kfd_events.c 24.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/mm_types.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/uaccess.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/memory.h>
#include "kfd_priv.h"
#include "kfd_events.h"
33
#include <linux/device.h>
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

/*
 * A task can only be on a single wait_queue at a time, but we need to support
 * waiting on multiple events (any/all).
 * Instead of each event simply having a wait_queue with sleeping tasks, it
 * has a singly-linked list of tasks.
 * A thread that wants to sleep creates an array of these, one for each event
 * and adds one to each event's waiter chain.
 */
struct kfd_event_waiter {
	struct list_head waiters;
	struct task_struct *sleeping_task;

	/* Transitions to true when the event this belongs to is signaled. */
	bool activated;
49 50 51 52

	/* Event */
	struct kfd_event *event;
	uint32_t input_index;
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
};

/*
 * Over-complicated pooled allocator for event notification slots.
 *
 * Each signal event needs a 64-bit signal slot where the signaler will write
 * a 1 before sending an interrupt.l (This is needed because some interrupts
 * do not contain enough spare data bits to identify an event.)
 * We get whole pages from vmalloc and map them to the process VA.
 * Individual signal events are then allocated a slot in a page.
 */

struct signal_page {
	struct list_head event_pages;	/* kfd_process.signal_event_pages */
	uint64_t *kernel_address;
	uint64_t __user *user_address;
	uint32_t page_index;		/* Index into the mmap aperture. */
	unsigned int free_slots;
	unsigned long used_slot_bitmap[0];
};

#define SLOTS_PER_PAGE KFD_SIGNAL_EVENT_LIMIT
#define SLOT_BITMAP_SIZE BITS_TO_LONGS(SLOTS_PER_PAGE)
#define BITS_PER_PAGE (ilog2(SLOTS_PER_PAGE)+1)
#define SIGNAL_PAGE_SIZE (sizeof(struct signal_page) + \
				SLOT_BITMAP_SIZE * sizeof(long))

/*
 * For signal events, the event ID is used as the interrupt user data.
 * For SQ s_sendmsg interrupts, this is limited to 8 bits.
 */

#define INTERRUPT_DATA_BITS 8
#define SIGNAL_EVENT_ID_SLOT_SHIFT 0

static uint64_t *page_slots(struct signal_page *page)
{
	return page->kernel_address;
}

static bool allocate_free_slot(struct kfd_process *process,
				struct signal_page **out_page,
				unsigned int *out_slot_index)
{
	struct signal_page *page;

	list_for_each_entry(page, &process->signal_event_pages, event_pages) {
		if (page->free_slots > 0) {
			unsigned int slot =
				find_first_zero_bit(page->used_slot_bitmap,
							SLOTS_PER_PAGE);

			__set_bit(slot, page->used_slot_bitmap);
			page->free_slots--;

			page_slots(page)[slot] = UNSIGNALED_EVENT_SLOT;

			*out_page = page;
			*out_slot_index = slot;

			pr_debug("allocated event signal slot in page %p, slot %d\n",
					page, slot);

			return true;
		}
	}

	pr_debug("No free event signal slots were found for process %p\n",
			process);

	return false;
}

#define list_tail_entry(head, type, member) \
	list_entry((head)->prev, type, member)

static bool allocate_signal_page(struct file *devkfd, struct kfd_process *p)
{
	void *backing_store;
	struct signal_page *page;

	page = kzalloc(SIGNAL_PAGE_SIZE, GFP_KERNEL);
	if (!page)
		goto fail_alloc_signal_page;

	page->free_slots = SLOTS_PER_PAGE;

	backing_store = (void *) __get_free_pages(GFP_KERNEL | __GFP_ZERO,
					get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
	if (!backing_store)
		goto fail_alloc_signal_store;

	/* prevent user-mode info leaks */
	memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
		KFD_SIGNAL_EVENT_LIMIT * 8);

	page->kernel_address = backing_store;

	if (list_empty(&p->signal_event_pages))
		page->page_index = 0;
	else
		page->page_index = list_tail_entry(&p->signal_event_pages,
						   struct signal_page,
						   event_pages)->page_index + 1;

	pr_debug("allocated new event signal page at %p, for process %p\n",
			page, p);
	pr_debug("page index is %d\n", page->page_index);

	list_add(&page->event_pages, &p->signal_event_pages);

	return true;

fail_alloc_signal_store:
	kfree(page);
fail_alloc_signal_page:
	return false;
}

static bool allocate_event_notification_slot(struct file *devkfd,
					struct kfd_process *p,
					struct signal_page **page,
					unsigned int *signal_slot_index)
{
	bool ret;

	ret = allocate_free_slot(p, page, signal_slot_index);
180
	if (!ret) {
181
		ret = allocate_signal_page(devkfd, p);
182
		if (ret)
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
			ret = allocate_free_slot(p, page, signal_slot_index);
	}

	return ret;
}

/* Assumes that the process's event_mutex is locked. */
static void release_event_notification_slot(struct signal_page *page,
						size_t slot_index)
{
	__clear_bit(slot_index, page->used_slot_bitmap);
	page->free_slots++;

	/* We don't free signal pages, they are retained by the process
	 * and reused until it exits. */
}

static struct signal_page *lookup_signal_page_by_index(struct kfd_process *p,
						unsigned int page_index)
{
	struct signal_page *page;

	/*
	 * This is safe because we don't delete signal pages until the
	 * process exits.
	 */
	list_for_each_entry(page, &p->signal_event_pages, event_pages)
		if (page->page_index == page_index)
			return page;

	return NULL;
}

/*
 * Assumes that p->event_mutex is held and of course that p is not going
 * away (current or locked).
 */
static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
{
	struct kfd_event *ev;

	hash_for_each_possible(p->events, ev, events, id)
		if (ev->event_id == id)
			return ev;

	return NULL;
}

static u32 make_signal_event_id(struct signal_page *page,
					 unsigned int signal_slot_index)
{
	return page->page_index |
			(signal_slot_index << SIGNAL_EVENT_ID_SLOT_SHIFT);
}

/*
 * Produce a kfd event id for a nonsignal event.
 * These are arbitrary numbers, so we do a sequential search through
 * the hash table for an unused number.
 */
static u32 make_nonsignal_event_id(struct kfd_process *p)
{
	u32 id;

	for (id = p->next_nonsignal_event_id;
		id < KFD_LAST_NONSIGNAL_EVENT_ID &&
		lookup_event_by_id(p, id) != NULL;
		id++)
		;

	if (id < KFD_LAST_NONSIGNAL_EVENT_ID) {

		/*
		 * What if id == LAST_NONSIGNAL_EVENT_ID - 1?
		 * Then next_nonsignal_event_id = LAST_NONSIGNAL_EVENT_ID so
		 * the first loop fails immediately and we proceed with the
		 * wraparound loop below.
		 */
		p->next_nonsignal_event_id = id + 1;

		return id;
	}

	for (id = KFD_FIRST_NONSIGNAL_EVENT_ID;
		id < KFD_LAST_NONSIGNAL_EVENT_ID &&
		lookup_event_by_id(p, id) != NULL;
		id++)
		;


	if (id < KFD_LAST_NONSIGNAL_EVENT_ID) {
		p->next_nonsignal_event_id = id + 1;
		return id;
	}

	p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID;
	return 0;
}

static struct kfd_event *lookup_event_by_page_slot(struct kfd_process *p,
						struct signal_page *page,
						unsigned int signal_slot)
{
	return lookup_event_by_id(p, make_signal_event_id(page, signal_slot));
}

static int create_signal_event(struct file *devkfd,
				struct kfd_process *p,
				struct kfd_event *ev)
{
	if (p->signal_event_count == KFD_SIGNAL_EVENT_LIMIT) {
		pr_warn("amdkfd: Signal event wasn't created because limit was reached\n");
		return -ENOMEM;
	}

	if (!allocate_event_notification_slot(devkfd, p, &ev->signal_page,
						&ev->signal_slot_index)) {
		pr_warn("amdkfd: Signal event wasn't created because out of kernel memory\n");
		return -ENOMEM;
	}

	p->signal_event_count++;

	ev->user_signal_address =
			&ev->signal_page->user_address[ev->signal_slot_index];

	ev->event_id = make_signal_event_id(ev->signal_page,
						ev->signal_slot_index);

	pr_debug("signal event number %zu created with id %d, address %p\n",
			p->signal_event_count, ev->event_id,
			ev->user_signal_address);

316 317 318 319
	pr_debug("signal event number %zu created with id %d, address %p\n",
			p->signal_event_count, ev->event_id,
			ev->user_signal_address);

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
	return 0;
}

/*
 * No non-signal events are supported yet.
 * We create them as events that never signal.
 * Set event calls from user-mode are failed.
 */
static int create_other_event(struct kfd_process *p, struct kfd_event *ev)
{
	ev->event_id = make_nonsignal_event_id(p);
	if (ev->event_id == 0)
		return -ENOMEM;

	return 0;
}

void kfd_event_init_process(struct kfd_process *p)
{
	mutex_init(&p->event_mutex);
	hash_init(p->events);
	INIT_LIST_HEAD(&p->signal_event_pages);
	p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID;
	p->signal_event_count = 0;
}

static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
{
	if (ev->signal_page != NULL) {
		release_event_notification_slot(ev->signal_page,
						ev->signal_slot_index);
		p->signal_event_count--;
	}

	/*
	 * Abandon the list of waiters. Individual waiting threads will
	 * clean up their own data.
	 */
	list_del(&ev->waiters);

	hash_del(&ev->events);
	kfree(ev);
}

static void destroy_events(struct kfd_process *p)
{
	struct kfd_event *ev;
	struct hlist_node *tmp;
	unsigned int hash_bkt;

	hash_for_each_safe(p->events, hash_bkt, tmp, ev, events)
		destroy_event(p, ev);
}

/*
 * We assume that the process is being destroyed and there is no need to
 * unmap the pages or keep bookkeeping data in order.
 */
static void shutdown_signal_pages(struct kfd_process *p)
{
	struct signal_page *page, *tmp;

	list_for_each_entry_safe(page, tmp, &p->signal_event_pages,
					event_pages) {
		free_pages((unsigned long)page->kernel_address,
				get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
		kfree(page);
	}
}

void kfd_event_free_process(struct kfd_process *p)
{
	destroy_events(p);
	shutdown_signal_pages(p);
}

static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
{
	return ev->type == KFD_EVENT_TYPE_SIGNAL ||
					ev->type == KFD_EVENT_TYPE_DEBUG;
}

static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
{
	return ev->type == KFD_EVENT_TYPE_SIGNAL;
}

int kfd_event_create(struct file *devkfd, struct kfd_process *p,
		     uint32_t event_type, bool auto_reset, uint32_t node_id,
		     uint32_t *event_id, uint32_t *event_trigger_data,
		     uint64_t *event_page_offset, uint32_t *event_slot_index)
{
	int ret = 0;
	struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);

	if (!ev)
		return -ENOMEM;

	ev->type = event_type;
	ev->auto_reset = auto_reset;
	ev->signaled = false;

	INIT_LIST_HEAD(&ev->waiters);

	*event_page_offset = 0;

	mutex_lock(&p->event_mutex);

	switch (event_type) {
	case KFD_EVENT_TYPE_SIGNAL:
	case KFD_EVENT_TYPE_DEBUG:
		ret = create_signal_event(devkfd, p, ev);
		if (!ret) {
			*event_page_offset = (ev->signal_page->page_index |
					KFD_MMAP_EVENTS_MASK);
			*event_page_offset <<= PAGE_SHIFT;
			*event_slot_index = ev->signal_slot_index;
		}
		break;
	default:
		ret = create_other_event(p, ev);
		break;
	}

	if (!ret) {
		hash_add(p->events, &ev->events, ev->event_id);

		*event_id = ev->event_id;
		*event_trigger_data = ev->event_id;
	} else {
		kfree(ev);
	}

	mutex_unlock(&p->event_mutex);

	return ret;
}

/* Assumes that p is current. */
int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
{
	struct kfd_event *ev;
	int ret = 0;

	mutex_lock(&p->event_mutex);

	ev = lookup_event_by_id(p, event_id);

	if (ev)
		destroy_event(p, ev);
	else
		ret = -EINVAL;

	mutex_unlock(&p->event_mutex);
	return ret;
}

static void set_event(struct kfd_event *ev)
{
	struct kfd_event_waiter *waiter;
	struct kfd_event_waiter *next;

	/* Auto reset if the list is non-empty and we're waking someone. */
	ev->signaled = !ev->auto_reset || list_empty(&ev->waiters);

	list_for_each_entry_safe(waiter, next, &ev->waiters, waiters) {
		waiter->activated = true;

		/* _init because free_waiters will call list_del */
		list_del_init(&waiter->waiters);

		wake_up_process(waiter->sleeping_task);
	}
}

/* Assumes that p is current. */
int kfd_set_event(struct kfd_process *p, uint32_t event_id)
{
	int ret = 0;
	struct kfd_event *ev;

	mutex_lock(&p->event_mutex);

	ev = lookup_event_by_id(p, event_id);

	if (ev && event_can_be_cpu_signaled(ev))
		set_event(ev);
	else
		ret = -EINVAL;

	mutex_unlock(&p->event_mutex);
	return ret;
}

static void reset_event(struct kfd_event *ev)
{
	ev->signaled = false;
}

/* Assumes that p is current. */
int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
{
	int ret = 0;
	struct kfd_event *ev;

	mutex_lock(&p->event_mutex);

	ev = lookup_event_by_id(p, event_id);

	if (ev && event_can_be_cpu_signaled(ev))
		reset_event(ev);
	else
		ret = -EINVAL;

	mutex_unlock(&p->event_mutex);
	return ret;

}

static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
{
	page_slots(ev->signal_page)[ev->signal_slot_index] =
						UNSIGNALED_EVENT_SLOT;
}

static bool is_slot_signaled(struct signal_page *page, unsigned int index)
{
	return page_slots(page)[index] != UNSIGNALED_EVENT_SLOT;
}

static void set_event_from_interrupt(struct kfd_process *p,
					struct kfd_event *ev)
{
	if (ev && event_can_be_gpu_signaled(ev)) {
		acknowledge_signal(p, ev);
		set_event(ev);
	}
}

void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
				uint32_t valid_id_bits)
{
	struct kfd_event *ev;

	/*
	 * Because we are called from arbitrary context (workqueue) as opposed
	 * to process context, kfd_process could attempt to exit while we are
	 * running so the lookup function returns a locked process.
	 */
	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);

	if (!p)
		return; /* Presumably process exited. */

	mutex_lock(&p->event_mutex);

	if (valid_id_bits >= INTERRUPT_DATA_BITS) {
		/* Partial ID is a full ID. */
		ev = lookup_event_by_id(p, partial_id);
		set_event_from_interrupt(p, ev);
	} else {
		/*
		 * Partial ID is in fact partial. For now we completely
		 * ignore it, but we could use any bits we did receive to
		 * search faster.
		 */
		struct signal_page *page;
		unsigned i;

		list_for_each_entry(page, &p->signal_event_pages, event_pages)
			for (i = 0; i < SLOTS_PER_PAGE; i++)
				if (is_slot_signaled(page, i)) {
					ev = lookup_event_by_page_slot(p,
								page, i);
					set_event_from_interrupt(p, ev);
				}
	}

	mutex_unlock(&p->event_mutex);
	mutex_unlock(&p->mutex);
}

static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
{
	struct kfd_event_waiter *event_waiters;
	uint32_t i;

	event_waiters = kmalloc_array(num_events,
					sizeof(struct kfd_event_waiter),
					GFP_KERNEL);

	for (i = 0; (event_waiters) && (i < num_events) ; i++) {
		INIT_LIST_HEAD(&event_waiters[i].waiters);
		event_waiters[i].sleeping_task = current;
		event_waiters[i].activated = false;
	}

	return event_waiters;
}

static int init_event_waiter(struct kfd_process *p,
621 622 623
		struct kfd_event_waiter *waiter,
		uint32_t event_id,
		uint32_t input_index)
624 625 626 627 628 629
{
	struct kfd_event *ev = lookup_event_by_id(p, event_id);

	if (!ev)
		return -EINVAL;

630 631
	waiter->event = ev;
	waiter->input_index = input_index;
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
	waiter->activated = ev->signaled;
	ev->signaled = ev->signaled && !ev->auto_reset;

	list_add(&waiter->waiters, &ev->waiters);

	return 0;
}

static bool test_event_condition(bool all, uint32_t num_events,
				struct kfd_event_waiter *event_waiters)
{
	uint32_t i;
	uint32_t activated_count = 0;

	for (i = 0; i < num_events; i++) {
		if (event_waiters[i].activated) {
			if (!all)
				return true;

			activated_count++;
		}
	}

	return activated_count == num_events;
}

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
/*
 * Copy event specific data, if defined.
 * Currently only memory exception events have additional data to copy to user
 */
static bool copy_signaled_event_data(uint32_t num_events,
		struct kfd_event_waiter *event_waiters,
		struct kfd_event_data __user *data)
{
	struct kfd_hsa_memory_exception_data *src;
	struct kfd_hsa_memory_exception_data __user *dst;
	struct kfd_event_waiter *waiter;
	struct kfd_event *event;
	uint32_t i;

	for (i = 0; i < num_events; i++) {
		waiter = &event_waiters[i];
		event = waiter->event;
		if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
			dst = &data[waiter->input_index].memory_exception_data;
			src = &event->memory_exception_data;
			if (copy_to_user(dst, src,
				sizeof(struct kfd_hsa_memory_exception_data)))
				return false;
		}
	}

	return true;

}



690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
{
	if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
		return 0;

	if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
		return MAX_SCHEDULE_TIMEOUT;

	/*
	 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
	 * but we consider them finite.
	 * This hack is wrong, but nobody is likely to notice.
	 */
	user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);

	return msecs_to_jiffies(user_timeout_ms) + 1;
}

static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters)
{
	uint32_t i;

	for (i = 0; i < num_events; i++)
		list_del(&waiters[i].waiters);

	kfree(waiters);
}

int kfd_wait_on_events(struct kfd_process *p,
719
		       uint32_t num_events, void __user *data,
720 721 722
		       bool all, uint32_t user_timeout_ms,
		       enum kfd_event_wait_result *wait_result)
{
723 724
	struct kfd_event_data __user *events =
			(struct kfd_event_data __user *) data;
725 726 727 728 729 730 731 732 733 734 735 736 737 738
	uint32_t i;
	int ret = 0;
	struct kfd_event_waiter *event_waiters = NULL;
	long timeout = user_timeout_to_jiffies(user_timeout_ms);

	mutex_lock(&p->event_mutex);

	event_waiters = alloc_event_waiters(num_events);
	if (!event_waiters) {
		ret = -ENOMEM;
		goto fail;
	}

	for (i = 0; i < num_events; i++) {
739
		struct kfd_event_data event_data;
740

741
		if (copy_from_user(&event_data, &events[i],
742 743
				sizeof(struct kfd_event_data))) {
			ret = -EFAULT;
744
			goto fail;
745
		}
746

747 748
		ret = init_event_waiter(p, &event_waiters[i],
				event_data.event_id, i);
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
		if (ret)
			goto fail;
	}

	mutex_unlock(&p->event_mutex);

	while (true) {
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

		if (signal_pending(current)) {
			/*
			 * This is wrong when a nonzero, non-infinite timeout
			 * is specified. We need to use
			 * ERESTARTSYS_RESTARTBLOCK, but struct restart_block
			 * contains a union with data for each user and it's
			 * in generic kernel code that I don't want to
			 * touch yet.
			 */
			ret = -ERESTARTSYS;
			break;
		}

		if (test_event_condition(all, num_events, event_waiters)) {
775 776 777 778 779
			if (copy_signaled_event_data(num_events,
					event_waiters, events))
				*wait_result = KFD_WAIT_COMPLETE;
			else
				*wait_result = KFD_WAIT_ERROR;
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
			break;
		}

		if (timeout <= 0) {
			*wait_result = KFD_WAIT_TIMEOUT;
			break;
		}

		timeout = schedule_timeout_interruptible(timeout);
	}
	__set_current_state(TASK_RUNNING);

	mutex_lock(&p->event_mutex);
	free_waiters(num_events, event_waiters);
	mutex_unlock(&p->event_mutex);

	return ret;

fail:
	if (event_waiters)
		free_waiters(num_events, event_waiters);

	mutex_unlock(&p->event_mutex);

	*wait_result = KFD_WAIT_ERROR;

	return ret;
}

int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
{

	unsigned int page_index;
	unsigned long pfn;
	struct signal_page *page;

	/* check required size is logical */
	if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) !=
			get_order(vma->vm_end - vma->vm_start)) {
		pr_err("amdkfd: event page mmap requested illegal size\n");
		return -EINVAL;
	}

	page_index = vma->vm_pgoff;

	page = lookup_signal_page_by_index(p, page_index);
	if (!page) {
		/* Probably KFD bug, but mmap is user-accessible. */
		pr_debug("signal page could not be found for page_index %u\n",
				page_index);
		return -EINVAL;
	}

	pfn = __pa(page->kernel_address);
	pfn >>= PAGE_SHIFT;

	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
		       | VM_DONTDUMP | VM_PFNMAP;

	pr_debug("mapping signal page\n");
	pr_debug("     start user address  == 0x%08lx\n", vma->vm_start);
	pr_debug("     end user address    == 0x%08lx\n", vma->vm_end);
	pr_debug("     pfn                 == 0x%016lX\n", pfn);
	pr_debug("     vm_flags            == 0x%08lX\n", vma->vm_flags);
	pr_debug("     size                == 0x%08lX\n",
			vma->vm_end - vma->vm_start);

	page->user_address = (uint64_t __user *)vma->vm_start;

	/* mapping the page to user process */
	return remap_pfn_range(vma, vma->vm_start, pfn,
			vma->vm_end - vma->vm_start, vma->vm_page_prot);
}
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880

/*
 * Assumes that p->event_mutex is held and of course
 * that p is not going away (current or locked).
 */
static void lookup_events_by_type_and_signal(struct kfd_process *p,
		int type, void *event_data)
{
	struct kfd_hsa_memory_exception_data *ev_data;
	struct kfd_event *ev;
	int bkt;
	bool send_signal = true;

	ev_data = (struct kfd_hsa_memory_exception_data *) event_data;

	hash_for_each(p->events, bkt, ev, events)
		if (ev->type == type) {
			send_signal = false;
			dev_dbg(kfd_device,
					"Event found: id %X type %d",
					ev->event_id, ev->type);
			set_event(ev);
			if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
				ev->memory_exception_data = *ev_data;
		}

	/* Send SIGTERM no event of type "type" has been found*/
	if (send_signal) {
881 882 883 884 885 886 887 888
		if (send_sigterm) {
			dev_warn(kfd_device,
				"Sending SIGTERM to HSA Process with PID %d ",
					p->lead_thread->pid);
			send_sig(SIGTERM, p->lead_thread, 0);
		} else {
			dev_err(kfd_device,
				"HSA Process (PID %d) got unhandled exception",
889
				p->lead_thread->pid);
890
		}
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
	}
}

void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid,
		unsigned long address, bool is_write_requested,
		bool is_execute_requested)
{
	struct kfd_hsa_memory_exception_data memory_exception_data;
	struct vm_area_struct *vma;

	/*
	 * Because we are called from arbitrary context (workqueue) as opposed
	 * to process context, kfd_process could attempt to exit while we are
	 * running so the lookup function returns a locked process.
	 */
	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);

	if (!p)
		return; /* Presumably process exited. */

	memset(&memory_exception_data, 0, sizeof(memory_exception_data));

	down_read(&p->mm->mmap_sem);
	vma = find_vma(p->mm, address);

	memory_exception_data.gpu_id = dev->id;
	memory_exception_data.va = address;
	/* Set failure reason */
	memory_exception_data.failure.NotPresent = 1;
	memory_exception_data.failure.NoExecute = 0;
	memory_exception_data.failure.ReadOnly = 0;
	if (vma) {
		if (vma->vm_start > address) {
			memory_exception_data.failure.NotPresent = 1;
			memory_exception_data.failure.NoExecute = 0;
			memory_exception_data.failure.ReadOnly = 0;
		} else {
			memory_exception_data.failure.NotPresent = 0;
			if (is_write_requested && !(vma->vm_flags & VM_WRITE))
				memory_exception_data.failure.ReadOnly = 1;
			else
				memory_exception_data.failure.ReadOnly = 0;
			if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
				memory_exception_data.failure.NoExecute = 1;
			else
				memory_exception_data.failure.NoExecute = 0;
		}
	}

	up_read(&p->mm->mmap_sem);

	mutex_lock(&p->event_mutex);

	/* Lookup events by type and signal them */
	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
			&memory_exception_data);

	mutex_unlock(&p->event_mutex);
	mutex_unlock(&p->mutex);
}
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

void kfd_signal_hw_exception_event(unsigned int pasid)
{
	/*
	 * Because we are called from arbitrary context (workqueue) as opposed
	 * to process context, kfd_process could attempt to exit while we are
	 * running so the lookup function returns a locked process.
	 */
	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);

	if (!p)
		return; /* Presumably process exited. */

	mutex_lock(&p->event_mutex);

	/* Lookup events by type and signal them */
	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);

	mutex_unlock(&p->event_mutex);
	mutex_unlock(&p->mutex);
}