp);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
	pte_list_remove(spte, rmapp);
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
{
	if (!rmap)
		return NULL;

	if (!(rmap & 1)) {
		iter->desc = NULL;
		return (u64 *)rmap;
	}

	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
	iter->pos = 0;
	return iter->desc->sptes[iter->pos];
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			u64 *sptep;

			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
				return sptep;
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
			return iter->desc->sptes[iter->pos];
		}
	}

	return NULL;
}

1153
static void drop_spte(struct kvm *kvm, u64 *sptep)
1154
{
1155
	if (mmu_spte_clear_track_bits(sptep))
1156
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1157 1158
}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1180
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1181
 * spte write-protection is caused by protecting shadow page table.
1182 1183 1184 1185 1186 1187 1188
 *
 * Note: write protection is difference between drity logging and spte
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1189
 *
1190
 * Return true if tlb need be flushed.
1191
 */
1192
static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1193 1194 1195
{
	u64 spte = *sptep;

1196 1197
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1198 1199 1200 1201
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1202 1203
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1204
	spte = spte & ~PT_WRITABLE_MASK;
1205

1206
	return mmu_spte_update(sptep, spte);
1207 1208
}

1209
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1210
				 bool pt_protect)
1211
{
1212 1213
	u64 *sptep;
	struct rmap_iterator iter;
1214
	bool flush = false;
1215

1216 1217
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1218

1219
		flush |= spte_write_protect(kvm, sptep, pt_protect);
1220
		sptep = rmap_get_next(&iter);
1221
	}
1222

1223
	return flush;
1224 1225
}

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
/**
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1239 1240 1241
{
	unsigned long *rmapp;

1242
	while (mask) {
1243 1244
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
1245
		__rmap_write_protect(kvm, rmapp, false);
M
Marcelo Tosatti 已提交
1246

1247 1248 1249
		/* clear the first set bit */
		mask &= mask - 1;
	}
1250 1251
}

1252
static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1253 1254
{
	struct kvm_memory_slot *slot;
1255 1256
	unsigned long *rmapp;
	int i;
1257
	bool write_protected = false;
1258 1259

	slot = gfn_to_memslot(kvm, gfn);
1260 1261 1262 1263

	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		rmapp = __gfn_to_rmap(gfn, i, slot);
1264
		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1265 1266 1267
	}

	return write_protected;
1268 1269
}

F
Frederik Deweerdt 已提交
1270
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1271
			   struct kvm_memory_slot *slot, unsigned long data)
1272
{
1273 1274
	u64 *sptep;
	struct rmap_iterator iter;
1275 1276
	int need_tlb_flush = 0;

1277 1278 1279 1280 1281
	while ((sptep = rmap_get_first(*rmapp, &iter))) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);

		drop_spte(kvm, sptep);
1282 1283
		need_tlb_flush = 1;
	}
1284

1285 1286 1287
	return need_tlb_flush;
}

F
Frederik Deweerdt 已提交
1288
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1289
			     struct kvm_memory_slot *slot, unsigned long data)
1290
{
1291 1292
	u64 *sptep;
	struct rmap_iterator iter;
1293
	int need_flush = 0;
1294
	u64 new_spte;
1295 1296 1297 1298 1299
	pte_t *ptep = (pte_t *)data;
	pfn_t new_pfn;

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1300 1301 1302 1303 1304

	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!is_shadow_present_pte(*sptep));
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);

1305
		need_flush = 1;
1306

1307
		if (pte_write(*ptep)) {
1308 1309
			drop_spte(kvm, sptep);
			sptep = rmap_get_first(*rmapp, &iter);
1310
		} else {
1311
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1312 1313 1314 1315
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1316
			new_spte &= ~shadow_accessed_mask;
1317 1318 1319 1320

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
			sptep = rmap_get_next(&iter);
1321 1322
		}
	}
1323

1324 1325 1326 1327 1328 1329
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1330 1331 1332 1333 1334 1335
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
1336
					       struct kvm_memory_slot *slot,
1337
					       unsigned long data))
1338
{
1339
	int j;
1340
	int ret = 0;
1341
	struct kvm_memslots *slots;
1342
	struct kvm_memory_slot *memslot;
1343

1344
	slots = kvm_memslots(kvm);
1345

1346
	kvm_for_each_memslot(memslot, slots) {
1347
		unsigned long hva_start, hva_end;
1348
		gfn_t gfn_start, gfn_end;
1349

1350 1351 1352 1353 1354 1355 1356
		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1357
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1358
		 */
1359
		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1360
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1361

1362 1363 1364 1365
		for (j = PT_PAGE_TABLE_LEVEL;
		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
			unsigned long idx, idx_end;
			unsigned long *rmapp;
1366

1367 1368 1369 1370 1371 1372
			/*
			 * {idx(page_j) | page_j intersects with
			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
			 */
			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1373

1374
			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1375

1376 1377
			for (; idx <= idx_end; ++idx)
				ret |= handler(kvm, rmapp++, memslot, data);
1378 1379 1380
		}
	}

1381
	return ret;
1382 1383
}

1384 1385 1386
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1387
					 struct kvm_memory_slot *slot,
1388 1389 1390
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1391 1392 1393 1394
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1395 1396 1397
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1398 1399 1400 1401 1402
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1403 1404
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1405
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1406 1407
}

F
Frederik Deweerdt 已提交
1408
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1409
			 struct kvm_memory_slot *slot, unsigned long data)
1410
{
1411
	u64 *sptep;
1412
	struct rmap_iterator uninitialized_var(iter);
1413 1414
	int young = 0;

1415
	/*
1416 1417
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
1418 1419 1420 1421 1422
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
1423 1424 1425 1426
	if (!shadow_accessed_mask) {
		young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
		goto out;
	}
1427

1428 1429
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1430
		BUG_ON(!is_shadow_present_pte(*sptep));
1431

1432
		if (*sptep & shadow_accessed_mask) {
1433
			young = 1;
1434 1435
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1436 1437
		}
	}
1438 1439 1440
out:
	/* @data has hva passed to kvm_age_hva(). */
	trace_kvm_age_page(data, slot, young);
1441 1442 1443
	return young;
}

A
Andrea Arcangeli 已提交
1444
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1445
			      struct kvm_memory_slot *slot, unsigned long data)
A
Andrea Arcangeli 已提交
1446
{
1447 1448
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1459 1460
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1461
		BUG_ON(!is_shadow_present_pte(*sptep));
1462

1463
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1464 1465 1466 1467 1468 1469 1470 1471
			young = 1;
			break;
		}
	}
out:
	return young;
}

1472 1473
#define RMAP_RECYCLE_THRESHOLD 1000

1474
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1475 1476
{
	unsigned long *rmapp;
1477 1478 1479
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1480

1481
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1482

1483
	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1484 1485 1486
	kvm_flush_remote_tlbs(vcpu->kvm);
}

1487 1488
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
{
1489
	return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1490 1491
}

A
Andrea Arcangeli 已提交
1492 1493 1494 1495 1496
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1497
#ifdef MMU_DEBUG
1498
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1499
{
1500 1501 1502
	u64 *pos;
	u64 *end;

1503
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1504
		if (is_shadow_present_pte(*pos)) {
1505
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1506
			       pos, *pos);
A
Avi Kivity 已提交
1507
			return 0;
1508
		}
A
Avi Kivity 已提交
1509 1510
	return 1;
}
1511
#endif
A
Avi Kivity 已提交
1512

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1525
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1526
{
1527
	ASSERT(is_empty_shadow_page(sp->spt));
1528
	hlist_del(&sp->hash_link);
1529 1530
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1531 1532
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1533
	kmem_cache_free(mmu_page_header_cache, sp);
1534 1535
}

1536 1537
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1538
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1539 1540
}

1541
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1542
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1543 1544 1545 1546
{
	if (!parent_pte)
		return;

1547
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1548 1549
}

1550
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1551 1552
				       u64 *parent_pte)
{
1553
	pte_list_remove(parent_pte, &sp->parent_ptes);
1554 1555
}

1556 1557 1558 1559
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1560
	mmu_spte_clear_no_track(parent_pte);
1561 1562
}

1563 1564
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
					       u64 *parent_pte, int direct)
M
Marcelo Tosatti 已提交
1565
{
1566
	struct kvm_mmu_page *sp;
1567

1568 1569
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1570
	if (!direct)
1571
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1572
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1573 1574 1575 1576 1577 1578

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1579 1580 1581 1582 1583
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	sp->parent_ptes = 0;
	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1584 1585
}

1586
static void mark_unsync(u64 *spte);
1587
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1588
{
1589
	pte_list_walk(&sp->parent_ptes, mark_unsync);
1590 1591
}

1592
static void mark_unsync(u64 *spte)
1593
{
1594
	struct kvm_mmu_page *sp;
1595
	unsigned int index;
1596

1597
	sp = page_header(__pa(spte));
1598 1599
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1600
		return;
1601
	if (sp->unsync_children++)
1602
		return;
1603
	kvm_mmu_mark_parents_unsync(sp);
1604 1605
}

1606
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1607
			       struct kvm_mmu_page *sp)
1608 1609 1610 1611
{
	return 1;
}

M
Marcelo Tosatti 已提交
1612 1613 1614 1615
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1616 1617
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1618
				 const void *pte)
1619 1620 1621 1622
{
	WARN_ON(1);
}

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1633 1634
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1635
{
1636
	int i;
1637

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1653

1654
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1655
		struct kvm_mmu_page *child;
1656 1657
		u64 ent = sp->spt[i];

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
			goto clear_child_bitmap;

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
			if (!ret)
				goto clear_child_bitmap;
			else if (ret > 0)
				nr_unsync_leaf += ret;
			else
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
			 goto clear_child_bitmap;

		continue;

clear_child_bitmap:
		__clear_bit(i, sp->unsync_child_bitmap);
		sp->unsync_children--;
		WARN_ON((int)sp->unsync_children < 0);
1687 1688 1689
	}


1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1701 1702 1703 1704 1705
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1706
	trace_kvm_mmu_sync_page(sp);
1707 1708 1709 1710
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1711 1712 1713 1714
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1715

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1726 1727 1728 1729 1730 1731 1732 1733
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1734

1735
/* @sp->gfn should be write-protected at the call site */
1736
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1737
			   struct list_head *invalid_list, bool clear_unsync)
1738
{
1739
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1740
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1741 1742 1743
		return 1;
	}

1744
	if (clear_unsync)
1745 1746
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1747
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1748
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1749 1750 1751 1752 1753 1754 1755
		return 1;
	}

	kvm_mmu_flush_tlb(vcpu);
	return 0;
}

1756 1757 1758
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1759
	LIST_HEAD(invalid_list);
1760 1761
	int ret;

1762
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1763
	if (ret)
1764 1765
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1766 1767 1768
	return ret;
}

1769 1770 1771 1772 1773 1774 1775
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1776 1777
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1778
{
1779
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1780 1781
}

1782 1783 1784 1785
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1786
	LIST_HEAD(invalid_list);
1787 1788
	bool flush = false;

1789
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1790
		if (!s->unsync)
1791 1792 1793
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1794
		kvm_unlink_unsync_page(vcpu->kvm, s);
1795
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1796
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1797
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1798 1799 1800 1801 1802
			continue;
		}
		flush = true;
	}

1803
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1804 1805 1806 1807
	if (flush)
		kvm_mmu_flush_tlb(vcpu);
}

1808 1809 1810
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1811 1812
};

1813 1814 1815 1816 1817 1818
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1819 1820 1821
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

1840
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1841
{
1842 1843 1844 1845 1846
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
1847

1848 1849 1850 1851 1852 1853 1854 1855 1856
		sp = parents->parent[level];
		if (!sp)
			return;

		--sp->unsync_children;
		WARN_ON((int)sp->unsync_children < 0);
		__clear_bit(idx, sp->unsync_child_bitmap);
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1857 1858
}

1859 1860 1861
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
1862
{
1863 1864 1865
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
1866

1867 1868 1869 1870 1871 1872 1873
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1874
	LIST_HEAD(invalid_list);
1875 1876 1877

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
1878
		bool protected = false;
1879 1880 1881 1882 1883 1884 1885

		for_each_sp(pages, sp, parents, i)
			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

1886
		for_each_sp(pages, sp, parents, i) {
1887
			kvm_sync_page(vcpu, sp, &invalid_list);
1888 1889
			mmu_pages_clear_parents(&parents);
		}
1890
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1891
		cond_resched_lock(&vcpu->kvm->mmu_lock);
1892 1893
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
1894 1895
}

1896 1897 1898 1899 1900 1901 1902 1903
static void init_shadow_page_table(struct kvm_mmu_page *sp)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		sp->spt[i] = 0ull;
}

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
	sp->write_flooding_count = 0;
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

1916 1917 1918 1919 1920
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

1921 1922 1923 1924
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
1925
					     int direct,
1926
					     unsigned access,
1927
					     u64 *parent_pte)
1928 1929 1930
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
1931 1932
	struct kvm_mmu_page *sp;
	bool need_sync = false;
1933

1934
	role = vcpu->arch.mmu.base_role;
1935
	role.level = level;
1936
	role.direct = direct;
1937
	if (role.direct)
1938
		role.cr4_pae = 0;
1939
	role.access = access;
1940 1941
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1942 1943 1944 1945
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
1946
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1947 1948 1949
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

1950 1951
		if (!need_sync && sp->unsync)
			need_sync = true;
1952

1953 1954
		if (sp->role.word != role.word)
			continue;
1955

1956 1957
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
1958

1959 1960
		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
		if (sp->unsync_children) {
1961
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1962 1963 1964
			kvm_mmu_mark_parents_unsync(sp);
		} else if (sp->unsync)
			kvm_mmu_mark_parents_unsync(sp);
1965

1966
		__clear_sp_write_flooding_count(sp);
1967 1968 1969
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
A
Avi Kivity 已提交
1970
	++vcpu->kvm->stat.mmu_cache_miss;
1971
	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1972 1973 1974 1975
	if (!sp)
		return sp;
	sp->gfn = gfn;
	sp->role = role;
1976 1977
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1978
	if (!direct) {
1979 1980
		if (rmap_write_protect(vcpu->kvm, gfn))
			kvm_flush_remote_tlbs(vcpu->kvm);
1981 1982 1983
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

1984 1985
		account_shadowed(vcpu->kvm, gfn);
	}
1986
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1987
	init_shadow_page_table(sp);
A
Avi Kivity 已提交
1988
	trace_kvm_mmu_get_page(sp, true);
1989
	return sp;
1990 1991
}

1992 1993 1994 1995 1996 1997
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
1998 1999 2000 2001 2002 2003

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2018

2019 2020 2021 2022 2023
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2024 2025
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2026
{
2027
	if (is_last_spte(spte, iterator->level)) {
2028 2029 2030 2031
		iterator->level = 0;
		return;
	}

2032
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2033 2034 2035
	--iterator->level;
}

2036 2037 2038 2039 2040
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2041
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2042 2043 2044
{
	u64 spte;

2045 2046 2047
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2048
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2049 2050 2051 2052
	       shadow_user_mask | shadow_x_mask;

	if (accessed)
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2053

2054
	mmu_spte_set(sptep, spte);
2055 2056
}

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2074
		drop_parent_pte(child, sptep);
2075 2076 2077 2078
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2079
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2080 2081 2082 2083 2084 2085 2086
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2087
		if (is_last_spte(pte, sp->role.level)) {
2088
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2089 2090 2091
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2092
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2093
			drop_parent_pte(child, spte);
2094
		}
X
Xiao Guangrong 已提交
2095 2096 2097 2098
		return true;
	}

	if (is_mmio_spte(pte))
2099
		mmu_spte_clear_no_track(spte);
2100

X
Xiao Guangrong 已提交
2101
	return false;
2102 2103
}

2104
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2105
					 struct kvm_mmu_page *sp)
2106
{
2107 2108
	unsigned i;

2109 2110
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2111 2112
}

2113
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2114
{
2115
	mmu_page_remove_parent_pte(sp, parent_pte);
2116 2117
}

2118
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2119
{
2120 2121
	u64 *sptep;
	struct rmap_iterator iter;
2122

2123 2124
	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
		drop_parent_pte(sp, sptep);
2125 2126
}

2127
static int mmu_zap_unsync_children(struct kvm *kvm,
2128 2129
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2130
{
2131 2132 2133
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2134

2135
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2136
		return 0;
2137 2138 2139 2140 2141 2142

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2143
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2144
			mmu_pages_clear_parents(&parents);
2145
			zapped++;
2146 2147 2148 2149 2150
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2151 2152
}

2153 2154
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2155
{
2156
	int ret;
A
Avi Kivity 已提交
2157

2158
	trace_kvm_mmu_prepare_zap_page(sp);
2159
	++kvm->stat.mmu_shadow_zapped;
2160
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2161
	kvm_mmu_page_unlink_children(kvm, sp);
2162
	kvm_mmu_unlink_parents(kvm, sp);
2163

2164
	if (!sp->role.invalid && !sp->role.direct)
A
Avi Kivity 已提交
2165
		unaccount_shadowed(kvm, sp->gfn);
2166

2167 2168
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2169
	if (!sp->root_count) {
2170 2171
		/* Count self */
		ret++;
2172
		list_move(&sp->link, invalid_list);
2173
		kvm_mod_used_mmu_pages(kvm, -1);
2174
	} else {
A
Avi Kivity 已提交
2175
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2176 2177 2178 2179 2180 2181 2182

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2183
	}
2184 2185

	sp->role.invalid = 1;
2186
	return ret;
2187 2188
}

2189 2190 2191
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2192
	struct kvm_mmu_page *sp, *nsp;
2193 2194 2195 2196

	if (list_empty(invalid_list))
		return;

2197 2198 2199 2200 2201
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2202

2203 2204 2205 2206 2207
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2208

2209
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2210
		WARN_ON(!sp->role.invalid || sp->root_count);
2211
		kvm_mmu_free_page(sp);
2212
	}
2213 2214
}

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

	sp = list_entry(kvm->arch.active_mmu_pages.prev,
			struct kvm_mmu_page, link);
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2230 2231
/*
 * Changing the number of mmu pages allocated to the vm
2232
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2233
 */
2234
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2235
{
2236
	LIST_HEAD(invalid_list);
2237

2238 2239
	spin_lock(&kvm->mmu_lock);

2240
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2241 2242 2243 2244
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2245

2246
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2247
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2248 2249
	}

2250
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2251 2252

	spin_unlock(&kvm->mmu_lock);
2253 2254
}

2255
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2256
{
2257
	struct kvm_mmu_page *sp;
2258
	LIST_HEAD(invalid_list);
2259 2260
	int r;

2261
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2262
	r = 0;
2263
	spin_lock(&kvm->mmu_lock);
2264
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2265
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2266 2267
			 sp->role.word);
		r = 1;
2268
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2269
	}
2270
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2271 2272
	spin_unlock(&kvm->mmu_lock);

2273
	return r;
2274
}
2275
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2276

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
/*
 * The function is based on mtrr_type_lookup() in
 * arch/x86/kernel/cpu/mtrr/generic.c
 */
static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
			 u64 start, u64 end)
{
	int i;
	u64 base, mask;
	u8 prev_match, curr_match;
	int num_var_ranges = KVM_NR_VAR_MTRR;

	if (!mtrr_state->enabled)
		return 0xFF;

	/* Make end inclusive end, instead of exclusive */
	end--;

	/* Look in fixed ranges. Just return the type as per start */
	if (mtrr_state->have_fixed && (start < 0x100000)) {
		int idx;

		if (start < 0x80000) {
			idx = 0;
			idx += (start >> 16);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0xC0000) {
			idx = 1 * 8;
			idx += ((start - 0x80000) >> 14);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0x1000000) {
			idx = 3 * 8;
			idx += ((start - 0xC0000) >> 12);
			return mtrr_state->fixed_ranges[idx];
		}
	}

	/*
	 * Look in variable ranges
	 * Look of multiple ranges matching this address and pick type
	 * as per MTRR precedence
	 */
	if (!(mtrr_state->enabled & 2))
		return mtrr_state->def_type;

	prev_match = 0xFF;
	for (i = 0; i < num_var_ranges; ++i) {
		unsigned short start_state, end_state;

		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
			continue;

		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);

		start_state = ((start & mask) == (base & mask));
		end_state = ((end & mask) == (base & mask));
		if (start_state != end_state)
			return 0xFE;

		if ((start & mask) != (base & mask))
			continue;

		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
		if (prev_match == 0xFF) {
			prev_match = curr_match;
			continue;
		}

		if (prev_match == MTRR_TYPE_UNCACHABLE ||
		    curr_match == MTRR_TYPE_UNCACHABLE)
			return MTRR_TYPE_UNCACHABLE;

		if ((prev_match == MTRR_TYPE_WRBACK &&
		     curr_match == MTRR_TYPE_WRTHROUGH) ||
		    (prev_match == MTRR_TYPE_WRTHROUGH &&
		     curr_match == MTRR_TYPE_WRBACK)) {
			prev_match = MTRR_TYPE_WRTHROUGH;
			curr_match = MTRR_TYPE_WRTHROUGH;
		}

		if (prev_match != curr_match)
			return MTRR_TYPE_UNCACHABLE;
	}

	if (prev_match != 0xFF)
		return prev_match;

	return mtrr_state->def_type;
}

2370
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2371 2372 2373 2374 2375 2376 2377 2378 2379
{
	u8 mtrr;

	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
	if (mtrr == 0xfe || mtrr == 0xff)
		mtrr = MTRR_TYPE_WRBACK;
	return mtrr;
}
2380
EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2381

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2392 2393
{
	struct kvm_mmu_page *s;
2394

2395
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2396
		if (s->unsync)
2397
			continue;
2398 2399
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2400 2401 2402 2403 2404 2405
	}
}

static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				  bool can_unsync)
{
2406 2407 2408
	struct kvm_mmu_page *s;
	bool need_unsync = false;

2409
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2410 2411 2412
		if (!can_unsync)
			return 1;

2413
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2414
			return 1;
2415

G
Gleb Natapov 已提交
2416
		if (!s->unsync)
2417
			need_unsync = true;
2418
	}
2419 2420
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2421 2422 2423
	return 0;
}

A
Avi Kivity 已提交
2424
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2425
		    unsigned pte_access, int level,
2426
		    gfn_t gfn, pfn_t pfn, bool speculative,
2427
		    bool can_unsync, bool host_writable)
2428
{
2429
	u64 spte;
M
Marcelo Tosatti 已提交
2430
	int ret = 0;
S
Sheng Yang 已提交
2431

2432
	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2433 2434
		return 0;

2435
	spte = PT_PRESENT_MASK;
2436
	if (!speculative)
2437
		spte |= shadow_accessed_mask;
2438

S
Sheng Yang 已提交
2439 2440 2441 2442
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2443

2444
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2445
		spte |= shadow_user_mask;
2446

2447
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2448
		spte |= PT_PAGE_SIZE_MASK;
2449
	if (tdp_enabled)
2450 2451
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
			kvm_is_mmio_pfn(pfn));
2452

2453
	if (host_writable)
2454
		spte |= SPTE_HOST_WRITEABLE;
2455 2456
	else
		pte_access &= ~ACC_WRITE_MASK;
2457

2458
	spte |= (u64)pfn << PAGE_SHIFT;
2459

2460
	if (pte_access & ACC_WRITE_MASK) {
2461

X
Xiao Guangrong 已提交
2462
		/*
2463 2464 2465 2466
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2467
		 */
2468
		if (level > PT_PAGE_TABLE_LEVEL &&
X
Xiao Guangrong 已提交
2469
		    has_wrprotected_page(vcpu->kvm, gfn, level))
A
Avi Kivity 已提交
2470
			goto done;
2471

2472
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2473

2474 2475 2476 2477 2478 2479
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2480
		if (!can_unsync && is_writable_pte(*sptep))
2481 2482
			goto set_pte;

2483
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2484
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2485
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2486
			ret = 1;
2487
			pte_access &= ~ACC_WRITE_MASK;
2488
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2489 2490 2491 2492 2493 2494
		}
	}

	if (pte_access & ACC_WRITE_MASK)
		mark_page_dirty(vcpu->kvm, gfn);

2495
set_pte:
2496
	if (mmu_spte_update(sptep, spte))
2497
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2498
done:
M
Marcelo Tosatti 已提交
2499 2500 2501
	return ret;
}

A
Avi Kivity 已提交
2502
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2503 2504 2505
			 unsigned pte_access, int write_fault, int *emulate,
			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
			 bool host_writable)
M
Marcelo Tosatti 已提交
2506 2507
{
	int was_rmapped = 0;
2508
	int rmap_count;
M
Marcelo Tosatti 已提交
2509

2510 2511
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2512

A
Avi Kivity 已提交
2513
	if (is_rmap_spte(*sptep)) {
M
Marcelo Tosatti 已提交
2514 2515 2516 2517
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2518 2519
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2520
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2521
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2522 2523

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2524
			drop_parent_pte(child, sptep);
2525
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2526
		} else if (pfn != spte_to_pfn(*sptep)) {
2527
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2528
				 spte_to_pfn(*sptep), pfn);
2529
			drop_spte(vcpu->kvm, sptep);
2530
			kvm_flush_remote_tlbs(vcpu->kvm);
2531 2532
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2533
	}
2534

2535 2536
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2537
		if (write_fault)
2538
			*emulate = 1;
2539
		kvm_mmu_flush_tlb(vcpu);
2540
	}
M
Marcelo Tosatti 已提交
2541

2542 2543 2544
	if (unlikely(is_mmio_spte(*sptep) && emulate))
		*emulate = 1;

A
Avi Kivity 已提交
2545
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2546
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2547
		 is_large_pte(*sptep)? "2MB" : "4kB",
2548 2549
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2550
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2551 2552
		++vcpu->kvm->stat.lpages;

2553 2554 2555 2556 2557 2558
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2559
	}
2560

X
Xiao Guangrong 已提交
2561
	kvm_release_pfn_clean(pfn);
2562 2563
}

2564 2565 2566 2567 2568
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2569
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2570
	if (!slot)
2571
		return KVM_PFN_ERR_FAULT;
2572

2573
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2586
	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2587 2588 2589 2590 2591 2592 2593
		return -1;

	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2594
		mmu_set_spte(vcpu, start, access, 0, NULL,
2595 2596
			     sp->role.level, gfn, page_to_pfn(pages[i]),
			     true, true);
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2613
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2644
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2645 2646
			int map_writable, int level, gfn_t gfn, pfn_t pfn,
			bool prefault)
2647
{
2648
	struct kvm_shadow_walk_iterator iterator;
2649
	struct kvm_mmu_page *sp;
2650
	int emulate = 0;
2651
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2652

2653 2654 2655
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2656
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2657
		if (iterator.level == level) {
2658
			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2659 2660
				     write, &emulate, level, gfn, pfn,
				     prefault, map_writable);
2661
			direct_pte_prefetch(vcpu, iterator.sptep);
2662 2663
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2664 2665
		}

2666
		drop_large_spte(vcpu, iterator.sptep);
2667
		if (!is_shadow_present_pte(*iterator.sptep)) {
2668 2669 2670 2671
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2672 2673 2674
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
					      iterator.level - 1,
					      1, ACC_ALL, iterator.sptep);
2675

2676
			link_shadow_page(iterator.sptep, sp, true);
2677 2678
		}
	}
2679
	return emulate;
A
Avi Kivity 已提交
2680 2681
}

H
Huang Ying 已提交
2682
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2683
{
H
Huang Ying 已提交
2684 2685 2686 2687 2688 2689 2690
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2691

H
Huang Ying 已提交
2692
	send_sig_info(SIGBUS, &info, tsk);
2693 2694
}

2695
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2696
{
X
Xiao Guangrong 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2706
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2707
		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2708
		return 0;
2709
	}
2710

2711
	return -EFAULT;
2712 2713
}

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2727
	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2749
			kvm_get_pfn(pfn);
2750 2751 2752 2753 2754
			*pfnp = pfn;
		}
	}
}

2755 2756 2757 2758 2759 2760
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
				pfn_t pfn, unsigned access, int *ret_val)
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2761
	if (unlikely(is_error_pfn(pfn))) {
2762 2763 2764 2765
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2766
	if (unlikely(is_noslot_pfn(pfn)))
2767 2768 2769 2770 2771 2772 2773
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2774
static bool page_fault_can_be_fast(u32 error_code)
2775
{
2776 2777 2778 2779 2780 2781 2782
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2796 2797
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
		mark_page_dirty(vcpu->kvm, gfn);

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2824
	struct kvm_mmu_page *sp;
2825 2826 2827
	bool ret = false;
	u64 spte = 0ull;

2828 2829 2830
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2831
	if (!page_fault_can_be_fast(error_code))
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
	if (!is_rmap_spte(spte)) {
		ret = true;
		goto exit;
	}

2848 2849
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

2883 2884 2885 2886 2887
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
2888
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2889
exit:
X
Xiao Guangrong 已提交
2890 2891
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2892 2893 2894 2895 2896
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2897
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2898
			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2899
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2900

2901 2902
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
2903 2904
{
	int r;
2905
	int level;
2906
	int force_pt_level;
2907
	pfn_t pfn;
2908
	unsigned long mmu_seq;
2909
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2910

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
2921

2922 2923 2924
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
2925

2926 2927 2928
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

2929
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2930
	smp_rmb();
2931

2932
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2933
		return 0;
2934

2935 2936
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
2937

2938
	spin_lock(&vcpu->kvm->mmu_lock);
2939
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2940
		goto out_unlock;
2941
	make_mmu_pages_available(vcpu);
2942 2943
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2944 2945
	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
			 prefault);
2946 2947 2948
	spin_unlock(&vcpu->kvm->mmu_lock);


2949
	return r;
2950 2951 2952 2953 2954

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
2955 2956 2957
}


2958 2959 2960
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
2961
	struct kvm_mmu_page *sp;
2962
	LIST_HEAD(invalid_list);
2963

2964
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
2965
		return;
2966

2967 2968 2969
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
2970
		hpa_t root = vcpu->arch.mmu.root_hpa;
2971

2972
		spin_lock(&vcpu->kvm->mmu_lock);
2973 2974
		sp = page_header(root);
		--sp->root_count;
2975 2976 2977 2978
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
2979
		spin_unlock(&vcpu->kvm->mmu_lock);
2980
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2981 2982
		return;
	}
2983 2984

	spin_lock(&vcpu->kvm->mmu_lock);
2985
	for (i = 0; i < 4; ++i) {
2986
		hpa_t root = vcpu->arch.mmu.pae_root[i];
2987

A
Avi Kivity 已提交
2988 2989
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
2990 2991
			sp = page_header(root);
			--sp->root_count;
2992
			if (!sp->root_count && sp->role.invalid)
2993 2994
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
2995
		}
2996
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2997
	}
2998
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2999
	spin_unlock(&vcpu->kvm->mmu_lock);
3000
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3001 3002
}

3003 3004 3005 3006 3007
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3008
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3009 3010 3011 3012 3013 3014
		ret = 1;
	}

	return ret;
}

3015 3016 3017
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3018
	unsigned i;
3019 3020 3021

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3022
		make_mmu_pages_available(vcpu);
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
				      1, ACC_ALL, NULL);
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

			ASSERT(!VALID_PAGE(root));
			spin_lock(&vcpu->kvm->mmu_lock);
3034
			make_mmu_pages_available(vcpu);
3035 3036
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30,
3037 3038 3039 3040 3041 3042 3043
					      PT32_ROOT_LEVEL, 1, ACC_ALL,
					      NULL);
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3044
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3045 3046 3047 3048 3049 3050 3051
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3052
{
3053
	struct kvm_mmu_page *sp;
3054 3055 3056
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3057

3058
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3059

3060 3061 3062 3063 3064 3065 3066 3067
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3068
		hpa_t root = vcpu->arch.mmu.root_hpa;
3069 3070

		ASSERT(!VALID_PAGE(root));
3071

3072
		spin_lock(&vcpu->kvm->mmu_lock);
3073
		make_mmu_pages_available(vcpu);
3074 3075
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
				      0, ACC_ALL, NULL);
3076 3077
		root = __pa(sp->spt);
		++sp->root_count;
3078
		spin_unlock(&vcpu->kvm->mmu_lock);
3079
		vcpu->arch.mmu.root_hpa = root;
3080
		return 0;
3081
	}
3082

3083 3084
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3085 3086
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3087
	 */
3088 3089 3090 3091
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3092
	for (i = 0; i < 4; ++i) {
3093
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3094 3095

		ASSERT(!VALID_PAGE(root));
3096
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3097
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3098
			if (!is_present_gpte(pdptr)) {
3099
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3100 3101
				continue;
			}
A
Avi Kivity 已提交
3102
			root_gfn = pdptr >> PAGE_SHIFT;
3103 3104
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3105
		}
3106
		spin_lock(&vcpu->kvm->mmu_lock);
3107
		make_mmu_pages_available(vcpu);
3108
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3109
				      PT32_ROOT_LEVEL, 0,
3110
				      ACC_ALL, NULL);
3111 3112
		root = __pa(sp->spt);
		++sp->root_count;
3113 3114
		spin_unlock(&vcpu->kvm->mmu_lock);

3115
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3116
	}
3117
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3144
	return 0;
3145 3146
}

3147 3148 3149 3150 3151 3152 3153 3154
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3155 3156 3157 3158 3159
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3160 3161 3162
	if (vcpu->arch.mmu.direct_map)
		return;

3163 3164
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3165

3166
	vcpu_clear_mmio_info(vcpu, ~0ul);
3167
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3168
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3169 3170 3171
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3172
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3173 3174 3175 3176 3177
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3178
		if (root && VALID_PAGE(root)) {
3179 3180 3181 3182 3183
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3184
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3185 3186 3187 3188 3189 3190
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3191
	spin_unlock(&vcpu->kvm->mmu_lock);
3192
}
N
Nadav Har'El 已提交
3193
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3194

3195
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3196
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3197
{
3198 3199
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3200 3201 3202
	return vaddr;
}

3203
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3204 3205
					 u32 access,
					 struct x86_exception *exception)
3206
{
3207 3208
	if (exception)
		exception->error_code = 0;
3209 3210 3211
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
}

3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}


/*
 * On direct hosts, the last spte is only allows two states
 * for mmio page fault:
 *   - It is the mmio spte
 *   - It is zapped or it is being zapped.
 *
 * This function completely checks the spte when the last spte
 * is not the mmio spte.
 */
static bool check_direct_spte_mmio_pf(u64 spte)
{
	return __check_direct_spte_mmio_pf(spte);
}

static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte = 0ull;

3240 3241 3242
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return spte;

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
		if (!is_shadow_present_pte(spte))
			break;
	walk_shadow_page_lockless_end(vcpu);

	return spte;
}

int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	u64 spte;

	if (quickly_check_mmio_pf(vcpu, addr, direct))
3257
		return RET_MMIO_PF_EMULATE;
3258 3259 3260 3261 3262 3263 3264

	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3265 3266 3267
		if (!check_mmio_spte(vcpu->kvm, spte))
			return RET_MMIO_PF_INVALID;

3268 3269
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3270 3271

		trace_handle_mmio_page_fault(addr, gfn, access);
3272
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3273
		return RET_MMIO_PF_EMULATE;
3274 3275 3276 3277 3278 3279 3280
	}

	/*
	 * It's ok if the gva is remapped by other cpus on shadow guest,
	 * it's a BUG if the gfn is not a mmio page.
	 */
	if (direct && !check_direct_spte_mmio_pf(spte))
3281
		return RET_MMIO_PF_BUG;
3282 3283 3284 3285 3286

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3287
	return RET_MMIO_PF_RETRY;
3288 3289 3290 3291 3292 3293 3294 3295 3296
}
EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
				  u32 error_code, bool direct)
{
	int ret;

	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3297
	WARN_ON(ret == RET_MMIO_PF_BUG);
3298 3299 3300
	return ret;
}

A
Avi Kivity 已提交
3301
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3302
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3303
{
3304
	gfn_t gfn;
3305
	int r;
A
Avi Kivity 已提交
3306

3307
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3308

3309 3310 3311 3312 3313 3314
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gva, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3315

3316 3317 3318
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3319

A
Avi Kivity 已提交
3320
	ASSERT(vcpu);
3321
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3322

3323
	gfn = gva >> PAGE_SHIFT;
A
Avi Kivity 已提交
3324

3325
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3326
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3327 3328
}

3329
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3330 3331
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3332

3333
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3334
	arch.gfn = gfn;
3335
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3336
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3337

3338
	return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3350
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3351
			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3352 3353 3354
{
	bool async;

3355
	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3356 3357 3358 3359

	if (!async)
		return false; /* *pfn has correct page already */

3360
	if (!prefault && can_do_async_pf(vcpu)) {
3361
		trace_kvm_try_async_get_page(gva, gfn);
3362 3363 3364 3365 3366 3367 3368 3369
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3370
	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3371 3372 3373 3374

	return false;
}

G
Gleb Natapov 已提交
3375
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3376
			  bool prefault)
3377
{
3378
	pfn_t pfn;
3379
	int r;
3380
	int level;
3381
	int force_pt_level;
M
Marcelo Tosatti 已提交
3382
	gfn_t gfn = gpa >> PAGE_SHIFT;
3383
	unsigned long mmu_seq;
3384 3385
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3386 3387 3388 3389

	ASSERT(vcpu);
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));

3390 3391 3392 3393 3394 3395
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3396

3397 3398 3399 3400
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3401 3402 3403 3404 3405 3406
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
3407

3408 3409 3410
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3411
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3412
	smp_rmb();
3413

3414
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3415 3416
		return 0;

3417 3418 3419
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3420
	spin_lock(&vcpu->kvm->mmu_lock);
3421
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3422
		goto out_unlock;
3423
	make_mmu_pages_available(vcpu);
3424 3425
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3426
	r = __direct_map(vcpu, gpa, write, map_writable,
3427
			 level, gfn, pfn, prefault);
3428 3429 3430
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3431 3432 3433 3434 3435

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3436 3437
}

3438 3439
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3440 3441 3442
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3443
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3444
	context->invlpg = nonpaging_invlpg;
3445
	context->update_pte = nonpaging_update_pte;
3446
	context->root_level = 0;
A
Avi Kivity 已提交
3447
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3448
	context->root_hpa = INVALID_PAGE;
3449
	context->direct_map = true;
3450
	context->nx = false;
A
Avi Kivity 已提交
3451 3452
}

3453
void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3454
{
A
Avi Kivity 已提交
3455
	++vcpu->stat.tlb_flush;
3456
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
A
Avi Kivity 已提交
3457
}
N
Nadav Har'El 已提交
3458
EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
A
Avi Kivity 已提交
3459

3460
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3461
{
3462
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3463 3464
}

3465 3466
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3467
	return kvm_read_cr3(vcpu);
3468 3469
}

3470 3471
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3472
{
3473
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3474 3475
}

3476 3477
static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			   unsigned access, int *nr_present)
3478 3479 3480 3481 3482 3483 3484 3485
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3486
		mark_mmio_spte(kvm, sptep, gfn, access);
3487 3488 3489 3490 3491 3492
		return true;
	}

	return false;
}

A
Avi Kivity 已提交
3493 3494 3495 3496 3497 3498 3499 3500 3501
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

3502 3503 3504 3505 3506
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3507 3508 3509 3510 3511 3512 3513 3514
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3515
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3516
				  struct kvm_mmu *context)
3517 3518 3519
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	u64 exb_bit_rsvd = 0;
3520
	u64 gbpages_bit_rsvd = 0;
3521

3522 3523
	context->bad_mt_xwr = 0;

3524
	if (!context->nx)
3525
		exb_bit_rsvd = rsvd_bits(63, 63);
3526 3527
	if (!guest_cpuid_has_gbpages(vcpu))
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3528
	switch (context->root_level) {
3529 3530 3531 3532
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
		context->rsvd_bits_mask[0][1] = 0;
		context->rsvd_bits_mask[0][0] = 0;
3533 3534 3535 3536 3537 3538 3539
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

		if (!is_pse(vcpu)) {
			context->rsvd_bits_mask[1][1] = 0;
			break;
		}

3540 3541 3542 3543 3544 3545 3546 3547
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
		else
			/* 32 bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
		break;
	case PT32E_ROOT_LEVEL:
3548 3549
		context->rsvd_bits_mask[0][2] =
			rsvd_bits(maxphyaddr, 63) |
3550
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3551
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3552
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3553 3554 3555 3556 3557
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3558
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3559 3560 3561
		break;
	case PT64_ROOT_LEVEL:
		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3562
			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 7);
3563
		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3564
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3565
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3566
			rsvd_bits(maxphyaddr, 51);
3567 3568 3569
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3570
		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3571
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3572
			rsvd_bits(13, 29);
3573
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3574 3575
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3576
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3577 3578 3579 3580
		break;
	}
}

3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	int pte;

	context->rsvd_bits_mask[0][3] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
	context->rsvd_bits_mask[0][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);

	/* large page */
	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
	context->rsvd_bits_mask[1][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
	context->rsvd_bits_mask[1][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

	for (pte = 0; pte < 64; pte++) {
		int rwx_bits = pte & 7;
		int mt = pte >> 3;
		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
				rwx_bits == 0x2 || rwx_bits == 0x6 ||
				(rwx_bits == 0x4 && !execonly))
			context->bad_mt_xwr |= (1ull << pte);
	}
}

F
Feng Wu 已提交
3613
void update_permission_bitmask(struct kvm_vcpu *vcpu,
3614
		struct kvm_mmu *mmu, bool ept)
3615 3616 3617
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3618
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3619

F
Feng Wu 已提交
3620
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3621
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3622 3623 3624 3625 3626 3627
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3628 3629 3630 3631 3632 3633
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3634 3635 3636 3637 3638
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3639 3640 3641 3642 3643 3644
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3645
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3666 3667 3668
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3669

F
Feng Wu 已提交
3670 3671
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3672 3673 3674 3675 3676 3677
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3696 3697 3698
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
3699
{
3700
	context->nx = is_nx(vcpu);
3701
	context->root_level = level;
3702

3703
	reset_rsvds_bits_mask(vcpu, context);
3704
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3705
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3706 3707 3708 3709

	ASSERT(is_pae(vcpu));
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3710
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3711
	context->invlpg = paging64_invlpg;
3712
	context->update_pte = paging64_update_pte;
3713
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3714
	context->root_hpa = INVALID_PAGE;
3715
	context->direct_map = false;
A
Avi Kivity 已提交
3716 3717
}

3718 3719
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
3720
{
3721
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3722 3723
}

3724 3725
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3726
{
3727
	context->nx = false;
3728
	context->root_level = PT32_ROOT_LEVEL;
3729

3730
	reset_rsvds_bits_mask(vcpu, context);
3731
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3732
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3733 3734 3735

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
3736
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3737
	context->invlpg = paging32_invlpg;
3738
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3739
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3740
	context->root_hpa = INVALID_PAGE;
3741
	context->direct_map = false;
A
Avi Kivity 已提交
3742 3743
}

3744 3745
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3746
{
3747
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3748 3749
}

3750
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3751
{
3752
	struct kvm_mmu *context = vcpu->arch.walk_mmu;
3753

3754
	context->base_role.word = 0;
3755
	context->page_fault = tdp_page_fault;
3756
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3757
	context->invlpg = nonpaging_invlpg;
3758
	context->update_pte = nonpaging_update_pte;
3759
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3760
	context->root_hpa = INVALID_PAGE;
3761
	context->direct_map = true;
3762
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3763
	context->get_cr3 = get_cr3;
3764
	context->get_pdptr = kvm_pdptr_read;
3765
	context->inject_page_fault = kvm_inject_page_fault;
3766 3767

	if (!is_paging(vcpu)) {
3768
		context->nx = false;
3769 3770 3771
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3772
		context->nx = is_nx(vcpu);
3773
		context->root_level = PT64_ROOT_LEVEL;
3774 3775
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3776
	} else if (is_pae(vcpu)) {
3777
		context->nx = is_nx(vcpu);
3778
		context->root_level = PT32E_ROOT_LEVEL;
3779 3780
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3781
	} else {
3782
		context->nx = false;
3783
		context->root_level = PT32_ROOT_LEVEL;
3784 3785
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
3786 3787
	}

3788
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3789
	update_last_pte_bitmap(vcpu, context);
3790 3791
}

3792
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
A
Avi Kivity 已提交
3793
{
3794
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
A
Avi Kivity 已提交
3795
	ASSERT(vcpu);
3796
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3797 3798

	if (!is_paging(vcpu))
3799
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
3800
	else if (is_long_mode(vcpu))
3801
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
3802
	else if (is_pae(vcpu))
3803
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
3804
	else
3805
		paging32_init_context(vcpu, context);
3806

3807
	vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3808
	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3809
	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3810 3811
	vcpu->arch.mmu.base_role.smep_andnot_wp
		= smep && !is_write_protection(vcpu);
3812 3813 3814
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

3815
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
N
Nadav Har'El 已提交
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
		bool execonly)
{
	ASSERT(vcpu);
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

3838
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3839
{
3840
	kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3841 3842
	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
	vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3843
	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3844
	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
3845 3846
}

3847
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3848 3849 3850 3851
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
3852
	g_context->get_pdptr         = kvm_pdptr_read;
3853 3854 3855 3856 3857 3858 3859 3860 3861
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
	 * translation of l2_gpa to l1_gpa addresses is done using the
	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
	 * functions between mmu and nested_mmu are swapped.
	 */
	if (!is_paging(vcpu)) {
3862
		g_context->nx = false;
3863 3864 3865
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
3866
		g_context->nx = is_nx(vcpu);
3867
		g_context->root_level = PT64_ROOT_LEVEL;
3868
		reset_rsvds_bits_mask(vcpu, g_context);
3869 3870
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
3871
		g_context->nx = is_nx(vcpu);
3872
		g_context->root_level = PT32E_ROOT_LEVEL;
3873
		reset_rsvds_bits_mask(vcpu, g_context);
3874 3875
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
3876
		g_context->nx = false;
3877
		g_context->root_level = PT32_ROOT_LEVEL;
3878
		reset_rsvds_bits_mask(vcpu, g_context);
3879 3880 3881
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

3882
	update_permission_bitmask(vcpu, g_context, false);
A
Avi Kivity 已提交
3883
	update_last_pte_bitmap(vcpu, g_context);
3884 3885
}

3886
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3887
{
3888 3889 3890
	if (mmu_is_nested(vcpu))
		return init_kvm_nested_mmu(vcpu);
	else if (tdp_enabled)
3891 3892 3893 3894 3895
		return init_kvm_tdp_mmu(vcpu);
	else
		return init_kvm_softmmu(vcpu);
}

3896
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3897 3898 3899
{
	ASSERT(vcpu);

3900
	kvm_mmu_unload(vcpu);
3901
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
3902
}
3903
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
3904 3905

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3906
{
3907 3908
	int r;

3909
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
3910 3911
	if (r)
		goto out;
3912
	r = mmu_alloc_roots(vcpu);
3913
	kvm_mmu_sync_roots(vcpu);
3914 3915
	if (r)
		goto out;
3916
	/* set_cr3() should ensure TLB has been flushed */
3917
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3918 3919
out:
	return r;
A
Avi Kivity 已提交
3920
}
A
Avi Kivity 已提交
3921 3922 3923 3924 3925
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
3926
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3927
}
3928
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
3929

3930
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3931 3932
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
3933
{
3934
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3935 3936
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
3937
        }
3938

A
Avi Kivity 已提交
3939
	++vcpu->kvm->stat.mmu_pte_updated;
3940
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3941 3942
}

3943 3944 3945 3946 3947 3948 3949 3950
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
3951 3952
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
3953 3954 3955
	return (old & ~new & PT64_PERM_MASK) != 0;
}

3956 3957
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
3958
{
3959 3960 3961 3962
	if (zap_page)
		return;

	if (remote_flush)
3963
		kvm_flush_remote_tlbs(vcpu->kvm);
3964
	else if (local_flush)
3965 3966 3967
		kvm_mmu_flush_tlb(vcpu);
}

3968 3969
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
3970
{
3971 3972
	u64 gentry;
	int r;
3973 3974 3975

	/*
	 * Assume that the pte write on a page table of the same type
3976 3977
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
3978
	 */
3979
	if (is_pae(vcpu) && *bytes == 4) {
3980
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3981 3982
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
3983
		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3984 3985
		if (r)
			gentry = 0;
3986 3987 3988
		new = (const u8 *)&gentry;
	}

3989
	switch (*bytes) {
3990 3991 3992 3993 3994 3995 3996 3997 3998
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
3999 4000
	}

4001 4002 4003 4004 4005 4006 4007
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4008
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4009
{
4010 4011 4012 4013
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4014
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4015
		return false;
4016

4017
	return ++sp->write_flooding_count >= 3;
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4034 4035 4036 4037 4038 4039 4040 4041

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	union kvm_mmu_page_role mask = { .word = 0 };
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4088
	bool remote_flush, local_flush, zap_page;
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4112
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4113

4114
	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4115
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4116
		if (detect_write_misaligned(sp, gpa, bytes) ||
4117
		      detect_write_flooding(sp)) {
4118
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4119
						     &invalid_list);
A
Avi Kivity 已提交
4120
			++vcpu->kvm->stat.mmu_flooded;
4121 4122
			continue;
		}
4123 4124 4125 4126 4127

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4128
		local_flush = true;
4129
		while (npte--) {
4130
			entry = *spte;
4131
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4132 4133
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4134
			      & mask.word) && rmap_can_add(vcpu))
4135
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4136
			if (need_remote_flush(entry, *spte))
4137
				remote_flush = true;
4138
			++spte;
4139 4140
		}
	}
4141
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4142
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4143
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4144
	spin_unlock(&vcpu->kvm->mmu_lock);
4145 4146
}

4147 4148
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4149 4150
	gpa_t gpa;
	int r;
4151

4152
	if (vcpu->arch.mmu.direct_map)
4153 4154
		return 0;

4155
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4156 4157

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4158

4159
	return r;
4160
}
4161
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4162

4163
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4164
{
4165
	LIST_HEAD(invalid_list);
4166

4167 4168 4169
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4170 4171 4172
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4173

A
Avi Kivity 已提交
4174
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4175
	}
4176
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4177 4178
}

4179 4180 4181 4182 4183 4184 4185 4186
static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4187 4188
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4189
{
4190
	int r, emulation_type = EMULTYPE_RETRY;
4191 4192
	enum emulation_result er;

G
Gleb Natapov 已提交
4193
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4194 4195 4196 4197 4198 4199 4200 4201
	if (r < 0)
		goto out;

	if (!r) {
		r = 1;
		goto out;
	}

4202 4203 4204 4205
	if (is_mmio_page_fault(vcpu, cr2))
		emulation_type = 0;

	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4206 4207 4208 4209

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4210
	case EMULATE_USER_EXIT:
4211
		++vcpu->stat.mmio_exits;
4212
		/* fall through */
4213
	case EMULATE_FAIL:
4214
		return 0;
4215 4216 4217 4218 4219 4220 4221 4222
	default:
		BUG();
	}
out:
	return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4223 4224 4225 4226 4227 4228 4229 4230
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
	kvm_mmu_flush_tlb(vcpu);
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4231 4232 4233 4234 4235 4236
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4237 4238 4239 4240 4241 4242
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4243 4244
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4245
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4246 4247
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4248 4249 4250 4251
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4252
	struct page *page;
A
Avi Kivity 已提交
4253 4254 4255 4256
	int i;

	ASSERT(vcpu);

4257 4258 4259 4260 4261 4262 4263
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4264 4265
		return -ENOMEM;

4266
	vcpu->arch.mmu.pae_root = page_address(page);
4267
	for (i = 0; i < 4; ++i)
4268
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4269

A
Avi Kivity 已提交
4270 4271 4272
	return 0;
}

4273
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4274 4275
{
	ASSERT(vcpu);
4276 4277 4278 4279 4280

	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4281

4282 4283
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4284

4285
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4286 4287
{
	ASSERT(vcpu);
4288
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4289

4290
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4291 4292
}

4293
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
A
Avi Kivity 已提交
4294
{
4295 4296 4297
	struct kvm_memory_slot *memslot;
	gfn_t last_gfn;
	int i;
A
Avi Kivity 已提交
4298

4299 4300
	memslot = id_to_memslot(kvm->memslots, slot);
	last_gfn = memslot->base_gfn + memslot->npages - 1;
A
Avi Kivity 已提交
4301

4302 4303
	spin_lock(&kvm->mmu_lock);

4304 4305 4306 4307
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		unsigned long *rmapp;
		unsigned long last_index, index;
A
Avi Kivity 已提交
4308

4309 4310
		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4311

4312 4313 4314
		for (index = 0; index <= last_index; ++index, ++rmapp) {
			if (*rmapp)
				__rmap_write_protect(kvm, rmapp, false);
4315

4316
			if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4317
				cond_resched_lock(&kvm->mmu_lock);
4318
		}
A
Avi Kivity 已提交
4319
	}
4320

4321
	spin_unlock(&kvm->mmu_lock);
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
	kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4342
}
4343

X
Xiao Guangrong 已提交
4344
#define BATCH_ZAP_PAGES	10
4345 4346 4347
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4348
	int batch = 0;
4349 4350 4351 4352

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4353 4354
		int ret;

4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4370 4371 4372 4373
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4374
		if (batch >= BATCH_ZAP_PAGES &&
4375
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4376
			batch = 0;
4377 4378 4379
			goto restart;
		}

4380 4381
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4382 4383 4384
		batch += ret;

		if (ret)
4385 4386 4387
			goto restart;
	}

4388 4389 4390 4391
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4392
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4407
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4408 4409
	kvm->arch.mmu_valid_gen++;

4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4421 4422 4423 4424
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4425 4426 4427 4428 4429
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4430 4431 4432 4433 4434 4435
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4436
	if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) {
4437
		printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4438
		kvm_mmu_invalidate_zap_all_pages(kvm);
4439
	}
4440 4441
}

4442 4443
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4444 4445
{
	struct kvm *kvm;
4446
	int nr_to_scan = sc->nr_to_scan;
4447
	unsigned long freed = 0;
4448

4449
	spin_lock(&kvm_lock);
4450 4451

	list_for_each_entry(kvm, &vm_list, vm_list) {
4452
		int idx;
4453
		LIST_HEAD(invalid_list);
4454

4455 4456 4457 4458 4459 4460 4461 4462
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4463 4464 4465 4466 4467 4468
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4469 4470
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4471 4472
			continue;

4473
		idx = srcu_read_lock(&kvm->srcu);
4474 4475
		spin_lock(&kvm->mmu_lock);

4476 4477 4478 4479 4480 4481
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4482 4483
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
4484
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4485

4486
unlock:
4487
		spin_unlock(&kvm->mmu_lock);
4488
		srcu_read_unlock(&kvm->srcu, idx);
4489

4490 4491 4492 4493 4494
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
4495 4496
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4497 4498
	}

4499
	spin_unlock(&kvm_lock);
4500 4501 4502 4503 4504 4505
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
4506
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4507 4508 4509
}

static struct shrinker mmu_shrinker = {
4510 4511
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
4512 4513 4514
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4515
static void mmu_destroy_caches(void)
4516
{
4517 4518
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4519 4520
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4521 4522 4523 4524
}

int kvm_mmu_module_init(void)
{
4525 4526
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4527
					    0, 0, NULL);
4528
	if (!pte_list_desc_cache)
4529 4530
		goto nomem;

4531 4532
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4533
						  0, 0, NULL);
4534 4535 4536
	if (!mmu_page_header_cache)
		goto nomem;

4537
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4538 4539
		goto nomem;

4540 4541
	register_shrinker(&mmu_shrinker);

4542 4543 4544
	return 0;

nomem:
4545
	mmu_destroy_caches();
4546 4547 4548
	return -ENOMEM;
}

4549 4550 4551 4552 4553 4554 4555
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4556
	struct kvm_memslots *slots;
4557
	struct kvm_memory_slot *memslot;
4558

4559 4560
	slots = kvm_memslots(kvm);

4561 4562
	kvm_for_each_memslot(memslot, slots)
		nr_pages += memslot->npages;
4563 4564 4565 4566 4567 4568 4569 4570

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);

	return nr_mmu_pages;
}

4571 4572 4573
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
	struct kvm_shadow_walk_iterator iterator;
4574
	u64 spte;
4575 4576
	int nr_sptes = 0;

4577 4578 4579
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return nr_sptes;

4580 4581 4582
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		sptes[iterator.level-1] = spte;
4583
		nr_sptes++;
4584
		if (!is_shadow_present_pte(spte))
4585 4586
			break;
	}
4587
	walk_shadow_page_lockless_end(vcpu);
4588 4589 4590 4591 4592

	return nr_sptes;
}
EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);

4593 4594 4595 4596
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);

4597
	kvm_mmu_unload(vcpu);
4598 4599
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4600 4601 4602 4603 4604 4605 4606
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4607 4608
	mmu_audit_disable();
}