vmalloc.c 68.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
8
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
9 10
 */

N
Nick Piggin 已提交
11
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
12 13 14
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
15
#include <linux/sched.h>
L
Linus Torvalds 已提交
16 17 18
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
19
#include <linux/proc_fs.h>
20
#include <linux/seq_file.h>
21
#include <linux/debugobjects.h>
22
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
23 24 25 26
#include <linux/list.h>
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
27
#include <linux/pfn.h>
28
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
29
#include <linux/atomic.h>
30
#include <linux/compiler.h>
31
#include <linux/llist.h>
32
#include <linux/bitops.h>
33

L
Linus Torvalds 已提交
34 35
#include <asm/uaccess.h>
#include <asm/tlbflush.h>
36
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
	struct llist_node *llnode = llist_del_all(&p->list);
	while (llnode) {
		void *p = llnode;
		llnode = llist_next(llnode);
		__vunmap(p, 1);
	}
}

N
Nick Piggin 已提交
57
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
58

L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

N
Nick Piggin 已提交
70
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
71 72 73 74 75 76 77
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
78 79
		if (pmd_clear_huge(pmd))
			continue;
L
Linus Torvalds 已提交
80 81 82 83 84 85
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

N
Nick Piggin 已提交
86
static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
87 88 89 90 91 92 93
{
	pud_t *pud;
	unsigned long next;

	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
94 95
		if (pud_clear_huge(pud))
			continue;
L
Linus Torvalds 已提交
96 97 98 99 100 101
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

N
Nick Piggin 已提交
102
static void vunmap_page_range(unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
		vunmap_pud_range(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
N
Nick Piggin 已提交
118
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
119 120 121
{
	pte_t *pte;

N
Nick Piggin 已提交
122 123 124 125 126
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

H
Hugh Dickins 已提交
127
	pte = pte_alloc_kernel(pmd, addr);
L
Linus Torvalds 已提交
128 129 130
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
131 132 133 134 135
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
136 137
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
138
		(*nr)++;
L
Linus Torvalds 已提交
139 140 141 142
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

N
Nick Piggin 已提交
143 144
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
145 146 147 148 149 150 151 152 153
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
N
Nick Piggin 已提交
154
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
155 156 157 158 159
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
160 161
static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
162 163 164 165 166 167 168 169 170
{
	pud_t *pud;
	unsigned long next;

	pud = pud_alloc(&init_mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
N
Nick Piggin 已提交
171
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
172 173 174 175 176
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
177 178 179 180 181 182
/*
 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 * will have pfns corresponding to the "pages" array.
 *
 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 */
183 184
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
				   pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
185 186 187
{
	pgd_t *pgd;
	unsigned long next;
188
	unsigned long addr = start;
N
Nick Piggin 已提交
189 190
	int err = 0;
	int nr = 0;
L
Linus Torvalds 已提交
191 192 193 194 195

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
N
Nick Piggin 已提交
196
		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
L
Linus Torvalds 已提交
197
		if (err)
198
			return err;
L
Linus Torvalds 已提交
199
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
200 201

	return nr;
L
Linus Torvalds 已提交
202 203
}

204 205 206 207 208 209 210 211 212 213
static int vmap_page_range(unsigned long start, unsigned long end,
			   pgprot_t prot, struct page **pages)
{
	int ret;

	ret = vmap_page_range_noflush(start, end, prot, pages);
	flush_cache_vmap(start, end);
	return ret;
}

214
int is_vmalloc_or_module_addr(const void *x)
215 216
{
	/*
217
	 * ARM, x86-64 and sparc64 put modules in a special place,
218 219 220 221 222 223 224 225 226 227 228
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

229
/*
230
 * Walk a vmap address to the struct page it maps.
231
 */
232
struct page *vmalloc_to_page(const void *vmalloc_addr)
233 234
{
	unsigned long addr = (unsigned long) vmalloc_addr;
235
	struct page *page = NULL;
236 237
	pgd_t *pgd = pgd_offset_k(addr);

238 239 240 241
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
242
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
243

244
	if (!pgd_none(*pgd)) {
N
Nick Piggin 已提交
245
		pud_t *pud = pud_offset(pgd, addr);
246
		if (!pud_none(*pud)) {
N
Nick Piggin 已提交
247
			pmd_t *pmd = pmd_offset(pud, addr);
248
			if (!pmd_none(*pmd)) {
N
Nick Piggin 已提交
249 250
				pte_t *ptep, pte;

251 252 253
				ptep = pte_offset_map(pmd, addr);
				pte = *ptep;
				if (pte_present(pte))
254
					page = pte_page(pte);
255 256 257 258
				pte_unmap(ptep);
			}
		}
	}
259
	return page;
260
}
261
EXPORT_SYMBOL(vmalloc_to_page);
262 263

/*
264
 * Map a vmalloc()-space virtual address to the physical page frame number.
265
 */
266
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
267
{
268
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
269
}
270
EXPORT_SYMBOL(vmalloc_to_pfn);
271

N
Nick Piggin 已提交
272 273 274 275 276 277 278 279

/*** Global kva allocator ***/

#define VM_LAZY_FREE	0x01
#define VM_LAZY_FREEING	0x02
#define VM_VM_AREA	0x04

static DEFINE_SPINLOCK(vmap_area_lock);
280 281
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
N
Nick Piggin 已提交
282 283 284 285 286 287 288 289
static struct rb_root vmap_area_root = RB_ROOT;

/* The vmap cache globals are protected by vmap_area_lock */
static struct rb_node *free_vmap_cache;
static unsigned long cached_hole_size;
static unsigned long cached_vstart;
static unsigned long cached_align;

290
static unsigned long vmap_area_pcpu_hole;
N
Nick Piggin 已提交
291 292

static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
293
{
N
Nick Piggin 已提交
294 295 296 297 298 299 300 301
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
302
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

static void __insert_vmap_area(struct vmap_area *va)
{
	struct rb_node **p = &vmap_area_root.rb_node;
	struct rb_node *parent = NULL;
	struct rb_node *tmp;

	while (*p) {
318
		struct vmap_area *tmp_va;
N
Nick Piggin 已提交
319 320

		parent = *p;
321 322
		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
		if (va->va_start < tmp_va->va_end)
N
Nick Piggin 已提交
323
			p = &(*p)->rb_left;
324
		else if (va->va_end > tmp_va->va_start)
N
Nick Piggin 已提交
325 326 327 328 329 330 331 332
			p = &(*p)->rb_right;
		else
			BUG();
	}

	rb_link_node(&va->rb_node, parent, p);
	rb_insert_color(&va->rb_node, &vmap_area_root);

333
	/* address-sort this list */
N
Nick Piggin 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	tmp = rb_prev(&va->rb_node);
	if (tmp) {
		struct vmap_area *prev;
		prev = rb_entry(tmp, struct vmap_area, rb_node);
		list_add_rcu(&va->list, &prev->list);
	} else
		list_add_rcu(&va->list, &vmap_area_list);
}

static void purge_vmap_area_lazy(void);

/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
	struct vmap_area *va;
	struct rb_node *n;
L
Linus Torvalds 已提交
356
	unsigned long addr;
N
Nick Piggin 已提交
357
	int purged = 0;
N
Nick Piggin 已提交
358
	struct vmap_area *first;
N
Nick Piggin 已提交
359

N
Nick Piggin 已提交
360
	BUG_ON(!size);
N
Nick Piggin 已提交
361
	BUG_ON(size & ~PAGE_MASK);
N
Nick Piggin 已提交
362
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
363 364 365 366 367 368

	va = kmalloc_node(sizeof(struct vmap_area),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

369 370 371 372 373 374
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);

N
Nick Piggin 已提交
375 376
retry:
	spin_lock(&vmap_area_lock);
N
Nick Piggin 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	/*
	 * Invalidate cache if we have more permissive parameters.
	 * cached_hole_size notes the largest hole noticed _below_
	 * the vmap_area cached in free_vmap_cache: if size fits
	 * into that hole, we want to scan from vstart to reuse
	 * the hole instead of allocating above free_vmap_cache.
	 * Note that __free_vmap_area may update free_vmap_cache
	 * without updating cached_hole_size or cached_align.
	 */
	if (!free_vmap_cache ||
			size < cached_hole_size ||
			vstart < cached_vstart ||
			align < cached_align) {
nocache:
		cached_hole_size = 0;
		free_vmap_cache = NULL;
	}
	/* record if we encounter less permissive parameters */
	cached_vstart = vstart;
	cached_align = align;

	/* find starting point for our search */
	if (free_vmap_cache) {
		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
401
		addr = ALIGN(first->va_end, align);
N
Nick Piggin 已提交
402 403
		if (addr < vstart)
			goto nocache;
404
		if (addr + size < addr)
N
Nick Piggin 已提交
405 406 407 408
			goto overflow;

	} else {
		addr = ALIGN(vstart, align);
409
		if (addr + size < addr)
N
Nick Piggin 已提交
410 411 412 413 414 415
			goto overflow;

		n = vmap_area_root.rb_node;
		first = NULL;

		while (n) {
N
Nick Piggin 已提交
416 417 418 419
			struct vmap_area *tmp;
			tmp = rb_entry(n, struct vmap_area, rb_node);
			if (tmp->va_end >= addr) {
				first = tmp;
N
Nick Piggin 已提交
420 421 422 423
				if (tmp->va_start <= addr)
					break;
				n = n->rb_left;
			} else
N
Nick Piggin 已提交
424
				n = n->rb_right;
N
Nick Piggin 已提交
425
		}
N
Nick Piggin 已提交
426 427 428 429

		if (!first)
			goto found;
	}
N
Nick Piggin 已提交
430 431

	/* from the starting point, walk areas until a suitable hole is found */
432
	while (addr + size > first->va_start && addr + size <= vend) {
N
Nick Piggin 已提交
433 434
		if (addr + cached_hole_size < first->va_start)
			cached_hole_size = first->va_start - addr;
435
		addr = ALIGN(first->va_end, align);
436
		if (addr + size < addr)
N
Nick Piggin 已提交
437 438
			goto overflow;

439
		if (list_is_last(&first->list, &vmap_area_list))
N
Nick Piggin 已提交
440
			goto found;
441 442 443

		first = list_entry(first->list.next,
				struct vmap_area, list);
N
Nick Piggin 已提交
444 445
	}

N
Nick Piggin 已提交
446 447 448
found:
	if (addr + size > vend)
		goto overflow;
N
Nick Piggin 已提交
449 450 451 452 453

	va->va_start = addr;
	va->va_end = addr + size;
	va->flags = 0;
	__insert_vmap_area(va);
N
Nick Piggin 已提交
454
	free_vmap_cache = &va->rb_node;
N
Nick Piggin 已提交
455 456
	spin_unlock(&vmap_area_lock);

N
Nick Piggin 已提交
457 458 459 460
	BUG_ON(va->va_start & (align-1));
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

N
Nick Piggin 已提交
461
	return va;
N
Nick Piggin 已提交
462 463 464 465 466 467 468 469 470

overflow:
	spin_unlock(&vmap_area_lock);
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
	if (printk_ratelimit())
471
		pr_warn("vmap allocation for size %lu failed: "
N
Nick Piggin 已提交
472 473 474
			"use vmalloc=<size> to increase size.\n", size);
	kfree(va);
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
475 476 477 478 479
}

static void __free_vmap_area(struct vmap_area *va)
{
	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
N
Nick Piggin 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

	if (free_vmap_cache) {
		if (va->va_end < cached_vstart) {
			free_vmap_cache = NULL;
		} else {
			struct vmap_area *cache;
			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
			if (va->va_start <= cache->va_start) {
				free_vmap_cache = rb_prev(&va->rb_node);
				/*
				 * We don't try to update cached_hole_size or
				 * cached_align, but it won't go very wrong.
				 */
			}
		}
	}
N
Nick Piggin 已提交
496 497 498 499
	rb_erase(&va->rb_node, &vmap_area_root);
	RB_CLEAR_NODE(&va->rb_node);
	list_del_rcu(&va->list);

500 501 502 503 504 505 506 507 508
	/*
	 * Track the highest possible candidate for pcpu area
	 * allocation.  Areas outside of vmalloc area can be returned
	 * here too, consider only end addresses which fall inside
	 * vmalloc area proper.
	 */
	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);

509
	kfree_rcu(va, rcu_head);
N
Nick Piggin 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
}

/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	spin_lock(&vmap_area_lock);
	__free_vmap_area(va);
	spin_unlock(&vmap_area_lock);
}

/*
 * Clear the pagetable entries of a given vmap_area
 */
static void unmap_vmap_area(struct vmap_area *va)
{
	vunmap_page_range(va->va_start, va->va_end);
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
static void vmap_debug_free_range(unsigned long start, unsigned long end)
{
	/*
	 * Unmap page tables and force a TLB flush immediately if
	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
	 * bugs similarly to those in linear kernel virtual address
	 * space after a page has been freed.
	 *
	 * All the lazy freeing logic is still retained, in order to
	 * minimise intrusiveness of this debugging feature.
	 *
	 * This is going to be *slow* (linear kernel virtual address
	 * debugging doesn't do a broadcast TLB flush so it is a lot
	 * faster).
	 */
#ifdef CONFIG_DEBUG_PAGEALLOC
	vunmap_page_range(start, end);
	flush_tlb_kernel_range(start, end);
#endif
}

N
Nick Piggin 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);

578 579 580
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

581 582 583 584 585 586 587 588 589
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
}

N
Nick Piggin 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602
/*
 * Purges all lazily-freed vmap areas.
 *
 * If sync is 0 then don't purge if there is already a purge in progress.
 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 * their own TLB flushing).
 * Returns with *start = min(*start, lowest purged address)
 *              *end = max(*end, highest purged address)
 */
static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
					int sync, int force_flush)
{
603
	static DEFINE_SPINLOCK(purge_lock);
N
Nick Piggin 已提交
604 605
	LIST_HEAD(valist);
	struct vmap_area *va;
606
	struct vmap_area *n_va;
N
Nick Piggin 已提交
607 608 609 610 611 612 613 614
	int nr = 0;

	/*
	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
	 * should not expect such behaviour. This just simplifies locking for
	 * the case that isn't actually used at the moment anyway.
	 */
	if (!sync && !force_flush) {
615
		if (!spin_trylock(&purge_lock))
N
Nick Piggin 已提交
616 617
			return;
	} else
618
		spin_lock(&purge_lock);
N
Nick Piggin 已提交
619

620 621 622
	if (sync)
		purge_fragmented_blocks_allcpus();

N
Nick Piggin 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
	rcu_read_lock();
	list_for_each_entry_rcu(va, &vmap_area_list, list) {
		if (va->flags & VM_LAZY_FREE) {
			if (va->va_start < *start)
				*start = va->va_start;
			if (va->va_end > *end)
				*end = va->va_end;
			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
			list_add_tail(&va->purge_list, &valist);
			va->flags |= VM_LAZY_FREEING;
			va->flags &= ~VM_LAZY_FREE;
		}
	}
	rcu_read_unlock();

638
	if (nr)
N
Nick Piggin 已提交
639 640 641 642 643 644 645
		atomic_sub(nr, &vmap_lazy_nr);

	if (nr || force_flush)
		flush_tlb_kernel_range(*start, *end);

	if (nr) {
		spin_lock(&vmap_area_lock);
646
		list_for_each_entry_safe(va, n_va, &valist, purge_list)
N
Nick Piggin 已提交
647 648 649
			__free_vmap_area(va);
		spin_unlock(&vmap_area_lock);
	}
650
	spin_unlock(&purge_lock);
N
Nick Piggin 已提交
651 652
}

N
Nick Piggin 已提交
653 654 655 656 657 658 659 660 661 662 663
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
	unsigned long start = ULONG_MAX, end = 0;

	__purge_vmap_area_lazy(&start, &end, 0, 0);
}

N
Nick Piggin 已提交
664 665 666 667 668 669 670
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
	unsigned long start = ULONG_MAX, end = 0;

N
Nick Piggin 已提交
671
	__purge_vmap_area_lazy(&start, &end, 1, 0);
N
Nick Piggin 已提交
672 673 674
}

/*
675 676 677
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
678
 */
679
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
680 681 682 683
{
	va->flags |= VM_LAZY_FREE;
	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
N
Nick Piggin 已提交
684
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
685 686
}

687 688 689 690 691 692 693 694 695 696
/*
 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 * called for the correct range previously.
 */
static void free_unmap_vmap_area_noflush(struct vmap_area *va)
{
	unmap_vmap_area(va);
	free_vmap_area_noflush(va);
}

697 698 699 700 701 702 703 704 705
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
	free_unmap_vmap_area_noflush(va);
}

N
Nick Piggin 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

static void free_unmap_vmap_area_addr(unsigned long addr)
{
	struct vmap_area *va;

	va = find_vmap_area(addr);
	BUG_ON(!va);
	free_unmap_vmap_area(va);
}


/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
750 751 752 753
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
754 755 756

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

757 758
static bool vmap_initialized __read_mostly = false;

N
Nick Piggin 已提交
759 760 761 762 763 764 765 766 767 768
struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
769 770
	struct list_head free_list;
	struct rcu_head rcu_head;
771
	struct list_head purge;
N
Nick Piggin 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
817
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
818
		kfree(vb);
J
Julia Lawall 已提交
819
		return ERR_CAST(va);
N
Nick Piggin 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

	spin_lock_init(&vb->lock);
	vb->va = va;
	vb->free = VMAP_BBMAP_BITS;
	vb->dirty = 0;
	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
845
	list_add_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
846
	spin_unlock(&vbq->lock);
847
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

	return vb;
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

863
	free_vmap_area_noflush(vb->va);
864
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
865 866
}

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
909 910 911 912 913 914 915 916 917
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	unsigned long addr = 0;
	unsigned int order;

	BUG_ON(size & ~PAGE_MASK);
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
918 919 920 921 922 923 924 925
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
926 927 928 929 930 931 932 933 934
	order = get_order(size);

again:
	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
		int i;

		spin_lock(&vb->lock);
935 936 937
		if (vb->free < 1UL << order)
			goto next;

938
		i = VMAP_BBMAP_BITS - vb->free;
939 940 941 942 943 944 945 946 947 948 949 950
		addr = vb->va->va_start + (i << PAGE_SHIFT);
		BUG_ON(addr_to_vb_idx(addr) !=
				addr_to_vb_idx(vb->va->va_start));
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
		spin_unlock(&vb->lock);
		break;
next:
N
Nick Piggin 已提交
951 952
		spin_unlock(&vb->lock);
	}
953

954
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	rcu_read_unlock();

	if (!addr) {
		vb = new_vmap_block(gfp_mask);
		if (IS_ERR(vb))
			return vb;
		goto again;
	}

	return (void *)addr;
}

static void vb_free(const void *addr, unsigned long size)
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

	BUG_ON(size & ~PAGE_MASK);
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
976 977 978

	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
979 980 981 982 983 984 985 986 987 988
	order = get_order(size);

	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);

	vb_idx = addr_to_vb_idx((unsigned long)addr);
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

989 990
	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
991
	spin_lock(&vb->lock);
992
	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
993

N
Nick Piggin 已提交
994 995
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
996
		BUG_ON(vb->free);
N
Nick Piggin 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int cpu;
	int flush = 0;

1022 1023 1024
	if (unlikely(!vmap_initialized))
		return;

N
Nick Piggin 已提交
1025 1026 1027 1028 1029 1030
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1031
			int i, j;
N
Nick Piggin 已提交
1032 1033 1034

			spin_lock(&vb->lock);
			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1035
			if (i < VMAP_BBMAP_BITS) {
N
Nick Piggin 已提交
1036
				unsigned long s, e;
1037 1038 1039 1040

				j = find_last_bit(vb->dirty_map,
							VMAP_BBMAP_BITS);
				j = j + 1; /* need exclusive index */
N
Nick Piggin 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

				s = vb->va->va_start + (i << PAGE_SHIFT);
				e = vb->va->va_start + (j << PAGE_SHIFT);
				flush = 1;

				if (s < start)
					start = s;
				if (e > end)
					end = e;
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

	__purge_vmap_area_lazy(&start, &end, 1, flush);
}
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
	unsigned long size = count << PAGE_SHIFT;
	unsigned long addr = (unsigned long)mem;

	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
	BUG_ON(addr & (PAGE_SIZE-1));

	debug_check_no_locks_freed(mem, size);
1076
	vmap_debug_free_range(addr, addr+size);
N
Nick Piggin 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

	if (likely(count <= VMAP_MAX_ALLOC))
		vb_free(mem, size);
	else
		free_unmap_vmap_area_addr(addr);
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1091
 *
1092 1093 1094 1095 1096 1097
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1098
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
 */
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
	unsigned long size = count << PAGE_SHIFT;
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1129
static struct vm_struct *vmlist __initdata;
N
Nicolas Pitre 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1156 1157 1158
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1159
 * @align: requested alignment
1160 1161 1162 1163 1164 1165 1166 1167
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1168
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1169 1170
{
	static size_t vm_init_off __initdata;
1171 1172 1173 1174
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1175

1176
	vm->addr = (void *)addr;
1177

N
Nicolas Pitre 已提交
1178
	vm_area_add_early(vm);
1179 1180
}

N
Nick Piggin 已提交
1181 1182
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1183 1184
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1185 1186 1187 1188
	int i;

	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1189
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1190 1191 1192 1193

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1194 1195 1196
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1197
	}
1198

I
Ivan Kokshaysky 已提交
1199 1200
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1201
		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1202
		va->flags = VM_VM_AREA;
I
Ivan Kokshaysky 已提交
1203 1204
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
1205
		va->vm = tmp;
I
Ivan Kokshaysky 已提交
1206 1207
		__insert_vmap_area(va);
	}
1208 1209 1210

	vmap_area_pcpu_hole = VMALLOC_END;

1211
	vmap_initialized = true;
N
Nick Piggin 已提交
1212 1213
}

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
 *
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vmap() on to-be-mapped areas
 * before calling this function.
 *
 * RETURNS:
 * The number of pages mapped on success, -errno on failure.
 */
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
{
	return vmap_page_range_noflush(addr, addr + size, prot, pages);
}

/**
 * unmap_kernel_range_noflush - unmap kernel VM area
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
 * before calling this function and flush_tlb_kernel_range() after.
 */
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
{
	vunmap_page_range(addr, addr + size);
}
1257
EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1258 1259 1260 1261 1262 1263 1264 1265 1266

/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
1267 1268 1269
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
1270 1271

	flush_cache_vunmap(addr, end);
N
Nick Piggin 已提交
1272 1273 1274
	vunmap_page_range(addr, end);
	flush_tlb_kernel_range(addr, end);
}
1275
EXPORT_SYMBOL_GPL(unmap_kernel_range);
N
Nick Piggin 已提交
1276

1277
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
N
Nick Piggin 已提交
1278 1279
{
	unsigned long addr = (unsigned long)area->addr;
1280
	unsigned long end = addr + get_vm_area_size(area);
N
Nick Piggin 已提交
1281 1282
	int err;

1283
	err = vmap_page_range(addr, end, prot, pages);
N
Nick Piggin 已提交
1284

1285
	return err > 0 ? 0 : err;
N
Nick Piggin 已提交
1286 1287 1288
}
EXPORT_SYMBOL_GPL(map_vm_area);

1289
static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1290
			      unsigned long flags, const void *caller)
1291
{
1292
	spin_lock(&vmap_area_lock);
1293 1294 1295 1296
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
1297
	va->vm = vm;
1298
	va->flags |= VM_VM_AREA;
1299
	spin_unlock(&vmap_area_lock);
1300
}
1301

1302
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1303
{
1304
	/*
1305
	 * Before removing VM_UNINITIALIZED,
1306 1307 1308 1309
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
1310
	vm->flags &= ~VM_UNINITIALIZED;
1311 1312
}

N
Nick Piggin 已提交
1313
static struct vm_struct *__get_vm_area_node(unsigned long size,
1314
		unsigned long align, unsigned long flags, unsigned long start,
1315
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
1316
{
1317
	struct vmap_area *va;
N
Nick Piggin 已提交
1318
	struct vm_struct *area;
L
Linus Torvalds 已提交
1319

1320
	BUG_ON(in_interrupt());
1321
	if (flags & VM_IOREMAP)
1322 1323
		align = 1ul << clamp_t(int, fls_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
N
Nick Piggin 已提交
1324

L
Linus Torvalds 已提交
1325
	size = PAGE_ALIGN(size);
1326 1327
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
1328

1329
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
1330 1331 1332
	if (unlikely(!area))
		return NULL;

1333 1334
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
1335

N
Nick Piggin 已提交
1336 1337 1338 1339
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
1340 1341
	}

1342
	setup_vmalloc_vm(area, va, flags, caller);
1343

L
Linus Torvalds 已提交
1344 1345 1346
	return area;
}

C
Christoph Lameter 已提交
1347 1348 1349
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
				unsigned long start, unsigned long end)
{
D
David Rientjes 已提交
1350 1351
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, __builtin_return_address(0));
C
Christoph Lameter 已提交
1352
}
1353
EXPORT_SYMBOL_GPL(__get_vm_area);
C
Christoph Lameter 已提交
1354

1355 1356
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
1357
				       const void *caller)
1358
{
D
David Rientjes 已提交
1359 1360
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
1361 1362
}

L
Linus Torvalds 已提交
1363
/**
S
Simon Arlott 已提交
1364
 *	get_vm_area  -  reserve a contiguous kernel virtual area
L
Linus Torvalds 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373
 *	@size:		size of the area
 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
 *
 *	Search an area of @size in the kernel virtual mapping area,
 *	and reserved it for out purposes.  Returns the area descriptor
 *	on success or %NULL on failure.
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
1374
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
1375 1376
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
1377 1378 1379
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1380
				const void *caller)
1381
{
1382
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
1383
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
1384 1385
}

1386 1387 1388 1389 1390 1391 1392 1393 1394
/**
 *	find_vm_area  -  find a continuous kernel virtual area
 *	@addr:		base address
 *
 *	Search for the kernel VM area starting at @addr, and return it.
 *	It is up to the caller to do all required locking to keep the returned
 *	pointer valid.
 */
struct vm_struct *find_vm_area(const void *addr)
1395
{
N
Nick Piggin 已提交
1396
	struct vmap_area *va;
1397

N
Nick Piggin 已提交
1398 1399
	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA)
1400
		return va->vm;
L
Linus Torvalds 已提交
1401 1402 1403 1404

	return NULL;
}

1405
/**
S
Simon Arlott 已提交
1406
 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1407 1408 1409 1410 1411 1412
 *	@addr:		base address
 *
 *	Search for the kernel VM area starting at @addr, and remove it.
 *	This function returns the found VM area, but using it is NOT safe
 *	on SMP machines, except for its size or flags.
 */
1413
struct vm_struct *remove_vm_area(const void *addr)
1414
{
N
Nick Piggin 已提交
1415 1416 1417 1418
	struct vmap_area *va;

	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA) {
1419
		struct vm_struct *vm = va->vm;
1420

1421 1422 1423 1424 1425
		spin_lock(&vmap_area_lock);
		va->vm = NULL;
		va->flags &= ~VM_VM_AREA;
		spin_unlock(&vmap_area_lock);

1426
		vmap_debug_free_range(va->va_start, va->va_end);
1427
		kasan_free_shadow(vm);
1428 1429 1430
		free_unmap_vmap_area(va);
		vm->size -= PAGE_SIZE;

N
Nick Piggin 已提交
1431 1432 1433
		return vm;
	}
	return NULL;
1434 1435
}

1436
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
1437 1438 1439 1440 1441 1442
{
	struct vm_struct *area;

	if (!addr)
		return;

1443
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
1444
			addr))
L
Linus Torvalds 已提交
1445 1446 1447 1448
		return;

	area = remove_vm_area(addr);
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
1449
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
1450 1451 1452 1453
				addr);
		return;
	}

1454
	debug_check_no_locks_freed(addr, area->size);
1455
	debug_check_no_obj_freed(addr, area->size);
1456

L
Linus Torvalds 已提交
1457 1458 1459 1460
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
1461 1462 1463 1464
			struct page *page = area->pages[i];

			BUG_ON(!page);
			__free_page(page);
L
Linus Torvalds 已提交
1465 1466
		}

1467
		if (area->flags & VM_VPAGES)
L
Linus Torvalds 已提交
1468 1469 1470 1471 1472 1473 1474 1475
			vfree(area->pages);
		else
			kfree(area->pages);
	}

	kfree(area);
	return;
}
1476
 
L
Linus Torvalds 已提交
1477 1478 1479 1480
/**
 *	vfree  -  release memory allocated by vmalloc()
 *	@addr:		memory base address
 *
S
Simon Arlott 已提交
1481
 *	Free the virtually continuous memory area starting at @addr, as
1482 1483
 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 *	NULL, no operation is performed.
L
Linus Torvalds 已提交
1484
 *
1485 1486 1487
 *	Must not be called in NMI context (strictly speaking, only if we don't
 *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 *	conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
1488 1489
 *
 *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
1490
 */
1491
void vfree(const void *addr)
L
Linus Torvalds 已提交
1492
{
1493
	BUG_ON(in_nmi());
1494 1495 1496

	kmemleak_free(addr);

1497 1498 1499
	if (!addr)
		return;
	if (unlikely(in_interrupt())) {
1500
		struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1501 1502
		if (llist_add((struct llist_node *)addr, &p->list))
			schedule_work(&p->wq);
1503 1504
	} else
		__vunmap(addr, 1);
L
Linus Torvalds 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
}
EXPORT_SYMBOL(vfree);

/**
 *	vunmap  -  release virtual mapping obtained by vmap()
 *	@addr:		memory base address
 *
 *	Free the virtually contiguous memory area starting at @addr,
 *	which was created from the page array passed to vmap().
 *
1515
 *	Must not be called in interrupt context.
L
Linus Torvalds 已提交
1516
 */
1517
void vunmap(const void *addr)
L
Linus Torvalds 已提交
1518 1519
{
	BUG_ON(in_interrupt());
1520
	might_sleep();
1521 1522
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
}
EXPORT_SYMBOL(vunmap);

/**
 *	vmap  -  map an array of pages into virtually contiguous space
 *	@pages:		array of page pointers
 *	@count:		number of pages to map
 *	@flags:		vm_area->flags
 *	@prot:		page protection for the mapping
 *
 *	Maps @count pages from @pages into contiguous kernel virtual
 *	space.
 */
void *vmap(struct page **pages, unsigned int count,
		unsigned long flags, pgprot_t prot)
{
	struct vm_struct *area;

1541 1542
	might_sleep();

1543
	if (count > totalram_pages)
L
Linus Torvalds 已提交
1544 1545
		return NULL;

1546 1547
	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
					__builtin_return_address(0));
L
Linus Torvalds 已提交
1548 1549
	if (!area)
		return NULL;
1550

1551
	if (map_vm_area(area, prot, pages)) {
L
Linus Torvalds 已提交
1552 1553 1554 1555 1556 1557 1558 1559
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

1560 1561
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
1562
			    int node, const void *caller);
A
Adrian Bunk 已提交
1563
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1564
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
1565
{
1566
	const int order = 0;
L
Linus Torvalds 已提交
1567 1568
	struct page **pages;
	unsigned int nr_pages, array_size, i;
1569 1570
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
L
Linus Torvalds 已提交
1571

1572
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
1573 1574 1575 1576
	array_size = (nr_pages * sizeof(struct page *));

	area->nr_pages = nr_pages;
	/* Please note that the recursion is strictly bounded. */
1577
	if (array_size > PAGE_SIZE) {
1578
		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1579
				PAGE_KERNEL, node, area->caller);
1580
		area->flags |= VM_VPAGES;
1581
	} else {
1582
		pages = kmalloc_node(array_size, nested_gfp, node);
1583
	}
L
Linus Torvalds 已提交
1584 1585 1586 1587 1588 1589 1590 1591
	area->pages = pages;
	if (!area->pages) {
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

	for (i = 0; i < area->nr_pages; i++) {
1592 1593
		struct page *page;

J
Jianguo Wu 已提交
1594
		if (node == NUMA_NO_NODE)
1595
			page = alloc_page(alloc_mask);
C
Christoph Lameter 已提交
1596
		else
1597
			page = alloc_pages_node(node, alloc_mask, order);
1598 1599

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
1600 1601 1602 1603
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
			goto fail;
		}
1604
		area->pages[i] = page;
1605 1606
		if (gfp_mask & __GFP_WAIT)
			cond_resched();
L
Linus Torvalds 已提交
1607 1608
	}

1609
	if (map_vm_area(area, prot, pages))
L
Linus Torvalds 已提交
1610 1611 1612 1613
		goto fail;
	return area->addr;

fail:
J
Joe Perches 已提交
1614 1615
	warn_alloc_failed(gfp_mask, order,
			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1616
			  (area->nr_pages*PAGE_SIZE), area->size);
L
Linus Torvalds 已提交
1617 1618 1619 1620 1621
	vfree(area->addr);
	return NULL;
}

/**
1622
 *	__vmalloc_node_range  -  allocate virtually contiguous memory
L
Linus Torvalds 已提交
1623
 *	@size:		allocation size
1624
 *	@align:		desired alignment
1625 1626
 *	@start:		vm area range start
 *	@end:		vm area range end
L
Linus Torvalds 已提交
1627 1628
 *	@gfp_mask:	flags for the page level allocator
 *	@prot:		protection mask for the allocated pages
1629
 *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
D
David Rientjes 已提交
1630
 *	@node:		node to use for allocation or NUMA_NO_NODE
1631
 *	@caller:	caller's return address
L
Linus Torvalds 已提交
1632 1633 1634 1635 1636
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator with @gfp_mask flags.  Map them into contiguous
 *	kernel virtual space, using a pagetable protection of @prot.
 */
1637 1638
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
1639 1640
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
1641 1642
{
	struct vm_struct *area;
1643 1644
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
1645 1646

	size = PAGE_ALIGN(size);
1647
	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1648
		goto fail;
L
Linus Torvalds 已提交
1649

1650 1651
	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
1652
	if (!area)
1653
		goto fail;
L
Linus Torvalds 已提交
1654

1655
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1656
	if (!addr)
1657
		return NULL;
1658

1659
	/*
1660 1661
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
1662
	 * Now, it is fully initialized, so remove this flag here.
1663
	 */
1664
	clear_vm_uninitialized_flag(area);
1665

1666
	/*
1667 1668 1669
	 * A ref_count = 2 is needed because vm_struct allocated in
	 * __get_vm_area_node() contains a reference to the virtual address of
	 * the vmalloc'ed block.
1670
	 */
1671
	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1672 1673

	return addr;
1674 1675 1676 1677 1678 1679

fail:
	warn_alloc_failed(gfp_mask, 0,
			  "vmalloc: allocation failure: %lu bytes\n",
			  real_size);
	return NULL;
L
Linus Torvalds 已提交
1680 1681
}

1682 1683 1684 1685 1686 1687
/**
 *	__vmalloc_node  -  allocate virtually contiguous memory
 *	@size:		allocation size
 *	@align:		desired alignment
 *	@gfp_mask:	flags for the page level allocator
 *	@prot:		protection mask for the allocated pages
D
David Rientjes 已提交
1688
 *	@node:		node to use for allocation or NUMA_NO_NODE
1689 1690 1691 1692 1693 1694 1695 1696
 *	@caller:	caller's return address
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator with @gfp_mask flags.  Map them into contiguous
 *	kernel virtual space, using a pagetable protection of @prot.
 */
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
1697
			    int node, const void *caller)
1698 1699
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1700
				gfp_mask, prot, 0, node, caller);
1701 1702
}

C
Christoph Lameter 已提交
1703 1704
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
D
David Rientjes 已提交
1705
	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1706
				__builtin_return_address(0));
C
Christoph Lameter 已提交
1707
}
L
Linus Torvalds 已提交
1708 1709
EXPORT_SYMBOL(__vmalloc);

1710 1711 1712 1713 1714 1715 1716
static inline void *__vmalloc_node_flags(unsigned long size,
					int node, gfp_t flags)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
					node, __builtin_return_address(0));
}

L
Linus Torvalds 已提交
1717 1718 1719 1720 1721 1722
/**
 *	vmalloc  -  allocate virtually contiguous memory
 *	@size:		allocation size
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *
1723
 *	For tight control over page level allocator and protection flags
L
Linus Torvalds 已提交
1724 1725 1726 1727
 *	use __vmalloc() instead.
 */
void *vmalloc(unsigned long size)
{
D
David Rientjes 已提交
1728 1729
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
				    GFP_KERNEL | __GFP_HIGHMEM);
L
Linus Torvalds 已提交
1730 1731 1732
}
EXPORT_SYMBOL(vmalloc);

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
/**
 *	vzalloc - allocate virtually contiguous memory with zero fill
 *	@size:	allocation size
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *	The memory allocated is set to zero.
 *
 *	For tight control over page level allocator and protection flags
 *	use __vmalloc() instead.
 */
void *vzalloc(unsigned long size)
{
D
David Rientjes 已提交
1745
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1746 1747 1748 1749
				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
}
EXPORT_SYMBOL(vzalloc);

1750
/**
1751 1752
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
1753
 *
1754 1755
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
1756 1757 1758 1759 1760 1761
 */
void *vmalloc_user(unsigned long size)
{
	struct vm_struct *area;
	void *ret;

1762 1763
	ret = __vmalloc_node(size, SHMLBA,
			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
D
David Rientjes 已提交
1764 1765
			     PAGE_KERNEL, NUMA_NO_NODE,
			     __builtin_return_address(0));
1766
	if (ret) {
N
Nick Piggin 已提交
1767
		area = find_vm_area(ret);
1768 1769
		area->flags |= VM_USERMAP;
	}
1770 1771 1772 1773
	return ret;
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
1774 1775 1776
/**
 *	vmalloc_node  -  allocate memory on a specific node
 *	@size:		allocation size
1777
 *	@node:		numa node
C
Christoph Lameter 已提交
1778 1779 1780 1781
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *
1782
 *	For tight control over page level allocator and protection flags
C
Christoph Lameter 已提交
1783 1784 1785 1786
 *	use __vmalloc() instead.
 */
void *vmalloc_node(unsigned long size, int node)
{
1787
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1788
					node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1789 1790 1791
}
EXPORT_SYMBOL(vmalloc_node);

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc_node() instead.
 */
void *vzalloc_node(unsigned long size, int node)
{
	return __vmalloc_node_flags(size, node,
			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
}
EXPORT_SYMBOL(vzalloc_node);

1811 1812 1813 1814
#ifndef PAGE_KERNEL_EXEC
# define PAGE_KERNEL_EXEC PAGE_KERNEL
#endif

L
Linus Torvalds 已提交
1815 1816 1817 1818 1819 1820 1821 1822
/**
 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
 *	@size:		allocation size
 *
 *	Kernel-internal function to allocate enough pages to cover @size
 *	the page level allocator and map them into contiguous and
 *	executable kernel virtual space.
 *
1823
 *	For tight control over page level allocator and protection flags
L
Linus Torvalds 已提交
1824 1825 1826 1827 1828
 *	use __vmalloc() instead.
 */

void *vmalloc_exec(unsigned long size)
{
1829
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
D
David Rientjes 已提交
1830
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
1831 1832
}

1833
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1834
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1835
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1836
#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1837 1838 1839 1840
#else
#define GFP_VMALLOC32 GFP_KERNEL
#endif

L
Linus Torvalds 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849
/**
 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 *	@size:		allocation size
 *
 *	Allocate enough 32bit PA addressable pages to cover @size from the
 *	page level allocator and map them into contiguous kernel virtual space.
 */
void *vmalloc_32(unsigned long size)
{
1850
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
D
David Rientjes 已提交
1851
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
1852 1853 1854
}
EXPORT_SYMBOL(vmalloc_32);

1855
/**
1856
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1857
 *	@size:		allocation size
1858 1859 1860
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
1861 1862 1863 1864 1865 1866
 */
void *vmalloc_32_user(unsigned long size)
{
	struct vm_struct *area;
	void *ret;

1867
	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
D
David Rientjes 已提交
1868
			     NUMA_NO_NODE, __builtin_return_address(0));
1869
	if (ret) {
N
Nick Piggin 已提交
1870
		area = find_vm_area(ret);
1871 1872
		area->flags |= VM_USERMAP;
	}
1873 1874 1875 1876
	return ret;
}
EXPORT_SYMBOL(vmalloc_32_user);

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

		offset = (unsigned long)addr & ~PAGE_MASK;
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
1907
			void *map = kmap_atomic(p);
1908
			memcpy(buf, map + offset, length);
1909
			kunmap_atomic(map);
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

		offset = (unsigned long)addr & ~PAGE_MASK;
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
1946
			void *map = kmap_atomic(p);
1947
			memcpy(map + offset, buf, length);
1948
			kunmap_atomic(map);
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
 *	vread() -  read vmalloc area in a safe way.
 *	@buf:		buffer for reading data
 *	@addr:		vm address.
 *	@count:		number of bytes to be read.
 *
 *	Returns # of bytes which addr and buf should be increased.
 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
 *	includes any intersect with alive vmalloc area.
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	copy data from that area to a given buffer. If the given memory range
 *	of [addr...addr+count) includes some valid address, data is copied to
 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
 *	IOREMAP area is treated as memory hole and no copy is done.
 *
 *	If [addr...addr+count) doesn't includes any intersects with alive
1975
 *	vm_struct area, returns 0. @buf should be kernel's buffer.
1976 1977 1978 1979 1980 1981 1982 1983
 *
 *	Note: In usual ops, vread() is never necessary because the caller
 *	should know vmalloc() area is valid and can use memcpy().
 *	This is for routines which have to access vmalloc area without
 *	any informaion, as /dev/kmem.
 *
 */

L
Linus Torvalds 已提交
1984 1985
long vread(char *buf, char *addr, unsigned long count)
{
1986 1987
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
1988
	char *vaddr, *buf_start = buf;
1989
	unsigned long buflen = count;
L
Linus Torvalds 已提交
1990 1991 1992 1993 1994 1995
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

		if (!(va->flags & VM_VM_AREA))
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2006
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2016
		n = vaddr + get_vm_area_size(vm) - addr;
2017 2018
		if (n > count)
			n = count;
2019
		if (!(vm->flags & VM_IOREMAP))
2020 2021 2022 2023 2024 2025
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2026 2027
	}
finished:
2028
	spin_unlock(&vmap_area_lock);
2029 2030 2031 2032 2033 2034 2035 2036

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2037 2038
}

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
/**
 *	vwrite() -  write vmalloc area in a safe way.
 *	@buf:		buffer for source data
 *	@addr:		vm address.
 *	@count:		number of bytes to be read.
 *
 *	Returns # of bytes which addr and buf should be incresed.
 *	(same number to @count).
 *	If [addr...addr+count) doesn't includes any intersect with valid
 *	vmalloc area, returns 0.
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	copy data from a buffer to the given addr. If specified range of
 *	[addr...addr+count) includes some valid address, data is copied from
 *	proper area of @buf. If there are memory holes, no copy to hole.
 *	IOREMAP area is treated as memory hole and no copy is done.
 *
 *	If [addr...addr+count) doesn't includes any intersects with alive
2057
 *	vm_struct area, returns 0. @buf should be kernel's buffer.
2058 2059 2060 2061 2062 2063 2064
 *
 *	Note: In usual ops, vwrite() is never necessary because the caller
 *	should know vmalloc() area is valid and can use memcpy().
 *	This is for routines which have to access vmalloc area without
 *	any informaion, as /dev/kmem.
 */

L
Linus Torvalds 已提交
2065 2066
long vwrite(char *buf, char *addr, unsigned long count)
{
2067 2068
	struct vmap_area *va;
	struct vm_struct *vm;
2069 2070 2071
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2072 2073 2074 2075

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2076
	buflen = count;
L
Linus Torvalds 已提交
2077

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

		if (!(va->flags & VM_VM_AREA))
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2088
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2089 2090 2091 2092 2093 2094 2095 2096
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2097
		n = vaddr + get_vm_area_size(vm) - addr;
2098 2099
		if (n > count)
			n = count;
2100
		if (!(vm->flags & VM_IOREMAP)) {
2101 2102 2103 2104 2105 2106
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2107 2108
	}
finished:
2109
	spin_unlock(&vmap_area_lock);
2110 2111 2112
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
2113
}
2114 2115

/**
2116 2117 2118 2119 2120
 *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
 *	@vma:		vma to cover
 *	@uaddr:		target user address to start at
 *	@kaddr:		virtual address of vmalloc kernel memory
 *	@size:		size of map area
2121 2122
 *
 *	Returns:	0 for success, -Exxx on failure
2123
 *
2124 2125 2126 2127
 *	This function checks that @kaddr is a valid vmalloc'ed area,
 *	and that it is big enough to cover the range starting at
 *	@uaddr in @vma. Will return failure if that criteria isn't
 *	met.
2128
 *
2129
 *	Similar to remap_pfn_range() (see mm/memory.c)
2130
 */
2131 2132
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
				void *kaddr, unsigned long size)
2133 2134 2135
{
	struct vm_struct *area;

2136 2137 2138
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2139 2140
		return -EINVAL;

2141
	area = find_vm_area(kaddr);
2142
	if (!area)
N
Nick Piggin 已提交
2143
		return -EINVAL;
2144 2145

	if (!(area->flags & VM_USERMAP))
N
Nick Piggin 已提交
2146
		return -EINVAL;
2147

2148
	if (kaddr + size > area->addr + area->size)
N
Nick Piggin 已提交
2149
		return -EINVAL;
2150 2151

	do {
2152
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
2153 2154
		int ret;

2155 2156 2157 2158 2159
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
2160 2161 2162
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
2163

2164
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2165

N
Nick Piggin 已提交
2166
	return 0;
2167
}
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
 *	remap_vmalloc_range  -  map vmalloc pages to userspace
 *	@vma:		vma to cover (map full range of vma)
 *	@addr:		vmalloc memory
 *	@pgoff:		number of pages into addr before first page to map
 *
 *	Returns:	0 for success, -Exxx on failure
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	that it is big enough to cover the vma. Will return failure if
 *	that criteria isn't met.
 *
 *	Similar to remap_pfn_range() (see mm/memory.c)
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
					   addr + (pgoff << PAGE_SHIFT),
					   vma->vm_end - vma->vm_start);
}
2191 2192
EXPORT_SYMBOL(remap_vmalloc_range);

2193 2194 2195 2196
/*
 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 * have one.
 */
2197
void __weak vmalloc_sync_all(void)
2198 2199
{
}
2200 2201


2202
static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2203
{
2204 2205 2206 2207 2208 2209
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
2210 2211 2212 2213 2214 2215
	return 0;
}

/**
 *	alloc_vm_area - allocate a range of kernel address space
 *	@size:		size of the area
2216
 *	@ptes:		returns the PTEs for the address space
2217 2218
 *
 *	Returns:	NULL on failure, vm_struct on success
2219 2220 2221
 *
 *	This function reserves a range of kernel address space, and
 *	allocates pagetables to map that range.  No actual mappings
2222 2223 2224 2225
 *	are created.
 *
 *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 *	allocated for the VM area are returned.
2226
 */
2227
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2228 2229 2230
{
	struct vm_struct *area;

2231 2232
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
2233 2234 2235 2236 2237 2238 2239 2240
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2241
				size, f, ptes ? &ptes : NULL)) {
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
2258

2259
#ifdef CONFIG_SMP
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
static struct vmap_area *node_to_va(struct rb_node *n)
{
	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
}

/**
 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
 * @end: target address
 * @pnext: out arg for the next vmap_area
 * @pprev: out arg for the previous vmap_area
 *
 * Returns: %true if either or both of next and prev are found,
 *	    %false if no vmap_area exists
 *
 * Find vmap_areas end addresses of which enclose @end.  ie. if not
 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
 */
static bool pvm_find_next_prev(unsigned long end,
			       struct vmap_area **pnext,
			       struct vmap_area **pprev)
{
	struct rb_node *n = vmap_area_root.rb_node;
	struct vmap_area *va = NULL;

	while (n) {
		va = rb_entry(n, struct vmap_area, rb_node);
		if (end < va->va_end)
			n = n->rb_left;
		else if (end > va->va_end)
			n = n->rb_right;
		else
			break;
	}

	if (!va)
		return false;

	if (va->va_end > end) {
		*pnext = va;
		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
	} else {
		*pprev = va;
		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
	}
	return true;
}

/**
 * pvm_determine_end - find the highest aligned address between two vmap_areas
 * @pnext: in/out arg for the next vmap_area
 * @pprev: in/out arg for the previous vmap_area
 * @align: alignment
 *
 * Returns: determined end address
 *
 * Find the highest aligned address between *@pnext and *@pprev below
 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
 * down address is between the end addresses of the two vmap_areas.
 *
 * Please note that the address returned by this function may fall
 * inside *@pnext vmap_area.  The caller is responsible for checking
 * that.
 */
static unsigned long pvm_determine_end(struct vmap_area **pnext,
				       struct vmap_area **pprev,
				       unsigned long align)
{
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
	unsigned long addr;

	if (*pnext)
		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
	else
		addr = vmalloc_end;

	while (*pprev && (*pprev)->va_end > addr) {
		*pnext = *pprev;
		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
	}

	return addr;
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
2355 2356 2357 2358
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
 *
 * Despite its complicated look, this allocator is rather simple.  It
 * does everything top-down and scans areas from the end looking for
 * matching slot.  While scanning, if any of the areas overlaps with
 * existing vmap_area, the base address is pulled down to fit the
 * area.  Scanning is repeated till all the areas fit and then all
 * necessary data structres are inserted and the result is returned.
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
2369
				     size_t align)
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
	struct vmap_area **vas, *prev, *next;
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
	unsigned long base, start, end, last_end;
	bool purged = false;

	/* verify parameters and allocate data structures */
	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

		for (area2 = 0; area2 < nr_vms; area2++) {
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

			if (area2 == area)
				continue;

			BUG_ON(start2 >= start && start2 < end);
			BUG_ON(end2 <= end && end2 > start);
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

2411 2412
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2413
	if (!vas || !vms)
2414
		goto err_free2;
2415 2416

	for (area = 0; area < nr_vms; area++) {
2417 2418
		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
	spin_lock(&vmap_area_lock);

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
		base = vmalloc_end - last_end;
		goto found;
	}
	base = pvm_determine_end(&next, &prev, align) - end;

	while (true) {
		BUG_ON(next && next->va_end <= base + end);
		BUG_ON(prev && prev->va_end > base + end);

		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
		if (base + last_end < vmalloc_start + last_end) {
			spin_unlock(&vmap_area_lock);
			if (!purged) {
				purge_vmap_area_lazy();
				purged = true;
				goto retry;
			}
			goto err_free;
		}

		/*
		 * If next overlaps, move base downwards so that it's
		 * right below next and then recheck.
		 */
		if (next && next->va_start < base + end) {
			base = pvm_determine_end(&next, &prev, align) - end;
			term_area = area;
			continue;
		}

		/*
		 * If prev overlaps, shift down next and prev and move
		 * base so that it's right below new next and then
		 * recheck.
		 */
		if (prev && prev->va_end > base + start)  {
			next = prev;
			prev = node_to_va(rb_prev(&next->rb_node));
			base = pvm_determine_end(&next, &prev, align) - end;
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
		start = offsets[area];
		end = start + sizes[area];
		pvm_find_next_prev(base + end, &next, &prev);
	}
found:
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
		struct vmap_area *va = vas[area];

		va->va_start = base + offsets[area];
		va->va_end = va->va_start + sizes[area];
		__insert_vmap_area(va);
	}

	vmap_area_pcpu_hole = base + offsets[last_area];

	spin_unlock(&vmap_area_lock);

	/* insert all vm's */
	for (area = 0; area < nr_vms; area++)
2504 2505
		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
				 pcpu_get_vm_areas);
2506 2507 2508 2509 2510 2511

	kfree(vas);
	return vms;

err_free:
	for (area = 0; area < nr_vms; area++) {
2512 2513
		kfree(vas[area]);
		kfree(vms[area]);
2514
	}
2515
err_free2:
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	kfree(vas);
	kfree(vms);
	return NULL;
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
2536
#endif	/* CONFIG_SMP */
2537 2538 2539

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
2540
	__acquires(&vmap_area_lock)
2541 2542
{
	loff_t n = *pos;
2543
	struct vmap_area *va;
2544

2545 2546 2547
	spin_lock(&vmap_area_lock);
	va = list_entry((&vmap_area_list)->next, typeof(*va), list);
	while (n > 0 && &va->list != &vmap_area_list) {
2548
		n--;
2549
		va = list_entry(va->list.next, typeof(*va), list);
2550
	}
2551 2552
	if (!n && &va->list != &vmap_area_list)
		return va;
2553 2554 2555 2556 2557 2558 2559

	return NULL;

}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
2560
	struct vmap_area *va = p, *next;
2561 2562

	++*pos;
2563 2564 2565 2566 2567
	next = list_entry(va->list.next, typeof(*va), list);
	if (&next->list != &vmap_area_list)
		return next;

	return NULL;
2568 2569 2570
}

static void s_stop(struct seq_file *m, void *p)
2571
	__releases(&vmap_area_lock)
2572
{
2573
	spin_unlock(&vmap_area_lock);
2574 2575
}

E
Eric Dumazet 已提交
2576 2577
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
2578
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
2579 2580 2581 2582 2583
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

2584 2585
		if (v->flags & VM_UNINITIALIZED)
			return;
2586 2587
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
2588

E
Eric Dumazet 已提交
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

2600 2601
static int s_show(struct seq_file *m, void *p)
{
2602 2603 2604
	struct vmap_area *va = p;
	struct vm_struct *v;

2605 2606 2607 2608 2609
	/*
	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
	 * behalf of vmap area is being tear down or vm_map_ram allocation.
	 */
	if (!(va->flags & VM_VM_AREA))
2610 2611 2612
		return 0;

	v = va->vm;
2613

K
Kees Cook 已提交
2614
	seq_printf(m, "0x%pK-0x%pK %7ld",
2615 2616
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
2617 2618
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
2619

2620 2621 2622 2623
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
2624
		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2625 2626

	if (v->flags & VM_IOREMAP)
2627
		seq_puts(m, " ioremap");
2628 2629

	if (v->flags & VM_ALLOC)
2630
		seq_puts(m, " vmalloc");
2631 2632

	if (v->flags & VM_MAP)
2633
		seq_puts(m, " vmap");
2634 2635

	if (v->flags & VM_USERMAP)
2636
		seq_puts(m, " user");
2637 2638

	if (v->flags & VM_VPAGES)
2639
		seq_puts(m, " vpages");
2640

E
Eric Dumazet 已提交
2641
	show_numa_info(m, v);
2642 2643 2644 2645
	seq_putc(m, '\n');
	return 0;
}

2646
static const struct seq_operations vmalloc_op = {
2647 2648 2649 2650 2651
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
2652 2653 2654

static int vmalloc_open(struct inode *inode, struct file *file)
{
2655 2656 2657 2658 2659
	if (IS_ENABLED(CONFIG_NUMA))
		return seq_open_private(file, &vmalloc_op,
					nr_node_ids * sizeof(unsigned int));
	else
		return seq_open(file, &vmalloc_op);
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
}

static const struct file_operations proc_vmalloc_operations = {
	.open		= vmalloc_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};

static int __init proc_vmalloc_init(void)
{
	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
	return 0;
}
module_init(proc_vmalloc_init);
2675 2676 2677

void get_vmalloc_info(struct vmalloc_info *vmi)
{
2678
	struct vmap_area *va;
2679 2680 2681 2682
	unsigned long free_area_size;
	unsigned long prev_end;

	vmi->used = 0;
2683
	vmi->largest_chunk = 0;
2684

2685
	prev_end = VMALLOC_START;
2686

2687
	rcu_read_lock();
2688

2689 2690 2691 2692
	if (list_empty(&vmap_area_list)) {
		vmi->largest_chunk = VMALLOC_TOTAL;
		goto out;
	}
2693

2694
	list_for_each_entry_rcu(va, &vmap_area_list, list) {
2695
		unsigned long addr = va->va_start;
2696

2697 2698 2699 2700 2701 2702 2703
		/*
		 * Some archs keep another range for modules in vmalloc space
		 */
		if (addr < VMALLOC_START)
			continue;
		if (addr >= VMALLOC_END)
			break;
2704

2705 2706
		if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
			continue;
2707

2708
		vmi->used += (va->va_end - va->va_start);
2709

2710 2711 2712
		free_area_size = addr - prev_end;
		if (vmi->largest_chunk < free_area_size)
			vmi->largest_chunk = free_area_size;
2713

2714
		prev_end = va->va_end;
2715
	}
2716 2717 2718 2719 2720

	if (VMALLOC_END - prev_end > vmi->largest_chunk)
		vmi->largest_chunk = VMALLOC_END - prev_end;

out:
2721
	rcu_read_unlock();
2722
}
2723 2724
#endif