t4_hw.c 203.9 KB
Newer Older
1 2 3
/*
 * This file is part of the Chelsio T4 Ethernet driver for Linux.
 *
4
 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/delay.h>
#include "cxgb4.h"
#include "t4_regs.h"
38
#include "t4_values.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#include "t4fw_api.h"

/**
 *	t4_wait_op_done_val - wait until an operation is completed
 *	@adapter: the adapter performing the operation
 *	@reg: the register to check for completion
 *	@mask: a single-bit field within @reg that indicates completion
 *	@polarity: the value of the field when the operation is completed
 *	@attempts: number of check iterations
 *	@delay: delay in usecs between iterations
 *	@valp: where to store the value of the register at completion time
 *
 *	Wait until an operation is completed by checking a bit in a register
 *	up to @attempts times.  If @valp is not NULL the value of the register
 *	at the time it indicated completion is stored there.  Returns 0 if the
 *	operation completes and	-EAGAIN	otherwise.
 */
56 57
static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
			       int polarity, int attempts, int delay, u32 *valp)
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
{
	while (1) {
		u32 val = t4_read_reg(adapter, reg);

		if (!!(val & mask) == polarity) {
			if (valp)
				*valp = val;
			return 0;
		}
		if (--attempts == 0)
			return -EAGAIN;
		if (delay)
			udelay(delay);
	}
}

static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
				  int polarity, int attempts, int delay)
{
	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
				   delay, NULL);
}

/**
 *	t4_set_reg_field - set a register field to a value
 *	@adapter: the adapter to program
 *	@addr: the register address
 *	@mask: specifies the portion of the register to modify
 *	@val: the new value for the register field
 *
 *	Sets a register field specified by the supplied mask to the
 *	given value.
 */
void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
		      u32 val)
{
	u32 v = t4_read_reg(adapter, addr) & ~mask;

	t4_write_reg(adapter, addr, v | val);
	(void) t4_read_reg(adapter, addr);      /* flush */
}

/**
 *	t4_read_indirect - read indirectly addressed registers
 *	@adap: the adapter
 *	@addr_reg: register holding the indirect address
 *	@data_reg: register holding the value of the indirect register
 *	@vals: where the read register values are stored
 *	@nregs: how many indirect registers to read
 *	@start_idx: index of first indirect register to read
 *
 *	Reads registers that are accessed indirectly through an address/data
 *	register pair.
 */
V
Vipul Pandya 已提交
112
void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
113 114
			     unsigned int data_reg, u32 *vals,
			     unsigned int nregs, unsigned int start_idx)
115 116 117 118 119 120 121 122
{
	while (nregs--) {
		t4_write_reg(adap, addr_reg, start_idx);
		*vals++ = t4_read_reg(adap, data_reg);
		start_idx++;
	}
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
/**
 *	t4_write_indirect - write indirectly addressed registers
 *	@adap: the adapter
 *	@addr_reg: register holding the indirect addresses
 *	@data_reg: register holding the value for the indirect registers
 *	@vals: values to write
 *	@nregs: how many indirect registers to write
 *	@start_idx: address of first indirect register to write
 *
 *	Writes a sequential block of registers that are accessed indirectly
 *	through an address/data register pair.
 */
void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
		       unsigned int data_reg, const u32 *vals,
		       unsigned int nregs, unsigned int start_idx)
{
	while (nregs--) {
		t4_write_reg(adap, addr_reg, start_idx++);
		t4_write_reg(adap, data_reg, *vals++);
	}
}

145 146 147 148 149 150 151 152
/*
 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
 * mechanism.  This guarantees that we get the real value even if we're
 * operating within a Virtual Machine and the Hypervisor is trapping our
 * Configuration Space accesses.
 */
void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
{
153 154 155 156 157 158
	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);

	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
		req |= ENABLE_F;
	else
		req |= T6_ENABLE_F;
159 160

	if (is_t4(adap->params.chip))
161
		req |= LOCALCFG_F;
162

163 164
	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
165 166 167 168 169 170

	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
	 * Configuration Space read.  (None of the other fields matter when
	 * ENABLE is 0 so a simple register write is easier than a
	 * read-modify-write via t4_set_reg_field().)
	 */
171
	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
172 173
}

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
/*
 * t4_report_fw_error - report firmware error
 * @adap: the adapter
 *
 * The adapter firmware can indicate error conditions to the host.
 * If the firmware has indicated an error, print out the reason for
 * the firmware error.
 */
static void t4_report_fw_error(struct adapter *adap)
{
	static const char *const reason[] = {
		"Crash",                        /* PCIE_FW_EVAL_CRASH */
		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
		"Reserved",                     /* reserved */
	};
	u32 pcie_fw;

196 197
	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
	if (pcie_fw & PCIE_FW_ERR_F)
198
		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
199
			reason[PCIE_FW_EVAL_G(pcie_fw)]);
200 201
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/*
 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
 */
static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
			 u32 mbox_addr)
{
	for ( ; nflit; nflit--, mbox_addr += 8)
		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
}

/*
 * Handle a FW assertion reported in a mailbox.
 */
static void fw_asrt(struct adapter *adap, u32 mbox_addr)
{
	struct fw_debug_cmd asrt;

	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
	dev_alert(adap->pdev_dev,
		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
222 223
		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
}

static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
{
	dev_err(adap->pdev_dev,
		"mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
		(unsigned long long)t4_read_reg64(adap, data_reg),
		(unsigned long long)t4_read_reg64(adap, data_reg + 8),
		(unsigned long long)t4_read_reg64(adap, data_reg + 16),
		(unsigned long long)t4_read_reg64(adap, data_reg + 24),
		(unsigned long long)t4_read_reg64(adap, data_reg + 32),
		(unsigned long long)t4_read_reg64(adap, data_reg + 40),
		(unsigned long long)t4_read_reg64(adap, data_reg + 48),
		(unsigned long long)t4_read_reg64(adap, data_reg + 56));
}

/**
241
 *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
242 243 244 245 246 247
 *	@adap: the adapter
 *	@mbox: index of the mailbox to use
 *	@cmd: the command to write
 *	@size: command length in bytes
 *	@rpl: where to optionally store the reply
 *	@sleep_ok: if true we may sleep while awaiting command completion
248
 *	@timeout: time to wait for command to finish before timing out
249 250 251 252 253 254 255 256 257 258 259 260 261 262
 *
 *	Sends the given command to FW through the selected mailbox and waits
 *	for the FW to execute the command.  If @rpl is not %NULL it is used to
 *	store the FW's reply to the command.  The command and its optional
 *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
 *	to respond.  @sleep_ok determines whether we may sleep while awaiting
 *	the response.  If sleeping is allowed we use progressive backoff
 *	otherwise we spin.
 *
 *	The return value is 0 on success or a negative errno on failure.  A
 *	failure can happen either because we are not able to execute the
 *	command or FW executes it but signals an error.  In the latter case
 *	the return value is the error code indicated by FW (negated).
 */
263 264
int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
			    int size, void *rpl, bool sleep_ok, int timeout)
265
{
J
Joe Perches 已提交
266
	static const int delay[] = {
267 268 269 270 271 272 273
		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
	};

	u32 v;
	u64 res;
	int i, ms, delay_idx;
	const __be64 *p = cmd;
274 275
	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
276 277 278 279

	if ((size & 15) || size > MBOX_LEN)
		return -EINVAL;

D
Dimitris Michailidis 已提交
280 281 282 283 284 285 286
	/*
	 * If the device is off-line, as in EEH, commands will time out.
	 * Fail them early so we don't waste time waiting.
	 */
	if (adap->pdev->error_state != pci_channel_io_normal)
		return -EIO;

287
	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
288
	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
289
		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
290 291 292 293 294 295 296

	if (v != MBOX_OWNER_DRV)
		return v ? -EBUSY : -ETIMEDOUT;

	for (i = 0; i < size; i += 8)
		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));

297
	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
298 299 300 301 302
	t4_read_reg(adap, ctl_reg);          /* flush write */

	delay_idx = 0;
	ms = delay[0];

303
	for (i = 0; i < timeout; i += ms) {
304 305 306 307 308 309 310 311 312
		if (sleep_ok) {
			ms = delay[delay_idx];  /* last element may repeat */
			if (delay_idx < ARRAY_SIZE(delay) - 1)
				delay_idx++;
			msleep(ms);
		} else
			mdelay(ms);

		v = t4_read_reg(adap, ctl_reg);
313 314
		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
			if (!(v & MBMSGVALID_F)) {
315 316 317 318 319
				t4_write_reg(adap, ctl_reg, 0);
				continue;
			}

			res = t4_read_reg64(adap, data_reg);
320
			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
321
				fw_asrt(adap, data_reg);
322 323
				res = FW_CMD_RETVAL_V(EIO);
			} else if (rpl) {
324
				get_mbox_rpl(adap, rpl, size / 8, data_reg);
325
			}
326

327
			if (FW_CMD_RETVAL_G((int)res))
328 329
				dump_mbox(adap, mbox, data_reg);
			t4_write_reg(adap, ctl_reg, 0);
330
			return -FW_CMD_RETVAL_G((int)res);
331 332 333 334 335 336
		}
	}

	dump_mbox(adap, mbox, data_reg);
	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
		*(const u8 *)cmd, mbox);
337
	t4_report_fw_error(adap);
338 339 340
	return -ETIMEDOUT;
}

341 342
int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
		    void *rpl, bool sleep_ok)
343
{
344 345
	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
				       FW_CMD_MAX_TIMEOUT);
346 347
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
static int t4_edc_err_read(struct adapter *adap, int idx)
{
	u32 edc_ecc_err_addr_reg;
	u32 rdata_reg;

	if (is_t4(adap->params.chip)) {
		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
		return 0;
	}
	if (idx != 0 && idx != 1) {
		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
		return 0;
	}

	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);

	CH_WARN(adap,
		"edc%d err addr 0x%x: 0x%x.\n",
		idx, edc_ecc_err_addr_reg,
		t4_read_reg(adap, edc_ecc_err_addr_reg));
	CH_WARN(adap,
		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
		rdata_reg,
		(unsigned long long)t4_read_reg64(adap, rdata_reg),
		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));

	return 0;
}

385 386 387
/**
 *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
 *	@adap: the adapter
388
 *	@win: PCI-E Memory Window to use
389 390 391
 *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
 *	@addr: address within indicated memory type
 *	@len: amount of memory to transfer
392
 *	@hbuf: host memory buffer
393
 *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
394 395
 *
 *	Reads/writes an [almost] arbitrary memory region in the firmware: the
396 397 398 399 400
 *	firmware memory address and host buffer must be aligned on 32-bit
 *	boudaries; the length may be arbitrary.  The memory is transferred as
 *	a raw byte sequence from/to the firmware's memory.  If this memory
 *	contains data structures which contain multi-byte integers, it's the
 *	caller's responsibility to perform appropriate byte order conversions.
401
 */
402
int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
403
		 u32 len, void *hbuf, int dir)
404
{
405 406
	u32 pos, offset, resid, memoffset;
	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
407
	u32 *buf;
408

409
	/* Argument sanity checks ...
410
	 */
411
	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
412
		return -EINVAL;
413
	buf = (u32 *)hbuf;
414

415 416 417 418 419 420 421
	/* It's convenient to be able to handle lengths which aren't a
	 * multiple of 32-bits because we often end up transferring files to
	 * the firmware.  So we'll handle that by normalizing the length here
	 * and then handling any residual transfer at the end.
	 */
	resid = len & 0x3;
	len -= resid;
422

S
Santosh Rastapur 已提交
423
	/* Offset into the region of memory which is being accessed
424 425
	 * MEM_EDC0 = 0
	 * MEM_EDC1 = 1
426 427
	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
428
	 */
429
	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
S
Santosh Rastapur 已提交
430 431 432
	if (mtype != MEM_MC1)
		memoffset = (mtype * (edc_size * 1024 * 1024));
	else {
433
		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
434
						      MA_EXT_MEMORY0_BAR_A));
S
Santosh Rastapur 已提交
435 436
		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
	}
437 438 439 440

	/* Determine the PCIE_MEM_ACCESS_OFFSET */
	addr = addr + memoffset;

441 442 443 444 445 446 447
	/* Each PCI-E Memory Window is programmed with a window size -- or
	 * "aperture" -- which controls the granularity of its mapping onto
	 * adapter memory.  We need to grab that aperture in order to know
	 * how to use the specified window.  The window is also programmed
	 * with the base address of the Memory Window in BAR0's address
	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
	 * the address is relative to BAR0.
448
	 */
449
	mem_reg = t4_read_reg(adap,
450
			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
451
						  win));
452 453
	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
454 455
	if (is_t4(adap->params.chip))
		mem_base -= adap->t4_bar0;
456
	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
457

458 459 460 461 462
	/* Calculate our initial PCI-E Memory Window Position and Offset into
	 * that Window.
	 */
	pos = addr & ~(mem_aperture-1);
	offset = addr - pos;
463

464 465 466 467 468
	/* Set up initial PCI-E Memory Window to cover the start of our
	 * transfer.  (Read it back to ensure that changes propagate before we
	 * attempt to use the new value.)
	 */
	t4_write_reg(adap,
469
		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
470 471
		     pos | win_pf);
	t4_read_reg(adap,
472
		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
473 474 475

	/* Transfer data to/from the adapter as long as there's an integral
	 * number of 32-bit transfers to complete.
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	 *
	 * A note on Endianness issues:
	 *
	 * The "register" reads and writes below from/to the PCI-E Memory
	 * Window invoke the standard adapter Big-Endian to PCI-E Link
	 * Little-Endian "swizzel."  As a result, if we have the following
	 * data in adapter memory:
	 *
	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
	 *     Address:      i+0  i+1  i+2  i+3
	 *
	 * Then a read of the adapter memory via the PCI-E Memory Window
	 * will yield:
	 *
	 *     x = readl(i)
	 *         31                  0
	 *         [ b3 | b2 | b1 | b0 ]
	 *
	 * If this value is stored into local memory on a Little-Endian system
	 * it will show up correctly in local memory as:
	 *
	 *     ( ..., b0, b1, b2, b3, ... )
	 *
	 * But on a Big-Endian system, the store will show up in memory
	 * incorrectly swizzled as:
	 *
	 *     ( ..., b3, b2, b1, b0, ... )
	 *
	 * So we need to account for this in the reads and writes to the
	 * PCI-E Memory Window below by undoing the register read/write
	 * swizzels.
507 508 509
	 */
	while (len > 0) {
		if (dir == T4_MEMORY_READ)
510 511
			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
						mem_base + offset));
512 513
		else
			t4_write_reg(adap, mem_base + offset,
514
				     (__force u32)cpu_to_le32(*buf++));
515 516 517 518 519 520 521 522
		offset += sizeof(__be32);
		len -= sizeof(__be32);

		/* If we've reached the end of our current window aperture,
		 * move the PCI-E Memory Window on to the next.  Note that
		 * doing this here after "len" may be 0 allows us to set up
		 * the PCI-E Memory Window for a possible final residual
		 * transfer below ...
523
		 */
524 525 526 527
		if (offset == mem_aperture) {
			pos += mem_aperture;
			offset = 0;
			t4_write_reg(adap,
528 529
				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
						    win), pos | win_pf);
530
			t4_read_reg(adap,
531 532
				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
						    win));
533 534 535
		}
	}

536 537 538 539 540 541 542
	/* If the original transfer had a length which wasn't a multiple of
	 * 32-bits, now's where we need to finish off the transfer of the
	 * residual amount.  The PCI-E Memory Window has already been moved
	 * above (if necessary) to cover this final transfer.
	 */
	if (resid) {
		union {
543
			u32 word;
544 545 546 547 548
			char byte[4];
		} last;
		unsigned char *bp;
		int i;

549
		if (dir == T4_MEMORY_READ) {
550 551 552
			last.word = le32_to_cpu(
					(__force __le32)t4_read_reg(adap,
						mem_base + offset));
553 554 555 556 557 558 559
			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
				bp[i] = last.byte[i];
		} else {
			last.word = *buf;
			for (i = resid; i < 4; i++)
				last.byte[i] = 0;
			t4_write_reg(adap, mem_base + offset,
560
				     (__force u32)cpu_to_le32(last.word));
561 562
		}
	}
563

564
	return 0;
565 566
}

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/* Return the specified PCI-E Configuration Space register from our Physical
 * Function.  We try first via a Firmware LDST Command since we prefer to let
 * the firmware own all of these registers, but if that fails we go for it
 * directly ourselves.
 */
u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
{
	u32 val, ldst_addrspace;

	/* If fw_attach != 0, construct and send the Firmware LDST Command to
	 * retrieve the specified PCI-E Configuration Space register.
	 */
	struct fw_ldst_cmd ldst_cmd;
	int ret;

	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
					       FW_CMD_REQUEST_F |
					       FW_CMD_READ_F |
					       ldst_addrspace);
	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
	ldst_cmd.u.pcie.ctrl_to_fn =
591
		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
	ldst_cmd.u.pcie.r = reg;

	/* If the LDST Command succeeds, return the result, otherwise
	 * fall through to reading it directly ourselves ...
	 */
	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
			 &ldst_cmd);
	if (ret == 0)
		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
	else
		/* Read the desired Configuration Space register via the PCI-E
		 * Backdoor mechanism.
		 */
		t4_hw_pci_read_cfg4(adap, reg, &val);
	return val;
}

/* Get the window based on base passed to it.
 * Window aperture is currently unhandled, but there is no use case for it
 * right now
 */
static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
			 u32 memwin_base)
{
	u32 ret;

	if (is_t4(adap->params.chip)) {
		u32 bar0;

		/* Truncation intentional: we only read the bottom 32-bits of
		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
		 * mechanism to read BAR0 instead of using
		 * pci_resource_start() because we could be operating from
		 * within a Virtual Machine which is trapping our accesses to
		 * our Configuration Space and we need to set up the PCI-E
		 * Memory Window decoders with the actual addresses which will
		 * be coming across the PCI-E link.
		 */
		bar0 = t4_read_pcie_cfg4(adap, pci_base);
		bar0 &= pci_mask;
		adap->t4_bar0 = bar0;

		ret = bar0 + memwin_base;
	} else {
		/* For T5, only relative offset inside the PCIe BAR is passed */
		ret = memwin_base;
	}
	return ret;
}

/* Get the default utility window (win0) used by everyone */
u32 t4_get_util_window(struct adapter *adap)
{
	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
}

/* Set up memory window for accessing adapter memory ranges.  (Read
 * back MA register to ensure that changes propagate before we attempt
 * to use the new values.)
 */
void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
{
	t4_write_reg(adap,
		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
		     memwin_base | BIR_V(0) |
		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
	t4_read_reg(adap,
		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
/**
 *	t4_get_regs_len - return the size of the chips register set
 *	@adapter: the adapter
 *
 *	Returns the size of the chip's BAR0 register space.
 */
unsigned int t4_get_regs_len(struct adapter *adapter)
{
	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);

	switch (chip_version) {
	case CHELSIO_T4:
		return T4_REGMAP_SIZE;

	case CHELSIO_T5:
678
	case CHELSIO_T6:
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
		return T5_REGMAP_SIZE;
	}

	dev_err(adapter->pdev_dev,
		"Unsupported chip version %d\n", chip_version);
	return 0;
}

/**
 *	t4_get_regs - read chip registers into provided buffer
 *	@adap: the adapter
 *	@buf: register buffer
 *	@buf_size: size (in bytes) of register buffer
 *
 *	If the provided register buffer isn't large enough for the chip's
 *	full register range, the register dump will be truncated to the
 *	register buffer's size.
 */
void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
{
	static const unsigned int t4_reg_ranges[] = {
		0x1008, 0x1108,
		0x1180, 0x11b4,
		0x11fc, 0x123c,
		0x1300, 0x173c,
		0x1800, 0x18fc,
705 706
		0x3000, 0x305c,
		0x3068, 0x30d8,
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
		0x30e0, 0x5924,
		0x5960, 0x59d4,
		0x5a00, 0x5af8,
		0x6000, 0x6098,
		0x6100, 0x6150,
		0x6200, 0x6208,
		0x6240, 0x6248,
		0x6280, 0x6338,
		0x6370, 0x638c,
		0x6400, 0x643c,
		0x6500, 0x6524,
		0x6a00, 0x6a38,
		0x6a60, 0x6a78,
		0x6b00, 0x6b84,
		0x6bf0, 0x6c84,
		0x6cf0, 0x6d84,
		0x6df0, 0x6e84,
		0x6ef0, 0x6f84,
		0x6ff0, 0x7084,
		0x70f0, 0x7184,
		0x71f0, 0x7284,
		0x72f0, 0x7384,
		0x73f0, 0x7450,
		0x7500, 0x7530,
		0x7600, 0x761c,
		0x7680, 0x76cc,
		0x7700, 0x7798,
		0x77c0, 0x77fc,
		0x7900, 0x79fc,
		0x7b00, 0x7c38,
		0x7d00, 0x7efc,
		0x8dc0, 0x8e1c,
		0x8e30, 0x8e78,
		0x8ea0, 0x8f6c,
		0x8fc0, 0x9074,
		0x90fc, 0x90fc,
		0x9400, 0x9458,
		0x9600, 0x96bc,
		0x9800, 0x9808,
		0x9820, 0x983c,
		0x9850, 0x9864,
		0x9c00, 0x9c6c,
		0x9c80, 0x9cec,
		0x9d00, 0x9d6c,
		0x9d80, 0x9dec,
		0x9e00, 0x9e6c,
		0x9e80, 0x9eec,
		0x9f00, 0x9f6c,
		0x9f80, 0x9fec,
		0xd004, 0xd03c,
		0xdfc0, 0xdfe0,
		0xe000, 0xea7c,
		0xf000, 0x11110,
		0x11118, 0x11190,
		0x19040, 0x1906c,
		0x19078, 0x19080,
		0x1908c, 0x19124,
		0x19150, 0x191b0,
		0x191d0, 0x191e8,
		0x19238, 0x1924c,
		0x193f8, 0x19474,
		0x19490, 0x194f8,
769
		0x19800, 0x19f4c,
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
		0x1a000, 0x1a06c,
		0x1a0b0, 0x1a120,
		0x1a128, 0x1a138,
		0x1a190, 0x1a1c4,
		0x1a1fc, 0x1a1fc,
		0x1e040, 0x1e04c,
		0x1e284, 0x1e28c,
		0x1e2c0, 0x1e2c0,
		0x1e2e0, 0x1e2e0,
		0x1e300, 0x1e384,
		0x1e3c0, 0x1e3c8,
		0x1e440, 0x1e44c,
		0x1e684, 0x1e68c,
		0x1e6c0, 0x1e6c0,
		0x1e6e0, 0x1e6e0,
		0x1e700, 0x1e784,
		0x1e7c0, 0x1e7c8,
		0x1e840, 0x1e84c,
		0x1ea84, 0x1ea8c,
		0x1eac0, 0x1eac0,
		0x1eae0, 0x1eae0,
		0x1eb00, 0x1eb84,
		0x1ebc0, 0x1ebc8,
		0x1ec40, 0x1ec4c,
		0x1ee84, 0x1ee8c,
		0x1eec0, 0x1eec0,
		0x1eee0, 0x1eee0,
		0x1ef00, 0x1ef84,
		0x1efc0, 0x1efc8,
		0x1f040, 0x1f04c,
		0x1f284, 0x1f28c,
		0x1f2c0, 0x1f2c0,
		0x1f2e0, 0x1f2e0,
		0x1f300, 0x1f384,
		0x1f3c0, 0x1f3c8,
		0x1f440, 0x1f44c,
		0x1f684, 0x1f68c,
		0x1f6c0, 0x1f6c0,
		0x1f6e0, 0x1f6e0,
		0x1f700, 0x1f784,
		0x1f7c0, 0x1f7c8,
		0x1f840, 0x1f84c,
		0x1fa84, 0x1fa8c,
		0x1fac0, 0x1fac0,
		0x1fae0, 0x1fae0,
		0x1fb00, 0x1fb84,
		0x1fbc0, 0x1fbc8,
		0x1fc40, 0x1fc4c,
		0x1fe84, 0x1fe8c,
		0x1fec0, 0x1fec0,
		0x1fee0, 0x1fee0,
		0x1ff00, 0x1ff84,
		0x1ffc0, 0x1ffc8,
		0x20000, 0x2002c,
		0x20100, 0x2013c,
		0x20190, 0x201c8,
		0x20200, 0x20318,
		0x20400, 0x20528,
		0x20540, 0x20614,
		0x21000, 0x21040,
		0x2104c, 0x21060,
		0x210c0, 0x210ec,
		0x21200, 0x21268,
		0x21270, 0x21284,
		0x212fc, 0x21388,
		0x21400, 0x21404,
		0x21500, 0x21518,
		0x2152c, 0x2153c,
		0x21550, 0x21554,
		0x21600, 0x21600,
		0x21608, 0x21628,
		0x21630, 0x2163c,
		0x21700, 0x2171c,
		0x21780, 0x2178c,
		0x21800, 0x21c38,
		0x21c80, 0x21d7c,
		0x21e00, 0x21e04,
		0x22000, 0x2202c,
		0x22100, 0x2213c,
		0x22190, 0x221c8,
		0x22200, 0x22318,
		0x22400, 0x22528,
		0x22540, 0x22614,
		0x23000, 0x23040,
		0x2304c, 0x23060,
		0x230c0, 0x230ec,
		0x23200, 0x23268,
		0x23270, 0x23284,
		0x232fc, 0x23388,
		0x23400, 0x23404,
		0x23500, 0x23518,
		0x2352c, 0x2353c,
		0x23550, 0x23554,
		0x23600, 0x23600,
		0x23608, 0x23628,
		0x23630, 0x2363c,
		0x23700, 0x2371c,
		0x23780, 0x2378c,
		0x23800, 0x23c38,
		0x23c80, 0x23d7c,
		0x23e00, 0x23e04,
		0x24000, 0x2402c,
		0x24100, 0x2413c,
		0x24190, 0x241c8,
		0x24200, 0x24318,
		0x24400, 0x24528,
		0x24540, 0x24614,
		0x25000, 0x25040,
		0x2504c, 0x25060,
		0x250c0, 0x250ec,
		0x25200, 0x25268,
		0x25270, 0x25284,
		0x252fc, 0x25388,
		0x25400, 0x25404,
		0x25500, 0x25518,
		0x2552c, 0x2553c,
		0x25550, 0x25554,
		0x25600, 0x25600,
		0x25608, 0x25628,
		0x25630, 0x2563c,
		0x25700, 0x2571c,
		0x25780, 0x2578c,
		0x25800, 0x25c38,
		0x25c80, 0x25d7c,
		0x25e00, 0x25e04,
		0x26000, 0x2602c,
		0x26100, 0x2613c,
		0x26190, 0x261c8,
		0x26200, 0x26318,
		0x26400, 0x26528,
		0x26540, 0x26614,
		0x27000, 0x27040,
		0x2704c, 0x27060,
		0x270c0, 0x270ec,
		0x27200, 0x27268,
		0x27270, 0x27284,
		0x272fc, 0x27388,
		0x27400, 0x27404,
		0x27500, 0x27518,
		0x2752c, 0x2753c,
		0x27550, 0x27554,
		0x27600, 0x27600,
		0x27608, 0x27628,
		0x27630, 0x2763c,
		0x27700, 0x2771c,
		0x27780, 0x2778c,
		0x27800, 0x27c38,
		0x27c80, 0x27d7c,
918
		0x27e00, 0x27e04,
919 920 921 922 923 924 925 926 927
	};

	static const unsigned int t5_reg_ranges[] = {
		0x1008, 0x1148,
		0x1180, 0x11b4,
		0x11fc, 0x123c,
		0x1280, 0x173c,
		0x1800, 0x18fc,
		0x3000, 0x3028,
928
		0x3068, 0x30d8,
929 930 931 932 933 934 935 936 937 938 939
		0x30e0, 0x30fc,
		0x3140, 0x357c,
		0x35a8, 0x35cc,
		0x35ec, 0x35ec,
		0x3600, 0x5624,
		0x56cc, 0x575c,
		0x580c, 0x5814,
		0x5890, 0x58bc,
		0x5940, 0x59dc,
		0x59fc, 0x5a18,
		0x5a60, 0x5a9c,
940
		0x5b94, 0x5bfc,
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
		0x6000, 0x6040,
		0x6058, 0x614c,
		0x7700, 0x7798,
		0x77c0, 0x78fc,
		0x7b00, 0x7c54,
		0x7d00, 0x7efc,
		0x8dc0, 0x8de0,
		0x8df8, 0x8e84,
		0x8ea0, 0x8f84,
		0x8fc0, 0x90f8,
		0x9400, 0x9470,
		0x9600, 0x96f4,
		0x9800, 0x9808,
		0x9820, 0x983c,
		0x9850, 0x9864,
		0x9c00, 0x9c6c,
		0x9c80, 0x9cec,
		0x9d00, 0x9d6c,
		0x9d80, 0x9dec,
		0x9e00, 0x9e6c,
		0x9e80, 0x9eec,
		0x9f00, 0x9f6c,
		0x9f80, 0xa020,
		0xd004, 0xd03c,
		0xdfc0, 0xdfe0,
		0xe000, 0x11088,
		0x1109c, 0x11110,
		0x11118, 0x1117c,
		0x11190, 0x11204,
		0x19040, 0x1906c,
		0x19078, 0x19080,
		0x1908c, 0x19124,
		0x19150, 0x191b0,
		0x191d0, 0x191e8,
		0x19238, 0x19290,
		0x193f8, 0x19474,
		0x19490, 0x194cc,
		0x194f0, 0x194f8,
		0x19c00, 0x19c60,
		0x19c94, 0x19e10,
		0x19e50, 0x19f34,
		0x19f40, 0x19f50,
		0x19f90, 0x19fe4,
		0x1a000, 0x1a06c,
		0x1a0b0, 0x1a120,
		0x1a128, 0x1a138,
		0x1a190, 0x1a1c4,
		0x1a1fc, 0x1a1fc,
		0x1e008, 0x1e00c,
		0x1e040, 0x1e04c,
		0x1e284, 0x1e290,
		0x1e2c0, 0x1e2c0,
		0x1e2e0, 0x1e2e0,
		0x1e300, 0x1e384,
		0x1e3c0, 0x1e3c8,
		0x1e408, 0x1e40c,
		0x1e440, 0x1e44c,
		0x1e684, 0x1e690,
		0x1e6c0, 0x1e6c0,
		0x1e6e0, 0x1e6e0,
		0x1e700, 0x1e784,
		0x1e7c0, 0x1e7c8,
		0x1e808, 0x1e80c,
		0x1e840, 0x1e84c,
		0x1ea84, 0x1ea90,
		0x1eac0, 0x1eac0,
		0x1eae0, 0x1eae0,
		0x1eb00, 0x1eb84,
		0x1ebc0, 0x1ebc8,
		0x1ec08, 0x1ec0c,
		0x1ec40, 0x1ec4c,
		0x1ee84, 0x1ee90,
		0x1eec0, 0x1eec0,
		0x1eee0, 0x1eee0,
		0x1ef00, 0x1ef84,
		0x1efc0, 0x1efc8,
		0x1f008, 0x1f00c,
		0x1f040, 0x1f04c,
		0x1f284, 0x1f290,
		0x1f2c0, 0x1f2c0,
		0x1f2e0, 0x1f2e0,
		0x1f300, 0x1f384,
		0x1f3c0, 0x1f3c8,
		0x1f408, 0x1f40c,
		0x1f440, 0x1f44c,
		0x1f684, 0x1f690,
		0x1f6c0, 0x1f6c0,
		0x1f6e0, 0x1f6e0,
		0x1f700, 0x1f784,
		0x1f7c0, 0x1f7c8,
		0x1f808, 0x1f80c,
		0x1f840, 0x1f84c,
		0x1fa84, 0x1fa90,
		0x1fac0, 0x1fac0,
		0x1fae0, 0x1fae0,
		0x1fb00, 0x1fb84,
		0x1fbc0, 0x1fbc8,
		0x1fc08, 0x1fc0c,
		0x1fc40, 0x1fc4c,
		0x1fe84, 0x1fe90,
		0x1fec0, 0x1fec0,
		0x1fee0, 0x1fee0,
		0x1ff00, 0x1ff84,
		0x1ffc0, 0x1ffc8,
		0x30000, 0x30030,
		0x30100, 0x30144,
		0x30190, 0x301d0,
		0x30200, 0x30318,
		0x30400, 0x3052c,
		0x30540, 0x3061c,
		0x30800, 0x30834,
		0x308c0, 0x30908,
		0x30910, 0x309ac,
1054
		0x30a00, 0x30a2c,
1055 1056
		0x30a44, 0x30a50,
		0x30a74, 0x30c24,
1057
		0x30d00, 0x30d00,
1058 1059 1060 1061 1062 1063
		0x30d08, 0x30d14,
		0x30d1c, 0x30d20,
		0x30d3c, 0x30d50,
		0x31200, 0x3120c,
		0x31220, 0x31220,
		0x31240, 0x31240,
1064
		0x31600, 0x3160c,
1065
		0x31a00, 0x31a1c,
1066
		0x31e00, 0x31e20,
1067 1068 1069 1070 1071 1072
		0x31e38, 0x31e3c,
		0x31e80, 0x31e80,
		0x31e88, 0x31ea8,
		0x31eb0, 0x31eb4,
		0x31ec8, 0x31ed4,
		0x31fb8, 0x32004,
1073 1074 1075 1076 1077
		0x32200, 0x32200,
		0x32208, 0x32240,
		0x32248, 0x32280,
		0x32288, 0x322c0,
		0x322c8, 0x322fc,
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
		0x32600, 0x32630,
		0x32a00, 0x32abc,
		0x32b00, 0x32b70,
		0x33000, 0x33048,
		0x33060, 0x3309c,
		0x330f0, 0x33148,
		0x33160, 0x3319c,
		0x331f0, 0x332e4,
		0x332f8, 0x333e4,
		0x333f8, 0x33448,
		0x33460, 0x3349c,
		0x334f0, 0x33548,
		0x33560, 0x3359c,
		0x335f0, 0x336e4,
		0x336f8, 0x337e4,
		0x337f8, 0x337fc,
		0x33814, 0x33814,
		0x3382c, 0x3382c,
		0x33880, 0x3388c,
		0x338e8, 0x338ec,
		0x33900, 0x33948,
		0x33960, 0x3399c,
		0x339f0, 0x33ae4,
		0x33af8, 0x33b10,
		0x33b28, 0x33b28,
		0x33b3c, 0x33b50,
		0x33bf0, 0x33c10,
		0x33c28, 0x33c28,
		0x33c3c, 0x33c50,
		0x33cf0, 0x33cfc,
		0x34000, 0x34030,
		0x34100, 0x34144,
		0x34190, 0x341d0,
		0x34200, 0x34318,
		0x34400, 0x3452c,
		0x34540, 0x3461c,
		0x34800, 0x34834,
		0x348c0, 0x34908,
		0x34910, 0x349ac,
1117
		0x34a00, 0x34a2c,
1118 1119
		0x34a44, 0x34a50,
		0x34a74, 0x34c24,
1120
		0x34d00, 0x34d00,
1121 1122 1123 1124 1125 1126
		0x34d08, 0x34d14,
		0x34d1c, 0x34d20,
		0x34d3c, 0x34d50,
		0x35200, 0x3520c,
		0x35220, 0x35220,
		0x35240, 0x35240,
1127
		0x35600, 0x3560c,
1128
		0x35a00, 0x35a1c,
1129
		0x35e00, 0x35e20,
1130 1131 1132 1133 1134 1135
		0x35e38, 0x35e3c,
		0x35e80, 0x35e80,
		0x35e88, 0x35ea8,
		0x35eb0, 0x35eb4,
		0x35ec8, 0x35ed4,
		0x35fb8, 0x36004,
1136 1137 1138 1139 1140
		0x36200, 0x36200,
		0x36208, 0x36240,
		0x36248, 0x36280,
		0x36288, 0x362c0,
		0x362c8, 0x362fc,
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
		0x36600, 0x36630,
		0x36a00, 0x36abc,
		0x36b00, 0x36b70,
		0x37000, 0x37048,
		0x37060, 0x3709c,
		0x370f0, 0x37148,
		0x37160, 0x3719c,
		0x371f0, 0x372e4,
		0x372f8, 0x373e4,
		0x373f8, 0x37448,
		0x37460, 0x3749c,
		0x374f0, 0x37548,
		0x37560, 0x3759c,
		0x375f0, 0x376e4,
		0x376f8, 0x377e4,
		0x377f8, 0x377fc,
		0x37814, 0x37814,
		0x3782c, 0x3782c,
		0x37880, 0x3788c,
		0x378e8, 0x378ec,
		0x37900, 0x37948,
		0x37960, 0x3799c,
		0x379f0, 0x37ae4,
		0x37af8, 0x37b10,
		0x37b28, 0x37b28,
		0x37b3c, 0x37b50,
		0x37bf0, 0x37c10,
		0x37c28, 0x37c28,
		0x37c3c, 0x37c50,
		0x37cf0, 0x37cfc,
		0x38000, 0x38030,
		0x38100, 0x38144,
		0x38190, 0x381d0,
		0x38200, 0x38318,
		0x38400, 0x3852c,
		0x38540, 0x3861c,
		0x38800, 0x38834,
		0x388c0, 0x38908,
		0x38910, 0x389ac,
1180
		0x38a00, 0x38a2c,
1181 1182
		0x38a44, 0x38a50,
		0x38a74, 0x38c24,
1183
		0x38d00, 0x38d00,
1184 1185 1186 1187 1188 1189
		0x38d08, 0x38d14,
		0x38d1c, 0x38d20,
		0x38d3c, 0x38d50,
		0x39200, 0x3920c,
		0x39220, 0x39220,
		0x39240, 0x39240,
1190
		0x39600, 0x3960c,
1191
		0x39a00, 0x39a1c,
1192
		0x39e00, 0x39e20,
1193 1194 1195 1196 1197 1198
		0x39e38, 0x39e3c,
		0x39e80, 0x39e80,
		0x39e88, 0x39ea8,
		0x39eb0, 0x39eb4,
		0x39ec8, 0x39ed4,
		0x39fb8, 0x3a004,
1199 1200 1201 1202 1203
		0x3a200, 0x3a200,
		0x3a208, 0x3a240,
		0x3a248, 0x3a280,
		0x3a288, 0x3a2c0,
		0x3a2c8, 0x3a2fc,
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
		0x3a600, 0x3a630,
		0x3aa00, 0x3aabc,
		0x3ab00, 0x3ab70,
		0x3b000, 0x3b048,
		0x3b060, 0x3b09c,
		0x3b0f0, 0x3b148,
		0x3b160, 0x3b19c,
		0x3b1f0, 0x3b2e4,
		0x3b2f8, 0x3b3e4,
		0x3b3f8, 0x3b448,
		0x3b460, 0x3b49c,
		0x3b4f0, 0x3b548,
		0x3b560, 0x3b59c,
		0x3b5f0, 0x3b6e4,
		0x3b6f8, 0x3b7e4,
		0x3b7f8, 0x3b7fc,
		0x3b814, 0x3b814,
		0x3b82c, 0x3b82c,
		0x3b880, 0x3b88c,
		0x3b8e8, 0x3b8ec,
		0x3b900, 0x3b948,
		0x3b960, 0x3b99c,
		0x3b9f0, 0x3bae4,
		0x3baf8, 0x3bb10,
		0x3bb28, 0x3bb28,
		0x3bb3c, 0x3bb50,
		0x3bbf0, 0x3bc10,
		0x3bc28, 0x3bc28,
		0x3bc3c, 0x3bc50,
		0x3bcf0, 0x3bcfc,
		0x3c000, 0x3c030,
		0x3c100, 0x3c144,
		0x3c190, 0x3c1d0,
		0x3c200, 0x3c318,
		0x3c400, 0x3c52c,
		0x3c540, 0x3c61c,
		0x3c800, 0x3c834,
		0x3c8c0, 0x3c908,
		0x3c910, 0x3c9ac,
1243
		0x3ca00, 0x3ca2c,
1244 1245
		0x3ca44, 0x3ca50,
		0x3ca74, 0x3cc24,
1246
		0x3cd00, 0x3cd00,
1247 1248 1249 1250 1251 1252
		0x3cd08, 0x3cd14,
		0x3cd1c, 0x3cd20,
		0x3cd3c, 0x3cd50,
		0x3d200, 0x3d20c,
		0x3d220, 0x3d220,
		0x3d240, 0x3d240,
1253
		0x3d600, 0x3d60c,
1254
		0x3da00, 0x3da1c,
1255
		0x3de00, 0x3de20,
1256 1257 1258 1259 1260 1261
		0x3de38, 0x3de3c,
		0x3de80, 0x3de80,
		0x3de88, 0x3dea8,
		0x3deb0, 0x3deb4,
		0x3dec8, 0x3ded4,
		0x3dfb8, 0x3e004,
1262 1263 1264 1265 1266
		0x3e200, 0x3e200,
		0x3e208, 0x3e240,
		0x3e248, 0x3e280,
		0x3e288, 0x3e2c0,
		0x3e2c8, 0x3e2fc,
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
		0x3e600, 0x3e630,
		0x3ea00, 0x3eabc,
		0x3eb00, 0x3eb70,
		0x3f000, 0x3f048,
		0x3f060, 0x3f09c,
		0x3f0f0, 0x3f148,
		0x3f160, 0x3f19c,
		0x3f1f0, 0x3f2e4,
		0x3f2f8, 0x3f3e4,
		0x3f3f8, 0x3f448,
		0x3f460, 0x3f49c,
		0x3f4f0, 0x3f548,
		0x3f560, 0x3f59c,
		0x3f5f0, 0x3f6e4,
		0x3f6f8, 0x3f7e4,
		0x3f7f8, 0x3f7fc,
		0x3f814, 0x3f814,
		0x3f82c, 0x3f82c,
		0x3f880, 0x3f88c,
		0x3f8e8, 0x3f8ec,
		0x3f900, 0x3f948,
		0x3f960, 0x3f99c,
		0x3f9f0, 0x3fae4,
		0x3faf8, 0x3fb10,
		0x3fb28, 0x3fb28,
		0x3fb3c, 0x3fb50,
		0x3fbf0, 0x3fc10,
		0x3fc28, 0x3fc28,
		0x3fc3c, 0x3fc50,
		0x3fcf0, 0x3fcfc,
		0x40000, 0x4000c,
		0x40040, 0x40068,
1299
		0x4007c, 0x40144,
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
		0x40180, 0x4018c,
		0x40200, 0x40298,
		0x402ac, 0x4033c,
		0x403f8, 0x403fc,
		0x41304, 0x413c4,
		0x41400, 0x4141c,
		0x41480, 0x414d0,
		0x44000, 0x44078,
		0x440c0, 0x44278,
		0x442c0, 0x44478,
		0x444c0, 0x44678,
		0x446c0, 0x44878,
		0x448c0, 0x449fc,
		0x45000, 0x45068,
		0x45080, 0x45084,
		0x450a0, 0x450b0,
		0x45200, 0x45268,
		0x45280, 0x45284,
		0x452a0, 0x452b0,
		0x460c0, 0x460e4,
		0x47000, 0x4708c,
		0x47200, 0x47250,
		0x47400, 0x47420,
		0x47600, 0x47618,
		0x47800, 0x47814,
		0x48000, 0x4800c,
		0x48040, 0x48068,
1327
		0x4807c, 0x48144,
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
		0x48180, 0x4818c,
		0x48200, 0x48298,
		0x482ac, 0x4833c,
		0x483f8, 0x483fc,
		0x49304, 0x493c4,
		0x49400, 0x4941c,
		0x49480, 0x494d0,
		0x4c000, 0x4c078,
		0x4c0c0, 0x4c278,
		0x4c2c0, 0x4c478,
		0x4c4c0, 0x4c678,
		0x4c6c0, 0x4c878,
		0x4c8c0, 0x4c9fc,
		0x4d000, 0x4d068,
		0x4d080, 0x4d084,
		0x4d0a0, 0x4d0b0,
		0x4d200, 0x4d268,
		0x4d280, 0x4d284,
		0x4d2a0, 0x4d2b0,
		0x4e0c0, 0x4e0e4,
		0x4f000, 0x4f08c,
		0x4f200, 0x4f250,
		0x4f400, 0x4f420,
		0x4f600, 0x4f618,
		0x4f800, 0x4f814,
		0x50000, 0x500cc,
		0x50400, 0x50400,
		0x50800, 0x508cc,
		0x50c00, 0x50c00,
		0x51000, 0x5101c,
		0x51300, 0x51308,
	};

1361
	static const unsigned int t6_reg_ranges[] = {
1362 1363
		0x1008, 0x1124,
		0x1138, 0x114c,
1364
		0x1180, 0x11b4,
1365
		0x11fc, 0x1254,
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
		0x1280, 0x133c,
		0x1800, 0x18fc,
		0x3000, 0x302c,
		0x3060, 0x30d8,
		0x30e0, 0x30fc,
		0x3140, 0x357c,
		0x35a8, 0x35cc,
		0x35ec, 0x35ec,
		0x3600, 0x5624,
		0x56cc, 0x575c,
		0x580c, 0x5814,
		0x5890, 0x58bc,
		0x5940, 0x595c,
		0x5980, 0x598c,
		0x59b0, 0x59dc,
		0x59fc, 0x5a18,
		0x5a60, 0x5a6c,
		0x5a80, 0x5a9c,
		0x5b94, 0x5bfc,
		0x5c10, 0x5ec0,
1386
		0x5ec8, 0x5ecc,
1387
		0x6000, 0x6040,
1388
		0x6058, 0x619c,
1389 1390 1391 1392 1393
		0x7700, 0x7798,
		0x77c0, 0x7880,
		0x78cc, 0x78fc,
		0x7b00, 0x7c54,
		0x7d00, 0x7efc,
1394
		0x8dc0, 0x8de4,
1395 1396
		0x8df8, 0x8e84,
		0x8ea0, 0x8f88,
1397
		0x8fb8, 0x9124,
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
		0x9400, 0x9470,
		0x9600, 0x971c,
		0x9800, 0x9808,
		0x9820, 0x983c,
		0x9850, 0x9864,
		0x9c00, 0x9c6c,
		0x9c80, 0x9cec,
		0x9d00, 0x9d6c,
		0x9d80, 0x9dec,
		0x9e00, 0x9e6c,
		0x9e80, 0x9eec,
		0x9f00, 0x9f6c,
		0x9f80, 0xa020,
		0xd004, 0xd03c,
1412 1413
		0xd100, 0xd118,
		0xd200, 0xd31c,
1414 1415 1416
		0xdfc0, 0xdfe0,
		0xe000, 0xf008,
		0x11000, 0x11014,
1417 1418
		0x11048, 0x1117c,
		0x11190, 0x11270,
1419
		0x11300, 0x1130c,
1420
		0x12000, 0x1206c,
1421 1422 1423 1424 1425
		0x19040, 0x1906c,
		0x19078, 0x19080,
		0x1908c, 0x19124,
		0x19150, 0x191b0,
		0x191d0, 0x191e8,
1426
		0x19238, 0x192bc,
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
		0x193f8, 0x19474,
		0x19490, 0x194cc,
		0x194f0, 0x194f8,
		0x19c00, 0x19c80,
		0x19c94, 0x19cbc,
		0x19ce4, 0x19d28,
		0x19d50, 0x19d78,
		0x19d94, 0x19dc8,
		0x19df0, 0x19e10,
		0x19e50, 0x19e6c,
		0x19ea0, 0x19f34,
		0x19f40, 0x19f50,
		0x19f90, 0x19fac,
		0x19fc4, 0x19fe4,
		0x1a000, 0x1a06c,
		0x1a0b0, 0x1a120,
		0x1a128, 0x1a138,
		0x1a190, 0x1a1c4,
		0x1a1fc, 0x1a1fc,
		0x1e008, 0x1e00c,
		0x1e040, 0x1e04c,
		0x1e284, 0x1e290,
		0x1e2c0, 0x1e2c0,
		0x1e2e0, 0x1e2e0,
		0x1e300, 0x1e384,
		0x1e3c0, 0x1e3c8,
		0x1e408, 0x1e40c,
		0x1e440, 0x1e44c,
		0x1e684, 0x1e690,
		0x1e6c0, 0x1e6c0,
		0x1e6e0, 0x1e6e0,
		0x1e700, 0x1e784,
		0x1e7c0, 0x1e7c8,
		0x1e808, 0x1e80c,
		0x1e840, 0x1e84c,
		0x1ea84, 0x1ea90,
		0x1eac0, 0x1eac0,
		0x1eae0, 0x1eae0,
		0x1eb00, 0x1eb84,
		0x1ebc0, 0x1ebc8,
		0x1ec08, 0x1ec0c,
		0x1ec40, 0x1ec4c,
		0x1ee84, 0x1ee90,
		0x1eec0, 0x1eec0,
		0x1eee0, 0x1eee0,
		0x1ef00, 0x1ef84,
		0x1efc0, 0x1efc8,
		0x1f008, 0x1f00c,
		0x1f040, 0x1f04c,
		0x1f284, 0x1f290,
		0x1f2c0, 0x1f2c0,
		0x1f2e0, 0x1f2e0,
		0x1f300, 0x1f384,
		0x1f3c0, 0x1f3c8,
		0x1f408, 0x1f40c,
		0x1f440, 0x1f44c,
		0x1f684, 0x1f690,
		0x1f6c0, 0x1f6c0,
		0x1f6e0, 0x1f6e0,
		0x1f700, 0x1f784,
		0x1f7c0, 0x1f7c8,
		0x1f808, 0x1f80c,
		0x1f840, 0x1f84c,
		0x1fa84, 0x1fa90,
		0x1fac0, 0x1fac0,
		0x1fae0, 0x1fae0,
		0x1fb00, 0x1fb84,
		0x1fbc0, 0x1fbc8,
		0x1fc08, 0x1fc0c,
		0x1fc40, 0x1fc4c,
		0x1fe84, 0x1fe90,
		0x1fec0, 0x1fec0,
		0x1fee0, 0x1fee0,
		0x1ff00, 0x1ff84,
		0x1ffc0, 0x1ffc8,
		0x30000, 0x30070,
1503 1504
		0x30100, 0x301d0,
		0x30200, 0x30320,
1505 1506
		0x30400, 0x3052c,
		0x30540, 0x3061c,
1507
		0x30800, 0x30890,
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
		0x308c0, 0x30908,
		0x30910, 0x309b8,
		0x30a00, 0x30a04,
		0x30a0c, 0x30a2c,
		0x30a44, 0x30a50,
		0x30a74, 0x30c24,
		0x30d00, 0x30d3c,
		0x30d44, 0x30d7c,
		0x30de0, 0x30de0,
		0x30e00, 0x30ed4,
		0x30f00, 0x30fa4,
		0x30fc0, 0x30fc4,
		0x31000, 0x31004,
		0x31080, 0x310fc,
		0x31208, 0x31220,
		0x3123c, 0x31254,
		0x31300, 0x31300,
		0x31308, 0x3131c,
		0x31338, 0x3133c,
		0x31380, 0x31380,
		0x31388, 0x313a8,
		0x313b4, 0x313b4,
		0x31400, 0x31420,
		0x31438, 0x3143c,
		0x31480, 0x31480,
		0x314a8, 0x314a8,
		0x314b0, 0x314b4,
		0x314c8, 0x314d4,
		0x31a40, 0x31a4c,
		0x31af0, 0x31b20,
		0x31b38, 0x31b3c,
		0x31b80, 0x31b80,
		0x31ba8, 0x31ba8,
		0x31bb0, 0x31bb4,
		0x31bc8, 0x31bd4,
		0x32140, 0x3218c,
		0x321f0, 0x32200,
		0x32218, 0x32218,
		0x32400, 0x32400,
		0x32408, 0x3241c,
		0x32618, 0x32620,
		0x32664, 0x32664,
		0x326a8, 0x326a8,
		0x326ec, 0x326ec,
		0x32a00, 0x32abc,
		0x32b00, 0x32b78,
		0x32c00, 0x32c00,
		0x32c08, 0x32c3c,
		0x32e00, 0x32e2c,
		0x32f00, 0x32f2c,
		0x33000, 0x330ac,
		0x330c0, 0x331ac,
		0x331c0, 0x332c4,
		0x332e4, 0x333c4,
		0x333e4, 0x334ac,
		0x334c0, 0x335ac,
		0x335c0, 0x336c4,
		0x336e4, 0x337c4,
		0x337e4, 0x337fc,
		0x33814, 0x33814,
		0x33854, 0x33868,
		0x33880, 0x3388c,
		0x338c0, 0x338d0,
		0x338e8, 0x338ec,
		0x33900, 0x339ac,
		0x339c0, 0x33ac4,
		0x33ae4, 0x33b10,
		0x33b24, 0x33b50,
		0x33bf0, 0x33c10,
		0x33c24, 0x33c50,
		0x33cf0, 0x33cfc,
		0x34000, 0x34070,
1580 1581
		0x34100, 0x341d0,
		0x34200, 0x34320,
1582 1583
		0x34400, 0x3452c,
		0x34540, 0x3461c,
1584
		0x34800, 0x34890,
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
		0x348c0, 0x34908,
		0x34910, 0x349b8,
		0x34a00, 0x34a04,
		0x34a0c, 0x34a2c,
		0x34a44, 0x34a50,
		0x34a74, 0x34c24,
		0x34d00, 0x34d3c,
		0x34d44, 0x34d7c,
		0x34de0, 0x34de0,
		0x34e00, 0x34ed4,
		0x34f00, 0x34fa4,
		0x34fc0, 0x34fc4,
		0x35000, 0x35004,
		0x35080, 0x350fc,
		0x35208, 0x35220,
		0x3523c, 0x35254,
		0x35300, 0x35300,
		0x35308, 0x3531c,
		0x35338, 0x3533c,
		0x35380, 0x35380,
		0x35388, 0x353a8,
		0x353b4, 0x353b4,
		0x35400, 0x35420,
		0x35438, 0x3543c,
		0x35480, 0x35480,
		0x354a8, 0x354a8,
		0x354b0, 0x354b4,
		0x354c8, 0x354d4,
		0x35a40, 0x35a4c,
		0x35af0, 0x35b20,
		0x35b38, 0x35b3c,
		0x35b80, 0x35b80,
		0x35ba8, 0x35ba8,
		0x35bb0, 0x35bb4,
		0x35bc8, 0x35bd4,
		0x36140, 0x3618c,
		0x361f0, 0x36200,
		0x36218, 0x36218,
		0x36400, 0x36400,
		0x36408, 0x3641c,
		0x36618, 0x36620,
		0x36664, 0x36664,
		0x366a8, 0x366a8,
		0x366ec, 0x366ec,
		0x36a00, 0x36abc,
		0x36b00, 0x36b78,
		0x36c00, 0x36c00,
		0x36c08, 0x36c3c,
		0x36e00, 0x36e2c,
		0x36f00, 0x36f2c,
		0x37000, 0x370ac,
		0x370c0, 0x371ac,
		0x371c0, 0x372c4,
		0x372e4, 0x373c4,
		0x373e4, 0x374ac,
		0x374c0, 0x375ac,
		0x375c0, 0x376c4,
		0x376e4, 0x377c4,
		0x377e4, 0x377fc,
		0x37814, 0x37814,
		0x37854, 0x37868,
		0x37880, 0x3788c,
		0x378c0, 0x378d0,
		0x378e8, 0x378ec,
		0x37900, 0x379ac,
		0x379c0, 0x37ac4,
		0x37ae4, 0x37b10,
		0x37b24, 0x37b50,
		0x37bf0, 0x37c10,
		0x37c24, 0x37c50,
		0x37cf0, 0x37cfc,
		0x40040, 0x40040,
		0x40080, 0x40084,
		0x40100, 0x40100,
		0x40140, 0x401bc,
		0x40200, 0x40214,
		0x40228, 0x40228,
		0x40240, 0x40258,
		0x40280, 0x40280,
		0x40304, 0x40304,
		0x40330, 0x4033c,
		0x41304, 0x413dc,
		0x41400, 0x4141c,
		0x41480, 0x414d0,
		0x44000, 0x4407c,
		0x440c0, 0x4427c,
		0x442c0, 0x4447c,
		0x444c0, 0x4467c,
		0x446c0, 0x4487c,
		0x448c0, 0x44a7c,
		0x44ac0, 0x44c7c,
		0x44cc0, 0x44e7c,
		0x44ec0, 0x4507c,
		0x450c0, 0x451fc,
		0x45800, 0x45868,
		0x45880, 0x45884,
		0x458a0, 0x458b0,
		0x45a00, 0x45a68,
		0x45a80, 0x45a84,
		0x45aa0, 0x45ab0,
		0x460c0, 0x460e4,
		0x47000, 0x4708c,
		0x47200, 0x47250,
		0x47400, 0x47420,
		0x47600, 0x47618,
		0x47800, 0x4782c,
		0x50000, 0x500cc,
		0x50400, 0x50400,
		0x50800, 0x508cc,
		0x50c00, 0x50c00,
		0x51000, 0x510b0,
		0x51300, 0x51324,
	};

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	u32 *buf_end = (u32 *)((char *)buf + buf_size);
	const unsigned int *reg_ranges;
	int reg_ranges_size, range;
	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);

	/* Select the right set of register ranges to dump depending on the
	 * adapter chip type.
	 */
	switch (chip_version) {
	case CHELSIO_T4:
		reg_ranges = t4_reg_ranges;
		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
		break;

	case CHELSIO_T5:
		reg_ranges = t5_reg_ranges;
		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
		break;

1718 1719 1720 1721 1722
	case CHELSIO_T6:
		reg_ranges = t6_reg_ranges;
		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
		break;

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	default:
		dev_err(adap->pdev_dev,
			"Unsupported chip version %d\n", chip_version);
		return;
	}

	/* Clear the register buffer and insert the appropriate register
	 * values selected by the above register ranges.
	 */
	memset(buf, 0, buf_size);
	for (range = 0; range < reg_ranges_size; range += 2) {
		unsigned int reg = reg_ranges[range];
		unsigned int last_reg = reg_ranges[range + 1];
		u32 *bufp = (u32 *)((char *)buf + reg);

		/* Iterate across the register range filling in the register
		 * buffer but don't write past the end of the register buffer.
		 */
		while (reg <= last_reg && bufp < buf_end) {
			*bufp++ = t4_read_reg(adap, reg);
			reg += sizeof(u32);
		}
	}
}

1748
#define EEPROM_STAT_ADDR   0x7bfc
1749 1750
#define VPD_BASE           0x400
#define VPD_BASE_OLD       0
S
Santosh Rastapur 已提交
1751
#define VPD_LEN            1024
1752
#define CHELSIO_VPD_UNIQUE_ID 0x82
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

/**
 *	t4_seeprom_wp - enable/disable EEPROM write protection
 *	@adapter: the adapter
 *	@enable: whether to enable or disable write protection
 *
 *	Enables or disables write protection on the serial EEPROM.
 */
int t4_seeprom_wp(struct adapter *adapter, bool enable)
{
	unsigned int v = enable ? 0xc : 0;
	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
	return ret < 0 ? ret : 0;
}

/**
1769
 *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
1770 1771 1772 1773 1774
 *	@adapter: adapter to read
 *	@p: where to store the parameters
 *
 *	Reads card parameters stored in VPD EEPROM.
 */
1775
int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
1776
{
1777 1778
	int i, ret = 0, addr;
	int ec, sn, pn, na;
1779
	u8 *vpd, csum;
D
Dimitris Michailidis 已提交
1780
	unsigned int vpdr_len, kw_offset, id_len;
1781

1782 1783 1784 1785
	vpd = vmalloc(VPD_LEN);
	if (!vpd)
		return -ENOMEM;

1786 1787 1788
	/* Card information normally starts at VPD_BASE but early cards had
	 * it at 0.
	 */
1789 1790 1791
	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
	if (ret < 0)
		goto out;
1792 1793 1794 1795 1796 1797 1798 1799

	/* The VPD shall have a unique identifier specified by the PCI SIG.
	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
	 * is expected to automatically put this entry at the
	 * beginning of the VPD.
	 */
	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
1800 1801

	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
1802
	if (ret < 0)
1803
		goto out;
1804

D
Dimitris Michailidis 已提交
1805 1806
	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
1807 1808
		ret = -EINVAL;
		goto out;
D
Dimitris Michailidis 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817
	}

	id_len = pci_vpd_lrdt_size(vpd);
	if (id_len > ID_LEN)
		id_len = ID_LEN;

	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
1818 1819
		ret = -EINVAL;
		goto out;
D
Dimitris Michailidis 已提交
1820 1821 1822 1823 1824
	}

	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
	if (vpdr_len + kw_offset > VPD_LEN) {
1825
		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
1826 1827
		ret = -EINVAL;
		goto out;
1828 1829 1830
	}

#define FIND_VPD_KW(var, name) do { \
D
Dimitris Michailidis 已提交
1831
	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
1832 1833
	if (var < 0) { \
		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
1834 1835
		ret = -EINVAL; \
		goto out; \
1836 1837 1838 1839 1840 1841 1842
	} \
	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
} while (0)

	FIND_VPD_KW(i, "RV");
	for (csum = 0; i >= 0; i--)
		csum += vpd[i];
1843 1844 1845 1846

	if (csum) {
		dev_err(adapter->pdev_dev,
			"corrupted VPD EEPROM, actual csum %u\n", csum);
1847 1848
		ret = -EINVAL;
		goto out;
1849 1850
	}

1851 1852
	FIND_VPD_KW(ec, "EC");
	FIND_VPD_KW(sn, "SN");
1853
	FIND_VPD_KW(pn, "PN");
1854
	FIND_VPD_KW(na, "NA");
1855 1856
#undef FIND_VPD_KW

D
Dimitris Michailidis 已提交
1857
	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
1858
	strim(p->id);
1859
	memcpy(p->ec, vpd + ec, EC_LEN);
1860
	strim(p->ec);
1861 1862
	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
1863
	strim(p->sn);
1864
	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
1865 1866
	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
	strim(p->pn);
1867 1868
	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
	strim((char *)p->na);
1869

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
out:
	vfree(vpd);
	return ret;
}

/**
 *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
 *	@adapter: adapter to read
 *	@p: where to store the parameters
 *
 *	Reads card parameters stored in VPD EEPROM and retrieves the Core
 *	Clock.  This can only be called after a connection to the firmware
 *	is established.
 */
int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
{
	u32 cclk_param, cclk_val;
	int ret;

	/* Grab the raw VPD parameters.
	 */
	ret = t4_get_raw_vpd_params(adapter, p);
	if (ret)
		return ret;

	/* Ask firmware for the Core Clock since it knows how to translate the
1896 1897
	 * Reference Clock ('V2') VPD field into a Core Clock value ...
	 */
1898 1899
	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
1900
	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
1901
			      1, &cclk_param, &cclk_val);
1902

1903 1904 1905 1906
	if (ret)
		return ret;
	p->cclk = cclk_val;

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	return 0;
}

/* serial flash and firmware constants */
enum {
	SF_ATTEMPTS = 10,             /* max retries for SF operations */

	/* flash command opcodes */
	SF_PROG_PAGE    = 2,          /* program page */
	SF_WR_DISABLE   = 4,          /* disable writes */
	SF_RD_STATUS    = 5,          /* read status register */
	SF_WR_ENABLE    = 6,          /* enable writes */
	SF_RD_DATA_FAST = 0xb,        /* read flash */
1920
	SF_RD_ID        = 0x9f,       /* read ID */
1921 1922
	SF_ERASE_SECTOR = 0xd8,       /* erase sector */

1923
	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
};

/**
 *	sf1_read - read data from the serial flash
 *	@adapter: the adapter
 *	@byte_cnt: number of bytes to read
 *	@cont: whether another operation will be chained
 *	@lock: whether to lock SF for PL access only
 *	@valp: where to store the read data
 *
 *	Reads up to 4 bytes of data from the serial flash.  The location of
 *	the read needs to be specified prior to calling this by issuing the
 *	appropriate commands to the serial flash.
 */
static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
		    int lock, u32 *valp)
{
	int ret;

	if (!byte_cnt || byte_cnt > 4)
		return -EINVAL;
1945
	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
1946
		return -EBUSY;
1947 1948 1949
	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
1950
	if (!ret)
1951
		*valp = t4_read_reg(adapter, SF_DATA_A);
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
	return ret;
}

/**
 *	sf1_write - write data to the serial flash
 *	@adapter: the adapter
 *	@byte_cnt: number of bytes to write
 *	@cont: whether another operation will be chained
 *	@lock: whether to lock SF for PL access only
 *	@val: value to write
 *
 *	Writes up to 4 bytes of data to the serial flash.  The location of
 *	the write needs to be specified prior to calling this by issuing the
 *	appropriate commands to the serial flash.
 */
static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
		     int lock, u32 val)
{
	if (!byte_cnt || byte_cnt > 4)
		return -EINVAL;
1972
	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
1973
		return -EBUSY;
1974 1975 1976 1977
	t4_write_reg(adapter, SF_DATA_A, val);
	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
}

/**
 *	flash_wait_op - wait for a flash operation to complete
 *	@adapter: the adapter
 *	@attempts: max number of polls of the status register
 *	@delay: delay between polls in ms
 *
 *	Wait for a flash operation to complete by polling the status register.
 */
static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
{
	int ret;
	u32 status;

	while (1) {
		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
			return ret;
		if (!(status & 1))
			return 0;
		if (--attempts == 0)
			return -EAGAIN;
		if (delay)
			msleep(delay);
	}
}

/**
 *	t4_read_flash - read words from serial flash
 *	@adapter: the adapter
 *	@addr: the start address for the read
 *	@nwords: how many 32-bit words to read
 *	@data: where to store the read data
 *	@byte_oriented: whether to store data as bytes or as words
 *
 *	Read the specified number of 32-bit words from the serial flash.
 *	If @byte_oriented is set the read data is stored as a byte array
 *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2017
 *	natural endianness.
2018
 */
2019 2020
int t4_read_flash(struct adapter *adapter, unsigned int addr,
		  unsigned int nwords, u32 *data, int byte_oriented)
2021 2022 2023
{
	int ret;

2024
	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
		return -EINVAL;

	addr = swab32(addr) | SF_RD_DATA_FAST;

	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
		return ret;

	for ( ; nwords; nwords--, data++) {
		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
		if (nwords == 1)
2036
			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2037 2038 2039
		if (ret)
			return ret;
		if (byte_oriented)
2040
			*data = (__force __u32)(cpu_to_be32(*data));
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
	}
	return 0;
}

/**
 *	t4_write_flash - write up to a page of data to the serial flash
 *	@adapter: the adapter
 *	@addr: the start address to write
 *	@n: length of data to write in bytes
 *	@data: the data to write
 *
 *	Writes up to a page of data (256 bytes) to the serial flash starting
 *	at the given address.  All the data must be written to the same page.
 */
static int t4_write_flash(struct adapter *adapter, unsigned int addr,
			  unsigned int n, const u8 *data)
{
	int ret;
	u32 buf[64];
	unsigned int i, c, left, val, offset = addr & 0xff;

2062
	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
		return -EINVAL;

	val = swab32(addr) | SF_PROG_PAGE;

	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
		goto unlock;

	for (left = n; left; left -= c) {
		c = min(left, 4U);
		for (val = 0, i = 0; i < c; ++i)
			val = (val << 8) + *data++;

		ret = sf1_write(adapter, c, c != left, 1, val);
		if (ret)
			goto unlock;
	}
2080
	ret = flash_wait_op(adapter, 8, 1);
2081 2082 2083
	if (ret)
		goto unlock;

2084
	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099

	/* Read the page to verify the write succeeded */
	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
	if (ret)
		return ret;

	if (memcmp(data - n, (u8 *)buf + offset, n)) {
		dev_err(adapter->pdev_dev,
			"failed to correctly write the flash page at %#x\n",
			addr);
		return -EIO;
	}
	return 0;

unlock:
2100
	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2101 2102 2103 2104
	return ret;
}

/**
2105
 *	t4_get_fw_version - read the firmware version
2106 2107 2108 2109 2110
 *	@adapter: the adapter
 *	@vers: where to place the version
 *
 *	Reads the FW version from flash.
 */
2111
int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2112
{
2113 2114 2115
	return t4_read_flash(adapter, FLASH_FW_START +
			     offsetof(struct fw_hdr, fw_ver), 1,
			     vers, 0);
2116 2117 2118
}

/**
2119
 *	t4_get_tp_version - read the TP microcode version
2120 2121 2122 2123 2124
 *	@adapter: the adapter
 *	@vers: where to place the version
 *
 *	Reads the TP microcode version from flash.
 */
2125
int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2126
{
2127
	return t4_read_flash(adapter, FLASH_FW_START +
2128
			     offsetof(struct fw_hdr, tp_microcode_ver),
2129 2130 2131
			     1, vers, 0);
}

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
/**
 *	t4_get_exprom_version - return the Expansion ROM version (if any)
 *	@adapter: the adapter
 *	@vers: where to place the version
 *
 *	Reads the Expansion ROM header from FLASH and returns the version
 *	number (if present) through the @vers return value pointer.  We return
 *	this in the Firmware Version Format since it's convenient.  Return
 *	0 on success, -ENOENT if no Expansion ROM is present.
 */
int t4_get_exprom_version(struct adapter *adap, u32 *vers)
{
	struct exprom_header {
		unsigned char hdr_arr[16];	/* must start with 0x55aa */
		unsigned char hdr_ver[4];	/* Expansion ROM version */
	} *hdr;
	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
					   sizeof(u32))];
	int ret;

	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
			    0);
	if (ret)
		return ret;

	hdr = (struct exprom_header *)exprom_header_buf;
	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
		return -ENOENT;

	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
	return 0;
}

2169 2170
/* Is the given firmware API compatible with the one the driver was compiled
 * with?
2171
 */
2172
static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
2173 2174
{

2175 2176 2177
	/* short circuit if it's the exact same firmware version */
	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
		return 1;
2178

2179 2180 2181 2182 2183
#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
		return 1;
#undef SAME_INTF
S
Santosh Rastapur 已提交
2184

2185 2186
	return 0;
}
2187

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
/* The firmware in the filesystem is usable, but should it be installed?
 * This routine explains itself in detail if it indicates the filesystem
 * firmware should be installed.
 */
static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
				int k, int c)
{
	const char *reason;

	if (!card_fw_usable) {
		reason = "incompatible or unusable";
		goto install;
2200 2201
	}

2202 2203 2204
	if (k > c) {
		reason = "older than the version supported with this driver";
		goto install;
2205 2206
	}

2207 2208 2209 2210 2211
	return 0;

install:
	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
		"installing firmware %u.%u.%u.%u on card.\n",
2212 2213 2214 2215
		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2216 2217 2218 2219

	return 1;
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
	       const u8 *fw_data, unsigned int fw_size,
	       struct fw_hdr *card_fw, enum dev_state state,
	       int *reset)
{
	int ret, card_fw_usable, fs_fw_usable;
	const struct fw_hdr *fs_fw;
	const struct fw_hdr *drv_fw;

	drv_fw = &fw_info->fw_hdr;

	/* Read the header of the firmware on the card */
	ret = -t4_read_flash(adap, FLASH_FW_START,
			    sizeof(*card_fw) / sizeof(uint32_t),
			    (uint32_t *)card_fw, 1);
	if (ret == 0) {
		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
	} else {
		dev_err(adap->pdev_dev,
			"Unable to read card's firmware header: %d\n", ret);
		card_fw_usable = 0;
	}

	if (fw_data != NULL) {
		fs_fw = (const void *)fw_data;
		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
	} else {
		fs_fw = NULL;
		fs_fw_usable = 0;
	}

	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
		/* Common case: the firmware on the card is an exact match and
		 * the filesystem one is an exact match too, or the filesystem
		 * one is absent/incompatible.
		 */
	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
		   should_install_fs_fw(adap, card_fw_usable,
					be32_to_cpu(fs_fw->fw_ver),
					be32_to_cpu(card_fw->fw_ver))) {
		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
				     fw_size, 0);
		if (ret != 0) {
			dev_err(adap->pdev_dev,
				"failed to install firmware: %d\n", ret);
			goto bye;
		}

		/* Installed successfully, update the cached header too. */
2270
		*card_fw = *fs_fw;
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
		card_fw_usable = 1;
		*reset = 0;	/* already reset as part of load_fw */
	}

	if (!card_fw_usable) {
		uint32_t d, c, k;

		d = be32_to_cpu(drv_fw->fw_ver);
		c = be32_to_cpu(card_fw->fw_ver);
		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;

		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
			"chip state %d, "
			"driver compiled with %d.%d.%d.%d, "
			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
			state,
2287 2288 2289 2290 2291 2292
			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
		ret = EINVAL;
		goto bye;
	}

	/* We're using whatever's on the card and it's known to be good. */
	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);

bye:
	return ret;
}

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
/**
 *	t4_flash_erase_sectors - erase a range of flash sectors
 *	@adapter: the adapter
 *	@start: the first sector to erase
 *	@end: the last sector to erase
 *
 *	Erases the sectors in the given inclusive range.
 */
static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
{
	int ret = 0;

2317 2318 2319
	if (end >= adapter->params.sf_nsec)
		return -EINVAL;

2320 2321 2322 2323
	while (start <= end) {
		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
		    (ret = sf1_write(adapter, 4, 0, 1,
				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
2324
		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
2325 2326 2327 2328 2329 2330 2331
			dev_err(adapter->pdev_dev,
				"erase of flash sector %d failed, error %d\n",
				start, ret);
			break;
		}
		start++;
	}
2332
	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2333 2334 2335
	return ret;
}

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
/**
 *	t4_flash_cfg_addr - return the address of the flash configuration file
 *	@adapter: the adapter
 *
 *	Return the address within the flash where the Firmware Configuration
 *	File is stored.
 */
unsigned int t4_flash_cfg_addr(struct adapter *adapter)
{
	if (adapter->params.sf_size == 0x100000)
		return FLASH_FPGA_CFG_START;
	else
		return FLASH_CFG_START;
}

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
/* Return TRUE if the specified firmware matches the adapter.  I.e. T4
 * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
 * and emit an error message for mismatched firmware to save our caller the
 * effort ...
 */
static bool t4_fw_matches_chip(const struct adapter *adap,
			       const struct fw_hdr *hdr)
{
	/* The expression below will return FALSE for any unsupported adapter
	 * which will keep us "honest" in the future ...
	 */
	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
2363 2364
	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
2365 2366 2367 2368 2369 2370 2371 2372
		return true;

	dev_err(adap->pdev_dev,
		"FW image (%d) is not suitable for this adapter (%d)\n",
		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
	return false;
}

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
/**
 *	t4_load_fw - download firmware
 *	@adap: the adapter
 *	@fw_data: the firmware image to write
 *	@size: image size
 *
 *	Write the supplied firmware image to the card's serial flash.
 */
int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
{
	u32 csum;
	int ret, addr;
	unsigned int i;
	u8 first_page[SF_PAGE_SIZE];
2387
	const __be32 *p = (const __be32 *)fw_data;
2388
	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
2389 2390 2391
	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
	unsigned int fw_img_start = adap->params.sf_fw_start;
	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401

	if (!size) {
		dev_err(adap->pdev_dev, "FW image has no data\n");
		return -EINVAL;
	}
	if (size & 511) {
		dev_err(adap->pdev_dev,
			"FW image size not multiple of 512 bytes\n");
		return -EINVAL;
	}
2402
	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
2403 2404 2405 2406 2407 2408 2409 2410 2411
		dev_err(adap->pdev_dev,
			"FW image size differs from size in FW header\n");
		return -EINVAL;
	}
	if (size > FW_MAX_SIZE) {
		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
			FW_MAX_SIZE);
		return -EFBIG;
	}
2412 2413
	if (!t4_fw_matches_chip(adap, hdr))
		return -EINVAL;
2414 2415

	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
2416
		csum += be32_to_cpu(p[i]);
2417 2418 2419 2420 2421 2422 2423

	if (csum != 0xffffffff) {
		dev_err(adap->pdev_dev,
			"corrupted firmware image, checksum %#x\n", csum);
		return -EINVAL;
	}

2424 2425
	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
2426 2427 2428 2429 2430 2431 2432 2433 2434
	if (ret)
		goto out;

	/*
	 * We write the correct version at the end so the driver can see a bad
	 * version if the FW write fails.  Start by writing a copy of the
	 * first page with a bad version.
	 */
	memcpy(first_page, fw_data, SF_PAGE_SIZE);
2435
	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
2436
	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
2437 2438 2439
	if (ret)
		goto out;

2440
	addr = fw_img_start;
2441 2442 2443 2444 2445 2446 2447 2448 2449
	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
		addr += SF_PAGE_SIZE;
		fw_data += SF_PAGE_SIZE;
		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
		if (ret)
			goto out;
	}

	ret = t4_write_flash(adap,
2450
			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
2451 2452 2453 2454 2455
			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
out:
	if (ret)
		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
			ret);
2456 2457
	else
		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2458 2459 2460
	return ret;
}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
/**
 *	t4_phy_fw_ver - return current PHY firmware version
 *	@adap: the adapter
 *	@phy_fw_ver: return value buffer for PHY firmware version
 *
 *	Returns the current version of external PHY firmware on the
 *	adapter.
 */
int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
{
	u32 param, val;
	int ret;

	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
2478
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
			      &param, &val);
	if (ret < 0)
		return ret;
	*phy_fw_ver = val;
	return 0;
}

/**
 *	t4_load_phy_fw - download port PHY firmware
 *	@adap: the adapter
 *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
 *	@win_lock: the lock to use to guard the memory copy
 *	@phy_fw_version: function to check PHY firmware versions
 *	@phy_fw_data: the PHY firmware image to write
 *	@phy_fw_size: image size
 *
 *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
 *	@phy_fw_version is supplied, then it will be used to determine if
 *	it's necessary to perform the transfer by comparing the version
 *	of any existing adapter PHY firmware with that of the passed in
 *	PHY firmware image.  If @win_lock is non-NULL then it will be used
 *	around the call to t4_memory_rw() which transfers the PHY firmware
 *	to the adapter.
 *
 *	A negative error number will be returned if an error occurs.  If
 *	version number support is available and there's no need to upgrade
 *	the firmware, 0 will be returned.  If firmware is successfully
 *	transferred to the adapter, 1 will be retured.
 *
 *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
 *	a result, a RESET of the adapter would cause that RAM to lose its
 *	contents.  Thus, loading PHY firmware on such adapters must happen
 *	after any FW_RESET_CMDs ...
 */
int t4_load_phy_fw(struct adapter *adap,
		   int win, spinlock_t *win_lock,
		   int (*phy_fw_version)(const u8 *, size_t),
		   const u8 *phy_fw_data, size_t phy_fw_size)
{
	unsigned long mtype = 0, maddr = 0;
	u32 param, val;
	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
	int ret;

	/* If we have version number support, then check to see if the adapter
	 * already has up-to-date PHY firmware loaded.
	 */
	 if (phy_fw_version) {
		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
		if (ret < 0)
			return ret;

		if (cur_phy_fw_ver >= new_phy_fw_vers) {
			CH_WARN(adap, "PHY Firmware already up-to-date, "
				"version %#x\n", cur_phy_fw_ver);
			return 0;
		}
	}

	/* Ask the firmware where it wants us to copy the PHY firmware image.
	 * The size of the file requires a special version of the READ coommand
	 * which will pass the file size via the values field in PARAMS_CMD and
	 * retrieve the return value from firmware and place it in the same
	 * buffer values
	 */
	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
	val = phy_fw_size;
2550
	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
				 &param, &val, 1);
	if (ret < 0)
		return ret;
	mtype = val >> 8;
	maddr = (val & 0xff) << 16;

	/* Copy the supplied PHY Firmware image to the adapter memory location
	 * allocated by the adapter firmware.
	 */
	if (win_lock)
		spin_lock_bh(win_lock);
	ret = t4_memory_rw(adap, win, mtype, maddr,
			   phy_fw_size, (__be32 *)phy_fw_data,
			   T4_MEMORY_WRITE);
	if (win_lock)
		spin_unlock_bh(win_lock);
	if (ret)
		return ret;

	/* Tell the firmware that the PHY firmware image has been written to
	 * RAM and it can now start copying it over to the PHYs.  The chip
	 * firmware will RESET the affected PHYs as part of this operation
	 * leaving them running the new PHY firmware image.
	 */
	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
2579
	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
				    &param, &val, 30000);

	/* If we have version number support, then check to see that the new
	 * firmware got loaded properly.
	 */
	if (phy_fw_version) {
		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
		if (ret < 0)
			return ret;

		if (cur_phy_fw_ver != new_phy_fw_vers) {
			CH_WARN(adap, "PHY Firmware did not update: "
				"version on adapter %#x, "
				"version flashed %#x\n",
				cur_phy_fw_ver, new_phy_fw_vers);
			return -ENXIO;
		}
	}

	return 1;
}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
/**
 *	t4_fwcache - firmware cache operation
 *	@adap: the adapter
 *	@op  : the operation (flush or flush and invalidate)
 */
int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
{
	struct fw_params_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn =
		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
2615
			    FW_PARAMS_CMD_PFN_V(adap->pf) |
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
			    FW_PARAMS_CMD_VFN_V(0));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
	c.param[0].mnem =
		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
	c.param[0].val = (__force __be32)op;

	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
}

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
			unsigned int *pif_req_wrptr,
			unsigned int *pif_rsp_wrptr)
{
	int i, j;
	u32 cfg, val, req, rsp;

	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
	if (cfg & LADBGEN_F)
		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);

	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
	req = POLADBGWRPTR_G(val);
	rsp = PILADBGWRPTR_G(val);
	if (pif_req_wrptr)
		*pif_req_wrptr = req;
	if (pif_rsp_wrptr)
		*pif_rsp_wrptr = rsp;

	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
		for (j = 0; j < 6; j++) {
			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
				     PILADBGRDPTR_V(rsp));
			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
			req++;
			rsp++;
		}
		req = (req + 2) & POLADBGRDPTR_M;
		rsp = (rsp + 2) & PILADBGRDPTR_M;
	}
	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
}

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
{
	u32 cfg;
	int i, j, idx;

	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
	if (cfg & LADBGEN_F)
		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);

	for (i = 0; i < CIM_MALA_SIZE; i++) {
		for (j = 0; j < 5; j++) {
			idx = 8 * i + j;
			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
				     PILADBGRDPTR_V(idx));
			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
		}
	}
	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
}

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
{
	unsigned int i, j;

	for (i = 0; i < 8; i++) {
		u32 *p = la_buf + i;

		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
	}
}

2696
#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
2697 2698
		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
		     FW_PORT_CAP_ANEG)
2699 2700

/**
2701
 *	t4_link_l1cfg - apply link configuration to MAC/PHY
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
 *	@phy: the PHY to setup
 *	@mac: the MAC to setup
 *	@lc: the requested link configuration
 *
 *	Set up a port's MAC and PHY according to a desired link configuration.
 *	- If the PHY can auto-negotiate first decide what to advertise, then
 *	  enable/disable auto-negotiation as desired, and reset.
 *	- If the PHY does not auto-negotiate just reset it.
 *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
 *	  otherwise do it later based on the outcome of auto-negotiation.
 */
2713
int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
2714 2715 2716
		  struct link_config *lc)
{
	struct fw_port_cmd c;
2717
	unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
2718 2719 2720 2721 2722 2723 2724 2725

	lc->link_ok = 0;
	if (lc->requested_fc & PAUSE_RX)
		fc |= FW_PORT_CAP_FC_RX;
	if (lc->requested_fc & PAUSE_TX)
		fc |= FW_PORT_CAP_FC_TX;

	memset(&c, 0, sizeof(c));
2726 2727 2728 2729 2730 2731
	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				     FW_PORT_CMD_PORTID_V(port));
	c.action_to_len16 =
		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
			    FW_LEN16(c));
2732 2733

	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2734 2735
		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
					     fc);
2736 2737
		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
	} else if (lc->autoneg == AUTONEG_DISABLE) {
2738
		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
2739 2740
		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
	} else
2741
		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_restart_aneg - restart autonegotiation
 *	@adap: the adapter
 *	@mbox: mbox to use for the FW command
 *	@port: the port id
 *
 *	Restarts autonegotiation for the selected port.
 */
int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
{
	struct fw_port_cmd c;

	memset(&c, 0, sizeof(c));
2759 2760 2761 2762 2763 2764 2765
	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				     FW_PORT_CMD_PORTID_V(port));
	c.action_to_len16 =
		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
			    FW_LEN16(c));
	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
2766 2767 2768
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

2769 2770
typedef void (*int_handler_t)(struct adapter *adap);

2771 2772 2773 2774 2775
struct intr_info {
	unsigned int mask;       /* bits to check in interrupt status */
	const char *msg;         /* message to print or NULL */
	short stat_idx;          /* stat counter to increment or -1 */
	unsigned short fatal;    /* whether the condition reported is fatal */
2776
	int_handler_t int_handler; /* platform-specific int handler */
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
};

/**
 *	t4_handle_intr_status - table driven interrupt handler
 *	@adapter: the adapter that generated the interrupt
 *	@reg: the interrupt status register to process
 *	@acts: table of interrupt actions
 *
 *	A table driven interrupt handler that applies a set of masks to an
 *	interrupt status word and performs the corresponding actions if the
L
Lucas De Marchi 已提交
2787
 *	interrupts described by the mask have occurred.  The actions include
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
 *	optionally emitting a warning or alert message.  The table is terminated
 *	by an entry specifying mask 0.  Returns the number of fatal interrupt
 *	conditions.
 */
static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
				 const struct intr_info *acts)
{
	int fatal = 0;
	unsigned int mask = 0;
	unsigned int status = t4_read_reg(adapter, reg);

	for ( ; acts->mask; ++acts) {
		if (!(status & acts->mask))
			continue;
		if (acts->fatal) {
			fatal++;
			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
				  status & acts->mask);
		} else if (acts->msg && printk_ratelimit())
			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
				 status & acts->mask);
2809 2810
		if (acts->int_handler)
			acts->int_handler(adapter);
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
		mask |= acts->mask;
	}
	status &= mask;
	if (status)                           /* clear processed interrupts */
		t4_write_reg(adapter, reg, status);
	return fatal;
}

/*
 * Interrupt handler for the PCIE module.
 */
static void pcie_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
2824
	static const struct intr_info sysbus_intr_info[] = {
2825 2826 2827 2828 2829
		{ RNPP_F, "RXNP array parity error", -1, 1 },
		{ RPCP_F, "RXPC array parity error", -1, 1 },
		{ RCIP_F, "RXCIF array parity error", -1, 1 },
		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
		{ RFTP_F, "RXFT array parity error", -1, 1 },
2830 2831
		{ 0 }
	};
J
Joe Perches 已提交
2832
	static const struct intr_info pcie_port_intr_info[] = {
2833 2834 2835 2836 2837 2838 2839 2840 2841
		{ TPCP_F, "TXPC array parity error", -1, 1 },
		{ TNPP_F, "TXNP array parity error", -1, 1 },
		{ TFTP_F, "TXFT array parity error", -1, 1 },
		{ TCAP_F, "TXCA array parity error", -1, 1 },
		{ TCIP_F, "TXCIF array parity error", -1, 1 },
		{ RCAP_F, "RXCA array parity error", -1, 1 },
		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
		{ RDPE_F, "Rx data parity error", -1, 1 },
		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
2842 2843
		{ 0 }
	};
J
Joe Perches 已提交
2844
	static const struct intr_info pcie_intr_info[] = {
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
		  -1, 0 },
2876 2877 2878
		{ 0 }
	};

S
Santosh Rastapur 已提交
2879
	static struct intr_info t5_pcie_intr_info[] = {
2880
		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
S
Santosh Rastapur 已提交
2881
		  -1, 1 },
2882 2883 2884 2885 2886 2887 2888
		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
S
Santosh Rastapur 已提交
2889
		  -1, 1 },
2890
		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
S
Santosh Rastapur 已提交
2891
		  -1, 1 },
2892 2893 2894 2895 2896
		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
S
Santosh Rastapur 已提交
2897
		  -1, 1 },
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
S
Santosh Rastapur 已提交
2909
		  -1, 1 },
2910 2911 2912 2913 2914 2915
		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
		  -1, 1 },
		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
		{ READRSPERR_F, "Outbound read error", -1, 0 },
S
Santosh Rastapur 已提交
2916 2917 2918
		{ 0 }
	};

2919 2920
	int fat;

2921 2922
	if (is_t4(adapter->params.chip))
		fat = t4_handle_intr_status(adapter,
2923 2924
				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
				sysbus_intr_info) +
2925
			t4_handle_intr_status(adapter,
2926 2927 2928
					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
					pcie_port_intr_info) +
			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
2929 2930
					      pcie_intr_info);
	else
2931
		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
2932
					    t5_pcie_intr_info);
S
Santosh Rastapur 已提交
2933

2934 2935 2936 2937 2938 2939 2940 2941 2942
	if (fat)
		t4_fatal_err(adapter);
}

/*
 * TP interrupt handler.
 */
static void tp_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
2943
	static const struct intr_info tp_intr_info[] = {
2944
		{ 0x3fffffff, "TP parity error", -1, 1 },
2945
		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
2946 2947 2948
		{ 0 }
	};

2949
	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
2950 2951 2952 2953 2954 2955 2956 2957 2958
		t4_fatal_err(adapter);
}

/*
 * SGE interrupt handler.
 */
static void sge_intr_handler(struct adapter *adapter)
{
	u64 v;
2959
	u32 err;
2960

J
Joe Perches 已提交
2961
	static const struct intr_info sge_intr_info[] = {
2962
		{ ERR_CPL_EXCEED_IQE_SIZE_F,
2963
		  "SGE received CPL exceeding IQE size", -1, 1 },
2964
		{ ERR_INVALID_CIDX_INC_F,
2965
		  "SGE GTS CIDX increment too large", -1, 0 },
2966 2967 2968
		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
2969
		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
2970
		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
2971
		  0 },
2972
		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
2973
		  0 },
2974
		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
2975
		  0 },
2976
		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
2977
		  0 },
2978
		{ ERR_ING_CTXT_PRIO_F,
2979
		  "SGE too many priority ingress contexts", -1, 0 },
2980 2981
		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
2982 2983 2984
		{ 0 }
	};

2985 2986 2987 2988 2989 2990 2991 2992
	static struct intr_info t4t5_sge_intr_info[] = {
		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
		{ ERR_EGR_CTXT_PRIO_F,
		  "SGE too many priority egress contexts", -1, 0 },
		{ 0 }
	};

2993 2994
	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
2995 2996
	if (v) {
		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
2997
				(unsigned long long)v);
2998 2999
		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3000 3001
	}

3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
					   t4t5_sge_intr_info);

	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
	if (err & ERROR_QID_VALID_F) {
		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
			ERROR_QID_G(err));
		if (err & UNCAPTURED_ERROR_F)
			dev_err(adapter->pdev_dev,
				"SGE UNCAPTURED_ERROR set (clearing)\n");
		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
			     UNCAPTURED_ERROR_F);
	}

	if (v != 0)
3019 3020 3021
		t4_fatal_err(adapter);
}

3022 3023 3024 3025 3026
#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)

3027 3028 3029 3030 3031
/*
 * CIM interrupt handler.
 */
static void cim_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
3032
	static const struct intr_info cim_intr_info[] = {
3033 3034 3035 3036 3037 3038 3039
		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3040 3041
		{ 0 }
	};
J
Joe Perches 已提交
3042
	static const struct intr_info cim_upintr_info[] = {
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3071 3072 3073 3074 3075
		{ 0 }
	};

	int fat;

3076
	if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
3077 3078
		t4_report_fw_error(adapter);

3079
	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
3080
				    cim_intr_info) +
3081
	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
				    cim_upintr_info);
	if (fat)
		t4_fatal_err(adapter);
}

/*
 * ULP RX interrupt handler.
 */
static void ulprx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
3092
	static const struct intr_info ulprx_intr_info[] = {
3093
		{ 0x1800000, "ULPRX context error", -1, 1 },
3094 3095 3096 3097
		{ 0x7fffff, "ULPRX parity error", -1, 1 },
		{ 0 }
	};

3098
	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3099 3100 3101 3102 3103 3104 3105 3106
		t4_fatal_err(adapter);
}

/*
 * ULP TX interrupt handler.
 */
static void ulptx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
3107
	static const struct intr_info ulptx_intr_info[] = {
3108
		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3109
		  0 },
3110
		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3111
		  0 },
3112
		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3113
		  0 },
3114
		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3115 3116 3117 3118 3119
		  0 },
		{ 0xfffffff, "ULPTX parity error", -1, 1 },
		{ 0 }
	};

3120
	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3121 3122 3123 3124 3125 3126 3127 3128
		t4_fatal_err(adapter);
}

/*
 * PM TX interrupt handler.
 */
static void pmtx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
3129
	static const struct intr_info pmtx_intr_info[] = {
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
		  -1, 1 },
		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
3140 3141 3142
		{ 0 }
	};

3143
	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
3144 3145 3146 3147 3148 3149 3150 3151
		t4_fatal_err(adapter);
}

/*
 * PM RX interrupt handler.
 */
static void pmrx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
3152
	static const struct intr_info pmrx_intr_info[] = {
3153 3154 3155 3156 3157 3158 3159
		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
		  -1, 1 },
		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
3160 3161 3162
		{ 0 }
	};

3163
	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
3164 3165 3166 3167 3168 3169 3170 3171
		t4_fatal_err(adapter);
}

/*
 * CPL switch interrupt handler.
 */
static void cplsw_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
3172
	static const struct intr_info cplsw_intr_info[] = {
3173 3174 3175 3176 3177 3178
		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
3179 3180 3181
		{ 0 }
	};

3182
	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
3183 3184 3185 3186 3187 3188 3189 3190
		t4_fatal_err(adapter);
}

/*
 * LE interrupt handler.
 */
static void le_intr_handler(struct adapter *adap)
{
3191
	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
J
Joe Perches 已提交
3192
	static const struct intr_info le_intr_info[] = {
3193 3194 3195 3196 3197
		{ LIPMISS_F, "LE LIP miss", -1, 0 },
		{ LIP0_F, "LE 0 LIP error", -1, 0 },
		{ PARITYERR_F, "LE parity error", -1, 1 },
		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
3198 3199 3200
		{ 0 }
	};

3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
	static struct intr_info t6_le_intr_info[] = {
		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
				  (chip <= CHELSIO_T5) ?
				  le_intr_info : t6_le_intr_info))
3213 3214 3215 3216 3217 3218 3219 3220
		t4_fatal_err(adap);
}

/*
 * MPS interrupt handler.
 */
static void mps_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
3221
	static const struct intr_info mps_rx_intr_info[] = {
3222 3223 3224
		{ 0xffffff, "MPS Rx parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
3225
	static const struct intr_info mps_tx_intr_info[] = {
3226 3227 3228 3229 3230 3231 3232 3233 3234
		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
		  -1, 1 },
		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
		  -1, 1 },
		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
3235 3236
		{ 0 }
	};
J
Joe Perches 已提交
3237
	static const struct intr_info mps_trc_intr_info[] = {
3238 3239 3240 3241
		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
		  -1, 1 },
		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
3242 3243
		{ 0 }
	};
J
Joe Perches 已提交
3244
	static const struct intr_info mps_stat_sram_intr_info[] = {
3245 3246 3247
		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
3248
	static const struct intr_info mps_stat_tx_intr_info[] = {
3249 3250 3251
		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
3252
	static const struct intr_info mps_stat_rx_intr_info[] = {
3253 3254 3255
		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
3256
	static const struct intr_info mps_cls_intr_info[] = {
3257 3258 3259
		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
3260 3261 3262 3263 3264
		{ 0 }
	};

	int fat;

3265
	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
3266
				    mps_rx_intr_info) +
3267
	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
3268
				    mps_tx_intr_info) +
3269
	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
3270
				    mps_trc_intr_info) +
3271
	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
3272
				    mps_stat_sram_intr_info) +
3273
	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
3274
				    mps_stat_tx_intr_info) +
3275
	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
3276
				    mps_stat_rx_intr_info) +
3277
	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
3278 3279
				    mps_cls_intr_info);

3280 3281
	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
3282 3283 3284 3285
	if (fat)
		t4_fatal_err(adapter);
}

3286 3287
#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
		      ECC_UE_INT_CAUSE_F)
3288 3289 3290 3291 3292 3293

/*
 * EDC/MC interrupt handler.
 */
static void mem_intr_handler(struct adapter *adapter, int idx)
{
3294
	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
3295 3296 3297 3298

	unsigned int addr, cnt_addr, v;

	if (idx <= MEM_EDC1) {
3299 3300
		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3301 3302
	} else if (idx == MEM_MC) {
		if (is_t4(adapter->params.chip)) {
3303 3304
			addr = MC_INT_CAUSE_A;
			cnt_addr = MC_ECC_STATUS_A;
3305
		} else {
3306 3307
			addr = MC_P_INT_CAUSE_A;
			cnt_addr = MC_P_ECC_STATUS_A;
3308
		}
3309
	} else {
3310 3311
		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
3312 3313 3314
	}

	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
3315
	if (v & PERR_INT_CAUSE_F)
3316 3317
		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
			  name[idx]);
3318 3319
	if (v & ECC_CE_INT_CAUSE_F) {
		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
3320

3321 3322
		t4_edc_err_read(adapter, idx);

3323
		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
3324 3325 3326 3327 3328
		if (printk_ratelimit())
			dev_warn(adapter->pdev_dev,
				 "%u %s correctable ECC data error%s\n",
				 cnt, name[idx], cnt > 1 ? "s" : "");
	}
3329
	if (v & ECC_UE_INT_CAUSE_F)
3330 3331 3332 3333
		dev_alert(adapter->pdev_dev,
			  "%s uncorrectable ECC data error\n", name[idx]);

	t4_write_reg(adapter, addr, v);
3334
	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3335 3336 3337 3338 3339 3340 3341 3342
		t4_fatal_err(adapter);
}

/*
 * MA interrupt handler.
 */
static void ma_intr_handler(struct adapter *adap)
{
3343
	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
3344

3345
	if (status & MEM_PERR_INT_CAUSE_F) {
3346 3347
		dev_alert(adap->pdev_dev,
			  "MA parity error, parity status %#x\n",
3348
			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
3349 3350 3351 3352
		if (is_t5(adap->params.chip))
			dev_alert(adap->pdev_dev,
				  "MA parity error, parity status %#x\n",
				  t4_read_reg(adap,
3353
					      MA_PARITY_ERROR_STATUS2_A));
3354
	}
3355 3356
	if (status & MEM_WRAP_INT_CAUSE_F) {
		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
3357 3358
		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
			  "client %u to address %#x\n",
3359 3360
			  MEM_WRAP_CLIENT_NUM_G(v),
			  MEM_WRAP_ADDRESS_G(v) << 4);
3361
	}
3362
	t4_write_reg(adap, MA_INT_CAUSE_A, status);
3363 3364 3365 3366 3367 3368 3369 3370
	t4_fatal_err(adap);
}

/*
 * SMB interrupt handler.
 */
static void smb_intr_handler(struct adapter *adap)
{
J
Joe Perches 已提交
3371
	static const struct intr_info smb_intr_info[] = {
3372 3373 3374
		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3375 3376 3377
		{ 0 }
	};

3378
	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
3379 3380 3381 3382 3383 3384 3385 3386
		t4_fatal_err(adap);
}

/*
 * NC-SI interrupt handler.
 */
static void ncsi_intr_handler(struct adapter *adap)
{
J
Joe Perches 已提交
3387
	static const struct intr_info ncsi_intr_info[] = {
3388 3389 3390 3391
		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3392 3393 3394
		{ 0 }
	};

3395
	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
3396 3397 3398 3399 3400 3401 3402 3403
		t4_fatal_err(adap);
}

/*
 * XGMAC interrupt handler.
 */
static void xgmac_intr_handler(struct adapter *adap, int port)
{
S
Santosh Rastapur 已提交
3404 3405
	u32 v, int_cause_reg;

3406
	if (is_t4(adap->params.chip))
3407
		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
S
Santosh Rastapur 已提交
3408
	else
3409
		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
S
Santosh Rastapur 已提交
3410 3411

	v = t4_read_reg(adap, int_cause_reg);
3412

3413
	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3414 3415 3416
	if (!v)
		return;

3417
	if (v & TXFIFO_PRTY_ERR_F)
3418 3419
		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
			  port);
3420
	if (v & RXFIFO_PRTY_ERR_F)
3421 3422
		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
			  port);
3423
	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
3424 3425 3426 3427 3428 3429 3430 3431
	t4_fatal_err(adap);
}

/*
 * PL interrupt handler.
 */
static void pl_intr_handler(struct adapter *adap)
{
J
Joe Perches 已提交
3432
	static const struct intr_info pl_intr_info[] = {
3433 3434
		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3435 3436 3437
		{ 0 }
	};

3438
	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
3439 3440 3441
		t4_fatal_err(adap);
}

3442 3443 3444 3445
#define PF_INTR_MASK (PFSW_F)
#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
		CPL_SWITCH_F | SGE_F | ULP_TX_F)
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456

/**
 *	t4_slow_intr_handler - control path interrupt handler
 *	@adapter: the adapter
 *
 *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
 *	The designation 'slow' is because it involves register reads, while
 *	data interrupts typically don't involve any MMIOs.
 */
int t4_slow_intr_handler(struct adapter *adapter)
{
3457
	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
3458 3459 3460

	if (!(cause & GLBL_INTR_MASK))
		return 0;
3461
	if (cause & CIM_F)
3462
		cim_intr_handler(adapter);
3463
	if (cause & MPS_F)
3464
		mps_intr_handler(adapter);
3465
	if (cause & NCSI_F)
3466
		ncsi_intr_handler(adapter);
3467
	if (cause & PL_F)
3468
		pl_intr_handler(adapter);
3469
	if (cause & SMB_F)
3470
		smb_intr_handler(adapter);
3471
	if (cause & XGMAC0_F)
3472
		xgmac_intr_handler(adapter, 0);
3473
	if (cause & XGMAC1_F)
3474
		xgmac_intr_handler(adapter, 1);
3475
	if (cause & XGMAC_KR0_F)
3476
		xgmac_intr_handler(adapter, 2);
3477
	if (cause & XGMAC_KR1_F)
3478
		xgmac_intr_handler(adapter, 3);
3479
	if (cause & PCIE_F)
3480
		pcie_intr_handler(adapter);
3481
	if (cause & MC_F)
3482
		mem_intr_handler(adapter, MEM_MC);
3483
	if (is_t5(adapter->params.chip) && (cause & MC1_F))
3484
		mem_intr_handler(adapter, MEM_MC1);
3485
	if (cause & EDC0_F)
3486
		mem_intr_handler(adapter, MEM_EDC0);
3487
	if (cause & EDC1_F)
3488
		mem_intr_handler(adapter, MEM_EDC1);
3489
	if (cause & LE_F)
3490
		le_intr_handler(adapter);
3491
	if (cause & TP_F)
3492
		tp_intr_handler(adapter);
3493
	if (cause & MA_F)
3494
		ma_intr_handler(adapter);
3495
	if (cause & PM_TX_F)
3496
		pmtx_intr_handler(adapter);
3497
	if (cause & PM_RX_F)
3498
		pmrx_intr_handler(adapter);
3499
	if (cause & ULP_RX_F)
3500
		ulprx_intr_handler(adapter);
3501
	if (cause & CPL_SWITCH_F)
3502
		cplsw_intr_handler(adapter);
3503
	if (cause & SGE_F)
3504
		sge_intr_handler(adapter);
3505
	if (cause & ULP_TX_F)
3506 3507 3508
		ulptx_intr_handler(adapter);

	/* Clear the interrupts just processed for which we are the master. */
3509 3510
	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
	return 1;
}

/**
 *	t4_intr_enable - enable interrupts
 *	@adapter: the adapter whose interrupts should be enabled
 *
 *	Enable PF-specific interrupts for the calling function and the top-level
 *	interrupt concentrator for global interrupts.  Interrupts are already
 *	enabled at each module,	here we just enable the roots of the interrupt
 *	hierarchies.
 *
 *	Note: this function should be called only when the driver manages
 *	non PF-specific interrupts from the various HW modules.  Only one PCI
 *	function at a time should be doing this.
 */
void t4_intr_enable(struct adapter *adapter)
{
3529
	u32 val = 0;
3530 3531 3532
	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
3533

3534 3535
	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
3536 3537
	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
3538
		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
3539 3540 3541
		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
3542
		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
3543 3544
	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
}

/**
 *	t4_intr_disable - disable interrupts
 *	@adapter: the adapter whose interrupts should be disabled
 *
 *	Disable interrupts.  We only disable the top-level interrupt
 *	concentrators.  The caller must be a PCI function managing global
 *	interrupts.
 */
void t4_intr_disable(struct adapter *adapter)
{
3557 3558 3559
	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
3560

3561 3562
	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
}

/**
 *	hash_mac_addr - return the hash value of a MAC address
 *	@addr: the 48-bit Ethernet MAC address
 *
 *	Hashes a MAC address according to the hash function used by HW inexact
 *	(hash) address matching.
 */
static int hash_mac_addr(const u8 *addr)
{
	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
	a ^= b;
	a ^= (a >> 12);
	a ^= (a >> 6);
	return a & 0x3f;
}

/**
 *	t4_config_rss_range - configure a portion of the RSS mapping table
 *	@adapter: the adapter
 *	@mbox: mbox to use for the FW command
 *	@viid: virtual interface whose RSS subtable is to be written
 *	@start: start entry in the table to write
 *	@n: how many table entries to write
 *	@rspq: values for the response queue lookup table
 *	@nrspq: number of values in @rspq
 *
 *	Programs the selected part of the VI's RSS mapping table with the
 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
 *	until the full table range is populated.
 *
 *	The caller must ensure the values in @rspq are in the range allowed for
 *	@viid.
 */
int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
			int start, int n, const u16 *rspq, unsigned int nrspq)
{
	int ret;
	const u16 *rsp = rspq;
	const u16 *rsp_end = rspq + nrspq;
	struct fw_rss_ind_tbl_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
3608
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
3609
			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3610
			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
3611
	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
3612 3613 3614 3615 3616 3617

	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
	while (n > 0) {
		int nq = min(n, 32);
		__be32 *qp = &cmd.iq0_to_iq2;

3618 3619
		cmd.niqid = cpu_to_be16(nq);
		cmd.startidx = cpu_to_be16(start);
3620 3621 3622 3623 3624 3625 3626

		start += nq;
		n -= nq;

		while (nq > 0) {
			unsigned int v;

3627
			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
3628 3629
			if (++rsp >= rsp_end)
				rsp = rspq;
3630
			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
3631 3632
			if (++rsp >= rsp_end)
				rsp = rspq;
3633
			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
3634 3635 3636
			if (++rsp >= rsp_end)
				rsp = rspq;

3637
			*qp++ = cpu_to_be32(v);
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
			nq -= 3;
		}

		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
		if (ret)
			return ret;
	}
	return 0;
}

/**
 *	t4_config_glbl_rss - configure the global RSS mode
 *	@adapter: the adapter
 *	@mbox: mbox to use for the FW command
 *	@mode: global RSS mode
 *	@flags: mode-specific flags
 *
 *	Sets the global RSS mode.
 */
int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
		       unsigned int flags)
{
	struct fw_rss_glb_config_cmd c;

	memset(&c, 0, sizeof(c));
3663 3664 3665
	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3666
	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
3667 3668
		c.u.manual.mode_pkd =
			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
3669 3670
	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
		c.u.basicvirtual.mode_pkd =
3671 3672
			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
3673 3674 3675 3676 3677
	} else
		return -EINVAL;
	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
}

3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
/**
 *	t4_config_vi_rss - configure per VI RSS settings
 *	@adapter: the adapter
 *	@mbox: mbox to use for the FW command
 *	@viid: the VI id
 *	@flags: RSS flags
 *	@defq: id of the default RSS queue for the VI.
 *
 *	Configures VI-specific RSS properties.
 */
int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
		     unsigned int flags, unsigned int defq)
{
	struct fw_rss_vi_config_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
}

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
/* Read an RSS table row */
static int rd_rss_row(struct adapter *adap, int row, u32 *val)
{
	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
				   5, 0, val);
}

/**
 *	t4_read_rss - read the contents of the RSS mapping table
 *	@adapter: the adapter
 *	@map: holds the contents of the RSS mapping table
 *
 *	Reads the contents of the RSS hash->queue mapping table.
 */
int t4_read_rss(struct adapter *adapter, u16 *map)
{
	u32 val;
	int i, ret;

	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
		ret = rd_rss_row(adapter, i, &val);
		if (ret)
			return ret;
		*map++ = LKPTBLQUEUE0_G(val);
		*map++ = LKPTBLQUEUE1_G(val);
	}
	return 0;
}

3733 3734 3735 3736 3737
static unsigned int t4_use_ldst(struct adapter *adap)
{
	return (adap->flags & FW_OK) || !adap->use_bd;
}

3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
/**
 *	t4_fw_tp_pio_rw - Access TP PIO through LDST
 *	@adap: the adapter
 *	@vals: where the indirect register values are stored/written
 *	@nregs: how many indirect registers to read/write
 *	@start_idx: index of first indirect register to read/write
 *	@rw: Read (1) or Write (0)
 *
 *	Access TP PIO registers through LDST
 */
static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
			    unsigned int start_index, unsigned int rw)
{
	int ret, i;
	int cmd = FW_LDST_ADDRSPC_TP_PIO;
	struct fw_ldst_cmd c;

	for (i = 0 ; i < nregs; i++) {
		memset(&c, 0, sizeof(c));
		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
						FW_CMD_REQUEST_F |
						(rw ? FW_CMD_READ_F :
						      FW_CMD_WRITE_F) |
						FW_LDST_CMD_ADDRSPACE_V(cmd));
		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));

		c.u.addrval.addr = cpu_to_be32(start_index + i);
		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
		if (!ret && rw)
			vals[i] = be32_to_cpu(c.u.addrval.val);
	}
}

3772 3773 3774 3775 3776 3777 3778 3779 3780
/**
 *	t4_read_rss_key - read the global RSS key
 *	@adap: the adapter
 *	@key: 10-entry array holding the 320-bit RSS key
 *
 *	Reads the global 320-bit RSS key.
 */
void t4_read_rss_key(struct adapter *adap, u32 *key)
{
3781
	if (t4_use_ldst(adap))
3782 3783 3784 3785
		t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
	else
		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
				 TP_RSS_SECRET_KEY0_A);
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
}

/**
 *	t4_write_rss_key - program one of the RSS keys
 *	@adap: the adapter
 *	@key: 10-entry array holding the 320-bit RSS key
 *	@idx: which RSS key to write
 *
 *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
 *	0..15 the corresponding entry in the RSS key table is written,
 *	otherwise the global RSS key is written.
 */
void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
{
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
	u8 rss_key_addr_cnt = 16;
	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);

	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
	 * allows access to key addresses 16-63 by using KeyWrAddrX
	 * as index[5:4](upper 2) into key table
	 */
	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
		rss_key_addr_cnt = 32;

3811
	if (t4_use_ldst(adap))
3812 3813 3814 3815
		t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
	else
		t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
				  TP_RSS_SECRET_KEY0_A);
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825

	if (idx >= 0 && idx < rss_key_addr_cnt) {
		if (rss_key_addr_cnt > 16)
			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
				     KEYWRADDRX_V(idx >> 4) |
				     T6_VFWRADDR_V(idx) | KEYWREN_F);
		else
			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
				     KEYWRADDR_V(idx) | KEYWREN_F);
	}
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
}

/**
 *	t4_read_rss_pf_config - read PF RSS Configuration Table
 *	@adapter: the adapter
 *	@index: the entry in the PF RSS table to read
 *	@valp: where to store the returned value
 *
 *	Reads the PF RSS Configuration Table at the specified index and returns
 *	the value found there.
 */
void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
			   u32 *valp)
{
3840
	if (t4_use_ldst(adapter))
3841 3842 3843 3844 3845
		t4_fw_tp_pio_rw(adapter, valp, 1,
				TP_RSS_PF0_CONFIG_A + index, 1);
	else
		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 valp, 1, TP_RSS_PF0_CONFIG_A + index);
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
}

/**
 *	t4_read_rss_vf_config - read VF RSS Configuration Table
 *	@adapter: the adapter
 *	@index: the entry in the VF RSS table to read
 *	@vfl: where to store the returned VFL
 *	@vfh: where to store the returned VFH
 *
 *	Reads the VF RSS Configuration Table at the specified index and returns
 *	the (VFL, VFH) values found there.
 */
void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
			   u32 *vfl, u32 *vfh)
{
	u32 vrt, mask, data;

3863 3864 3865 3866 3867 3868 3869
	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
		mask = VFWRADDR_V(VFWRADDR_M);
		data = VFWRADDR_V(index);
	} else {
		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
		 data = T6_VFWRADDR_V(index);
	}
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879

	/* Request that the index'th VF Table values be read into VFL/VFH.
	 */
	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
	vrt |= data | VFRDEN_F;
	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);

	/* Grab the VFL/VFH values ...
	 */
3880
	if (t4_use_ldst(adapter)) {
3881 3882 3883 3884 3885 3886 3887 3888
		t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
		t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
	} else {
		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 vfl, 1, TP_RSS_VFL_CONFIG_A);
		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 vfh, 1, TP_RSS_VFH_CONFIG_A);
	}
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
}

/**
 *	t4_read_rss_pf_map - read PF RSS Map
 *	@adapter: the adapter
 *
 *	Reads the PF RSS Map register and returns its value.
 */
u32 t4_read_rss_pf_map(struct adapter *adapter)
{
	u32 pfmap;

3901
	if (t4_use_ldst(adapter))
3902 3903 3904 3905
		t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
	else
		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 &pfmap, 1, TP_RSS_PF_MAP_A);
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
	return pfmap;
}

/**
 *	t4_read_rss_pf_mask - read PF RSS Mask
 *	@adapter: the adapter
 *
 *	Reads the PF RSS Mask register and returns its value.
 */
u32 t4_read_rss_pf_mask(struct adapter *adapter)
{
	u32 pfmask;

3919
	if (t4_use_ldst(adapter))
3920 3921 3922 3923
		t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
	else
		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 &pfmask, 1, TP_RSS_PF_MSK_A);
3924 3925 3926
	return pfmask;
}

3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
/**
 *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
 *	@adap: the adapter
 *	@v4: holds the TCP/IP counter values
 *	@v6: holds the TCP/IPv6 counter values
 *
 *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
 *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
 */
void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
			 struct tp_tcp_stats *v6)
{
3939
	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
3940

3941
#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
3942 3943 3944 3945
#define STAT(x)     val[STAT_IDX(x)]
#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))

	if (v4) {
3946 3947
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
				 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
3948 3949 3950 3951
		v4->tcp_out_rsts = STAT(OUT_RST);
		v4->tcp_in_segs  = STAT64(IN_SEG);
		v4->tcp_out_segs = STAT64(OUT_SEG);
		v4->tcp_retrans_segs = STAT64(RXT_SEG);
3952 3953
	}
	if (v6) {
3954 3955
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
				 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
3956 3957 3958 3959
		v6->tcp_out_rsts = STAT(OUT_RST);
		v6->tcp_in_segs  = STAT64(IN_SEG);
		v6->tcp_out_segs = STAT64(OUT_SEG);
		v6->tcp_retrans_segs = STAT64(RXT_SEG);
3960 3961 3962 3963 3964 3965
	}
#undef STAT64
#undef STAT
#undef STAT_IDX
}

3966 3967 3968 3969 3970 3971 3972 3973 3974
/**
 *	t4_tp_get_err_stats - read TP's error MIB counters
 *	@adap: the adapter
 *	@st: holds the counter values
 *
 *	Returns the values of TP's error counters.
 */
void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
{
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
	int nchan = adap->params.arch.nchan;

	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);

3994 3995 3996 3997
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
}

3998 3999 4000 4001 4002 4003 4004 4005 4006
/**
 *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
 *	@adap: the adapter
 *	@st: holds the counter values
 *
 *	Returns the values of TP's CPL counters.
 */
void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
{
4007 4008 4009 4010 4011 4012 4013
	int nchan = adap->params.arch.nchan;

	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
			 nchan, TP_MIB_CPL_IN_REQ_0_A);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
			 nchan, TP_MIB_CPL_OUT_RSP_0_A);

4014 4015
}

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
/**
 *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
 *	@adap: the adapter
 *	@st: holds the counter values
 *
 *	Returns the values of TP's RDMA counters.
 */
void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
{
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
			 2, TP_MIB_RQE_DFR_PKT_A);
}

4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
/**
 *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
 *	@adap: the adapter
 *	@idx: the port index
 *	@st: holds the counter values
 *
 *	Returns the values of TP's FCoE counters for the selected port.
 */
void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
		       struct tp_fcoe_stats *st)
{
	u32 val[2];

	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
			 1, TP_MIB_FCOE_DDP_0_A + idx);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
			 1, TP_MIB_FCOE_DROP_0_A + idx);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
			 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
	st->octets_ddp = ((u64)val[0] << 32) | val[1];
}

4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
/**
 *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
 *	@adap: the adapter
 *	@st: holds the counter values
 *
 *	Returns the values of TP's counters for non-TCP directly-placed packets.
 */
void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
{
	u32 val[4];

	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
			 TP_MIB_USM_PKTS_A);
	st->frames = val[0];
	st->drops = val[1];
	st->octets = ((u64)val[2] << 32) | val[3];
}

4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
/**
 *	t4_read_mtu_tbl - returns the values in the HW path MTU table
 *	@adap: the adapter
 *	@mtus: where to store the MTU values
 *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
 *
 *	Reads the HW path MTU table.
 */
void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
{
	u32 v;
	int i;

	for (i = 0; i < NMTUS; ++i) {
4083 4084 4085 4086
		t4_write_reg(adap, TP_MTU_TABLE_A,
			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
		v = t4_read_reg(adap, TP_MTU_TABLE_A);
		mtus[i] = MTUVALUE_G(v);
4087
		if (mtu_log)
4088
			mtu_log[i] = MTUWIDTH_G(v);
4089 4090 4091
	}
}

4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
/**
 *	t4_read_cong_tbl - reads the congestion control table
 *	@adap: the adapter
 *	@incr: where to store the alpha values
 *
 *	Reads the additive increments programmed into the HW congestion
 *	control table.
 */
void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
{
	unsigned int mtu, w;

	for (mtu = 0; mtu < NMTUS; ++mtu)
		for (w = 0; w < NCCTRL_WIN; ++w) {
			t4_write_reg(adap, TP_CCTRL_TABLE_A,
				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
			incr[mtu][w] = (u16)t4_read_reg(adap,
						TP_CCTRL_TABLE_A) & 0x1fff;
		}
}

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
/**
 *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
 *	@adap: the adapter
 *	@addr: the indirect TP register address
 *	@mask: specifies the field within the register to modify
 *	@val: new value for the field
 *
 *	Sets a field of an indirect TP register to the given value.
 */
void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
			    unsigned int mask, unsigned int val)
{
4125 4126 4127
	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
	t4_write_reg(adap, TP_PIO_DATA_A, val);
4128 4129
}

4130 4131 4132 4133 4134 4135 4136
/**
 *	init_cong_ctrl - initialize congestion control parameters
 *	@a: the alpha values for congestion control
 *	@b: the beta values for congestion control
 *
 *	Initialize the congestion control parameters.
 */
B
Bill Pemberton 已提交
4137
static void init_cong_ctrl(unsigned short *a, unsigned short *b)
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
{
	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
	a[9] = 2;
	a[10] = 3;
	a[11] = 4;
	a[12] = 5;
	a[13] = 6;
	a[14] = 7;
	a[15] = 8;
	a[16] = 9;
	a[17] = 10;
	a[18] = 14;
	a[19] = 17;
	a[20] = 21;
	a[21] = 25;
	a[22] = 30;
	a[23] = 35;
	a[24] = 45;
	a[25] = 60;
	a[26] = 80;
	a[27] = 100;
	a[28] = 200;
	a[29] = 300;
	a[30] = 400;
	a[31] = 500;

	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
	b[9] = b[10] = 1;
	b[11] = b[12] = 2;
	b[13] = b[14] = b[15] = b[16] = 3;
	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
	b[28] = b[29] = 6;
	b[30] = b[31] = 7;
}

/* The minimum additive increment value for the congestion control table */
#define CC_MIN_INCR 2U

/**
 *	t4_load_mtus - write the MTU and congestion control HW tables
 *	@adap: the adapter
 *	@mtus: the values for the MTU table
 *	@alpha: the values for the congestion control alpha parameter
 *	@beta: the values for the congestion control beta parameter
 *
 *	Write the HW MTU table with the supplied MTUs and the high-speed
 *	congestion control table with the supplied alpha, beta, and MTUs.
 *	We write the two tables together because the additive increments
 *	depend on the MTUs.
 */
void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
		  const unsigned short *alpha, const unsigned short *beta)
{
	static const unsigned int avg_pkts[NCCTRL_WIN] = {
		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
		28672, 40960, 57344, 81920, 114688, 163840, 229376
	};

	unsigned int i, w;

	for (i = 0; i < NMTUS; ++i) {
		unsigned int mtu = mtus[i];
		unsigned int log2 = fls(mtu);

		if (!(mtu & ((1 << log2) >> 2)))     /* round */
			log2--;
4206 4207
		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
4208 4209 4210 4211 4212 4213 4214

		for (w = 0; w < NCCTRL_WIN; ++w) {
			unsigned int inc;

			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
				  CC_MIN_INCR);

4215
			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
4216 4217 4218 4219 4220
				     (w << 16) | (beta[w] << 13) | inc);
		}
	}
}

4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
/* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
 * clocks.  The formula is
 *
 * bytes/s = bytes256 * 256 * ClkFreq / 4096
 *
 * which is equivalent to
 *
 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
 */
static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
{
	u64 v = bytes256 * adap->params.vpd.cclk;

	return v * 62 + v / 2;
}

/**
 *	t4_get_chan_txrate - get the current per channel Tx rates
 *	@adap: the adapter
 *	@nic_rate: rates for NIC traffic
 *	@ofld_rate: rates for offloaded traffic
 *
 *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
 *	for each channel.
 */
void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
{
	u32 v;

	v = t4_read_reg(adap, TP_TX_TRATE_A);
	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
	if (adap->params.arch.nchan == NCHAN) {
		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
	}

	v = t4_read_reg(adap, TP_TX_ORATE_A);
	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
	if (adap->params.arch.nchan == NCHAN) {
		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
	}
}

4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
/**
 *	t4_set_trace_filter - configure one of the tracing filters
 *	@adap: the adapter
 *	@tp: the desired trace filter parameters
 *	@idx: which filter to configure
 *	@enable: whether to enable or disable the filter
 *
 *	Configures one of the tracing filters available in HW.  If @enable is
 *	%0 @tp is not examined and may be %NULL. The user is responsible to
 *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
 */
int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
			int idx, int enable)
{
	int i, ofst = idx * 4;
	u32 data_reg, mask_reg, cfg;
	u32 multitrc = TRCMULTIFILTER_F;

	if (!enable) {
		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
		return 0;
	}

	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
	if (cfg & TRCMULTIFILTER_F) {
		/* If multiple tracers are enabled, then maximum
		 * capture size is 2.5KB (FIFO size of a single channel)
		 * minus 2 flits for CPL_TRACE_PKT header.
		 */
		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
			return -EINVAL;
	} else {
		/* If multiple tracers are disabled, to avoid deadlocks
		 * maximum packet capture size of 9600 bytes is recommended.
		 * Also in this mode, only trace0 can be enabled and running.
		 */
		multitrc = 0;
		if (tp->snap_len > 9600 || idx)
			return -EINVAL;
	}

	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
	    tp->min_len > TFMINPKTSIZE_M)
		return -EINVAL;

	/* stop the tracer we'll be changing */
	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);

	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;

	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
		t4_write_reg(adap, data_reg, tp->data[i]);
		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
	}
	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
		     TFCAPTUREMAX_V(tp->snap_len) |
		     TFMINPKTSIZE_V(tp->min_len));
	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
		     (is_t4(adap->params.chip) ?
		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
		     T5_TFINVERTMATCH_V(tp->invert)));

	return 0;
}

/**
 *	t4_get_trace_filter - query one of the tracing filters
 *	@adap: the adapter
 *	@tp: the current trace filter parameters
 *	@idx: which trace filter to query
 *	@enabled: non-zero if the filter is enabled
 *
 *	Returns the current settings of one of the HW tracing filters.
 */
void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
			 int *enabled)
{
	u32 ctla, ctlb;
	int i, ofst = idx * 4;
	u32 data_reg, mask_reg;

	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);

	if (is_t4(adap->params.chip)) {
		*enabled = !!(ctla & TFEN_F);
		tp->port =  TFPORT_G(ctla);
		tp->invert = !!(ctla & TFINVERTMATCH_F);
	} else {
		*enabled = !!(ctla & T5_TFEN_F);
		tp->port = T5_TFPORT_G(ctla);
		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
	}
	tp->snap_len = TFCAPTUREMAX_G(ctlb);
	tp->min_len = TFMINPKTSIZE_G(ctlb);
	tp->skip_ofst = TFOFFSET_G(ctla);
	tp->skip_len = TFLENGTH_G(ctla);

	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;

	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
	}
}

4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
/**
 *	t4_pmtx_get_stats - returns the HW stats from PMTX
 *	@adap: the adapter
 *	@cnt: where to store the count statistics
 *	@cycles: where to store the cycle statistics
 *
 *	Returns performance statistics from PMTX.
 */
void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
{
	int i;
	u32 data[2];

	for (i = 0; i < PM_NSTATS; i++) {
		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
		if (is_t4(adap->params.chip)) {
			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
		} else {
			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
					 PM_TX_DBG_DATA_A, data, 2,
					 PM_TX_DBG_STAT_MSB_A);
			cycles[i] = (((u64)data[0] << 32) | data[1]);
		}
	}
}

/**
 *	t4_pmrx_get_stats - returns the HW stats from PMRX
 *	@adap: the adapter
 *	@cnt: where to store the count statistics
 *	@cycles: where to store the cycle statistics
 *
 *	Returns performance statistics from PMRX.
 */
void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
{
	int i;
	u32 data[2];

	for (i = 0; i < PM_NSTATS; i++) {
		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
		if (is_t4(adap->params.chip)) {
			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
		} else {
			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
					 PM_RX_DBG_DATA_A, data, 2,
					 PM_RX_DBG_STAT_MSB_A);
			cycles[i] = (((u64)data[0] << 32) | data[1]);
		}
	}
}

4434
/**
4435
 *	t4_get_mps_bg_map - return the buffer groups associated with a port
4436 4437 4438 4439 4440 4441 4442
 *	@adap: the adapter
 *	@idx: the port index
 *
 *	Returns a bitmap indicating which MPS buffer groups are associated
 *	with the given port.  Bit i is set if buffer group i is used by the
 *	port.
 */
4443
unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
4444
{
4445
	u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
4446 4447 4448 4449 4450 4451 4452 4453

	if (n == 0)
		return idx == 0 ? 0xf : 0;
	if (n == 1)
		return idx < 2 ? (3 << (2 * idx)) : 0;
	return 1 << idx;
}

4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
/**
 *      t4_get_port_type_description - return Port Type string description
 *      @port_type: firmware Port Type enumeration
 */
const char *t4_get_port_type_description(enum fw_port_type port_type)
{
	static const char *const port_type_description[] = {
		"R XFI",
		"R XAUI",
		"T SGMII",
		"T XFI",
		"T XAUI",
		"KX4",
		"CX4",
		"KX",
		"KR",
		"R SFP+",
		"KR/KX",
		"KR/KX/KX4",
		"R QSFP_10G",
4474
		"R QSA",
4475 4476 4477 4478 4479 4480 4481 4482 4483
		"R QSFP",
		"R BP40_BA",
	};

	if (port_type < ARRAY_SIZE(port_type_description))
		return port_type_description[port_type];
	return "UNKNOWN";
}

4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
/**
 *      t4_get_port_stats_offset - collect port stats relative to a previous
 *                                 snapshot
 *      @adap: The adapter
 *      @idx: The port
 *      @stats: Current stats to fill
 *      @offset: Previous stats snapshot
 */
void t4_get_port_stats_offset(struct adapter *adap, int idx,
			      struct port_stats *stats,
			      struct port_stats *offset)
{
	u64 *s, *o;
	int i;

	t4_get_port_stats(adap, idx, stats);
	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
			i < (sizeof(struct port_stats) / sizeof(u64));
			i++, s++, o++)
		*s -= *o;
}

4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
/**
 *	t4_get_port_stats - collect port statistics
 *	@adap: the adapter
 *	@idx: the port index
 *	@p: the stats structure to fill
 *
 *	Collect statistics related to the given port from HW.
 */
void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
{
4516
	u32 bgmap = t4_get_mps_bg_map(adap, idx);
4517 4518

#define GET_STAT(name) \
S
Santosh Rastapur 已提交
4519
	t4_read_reg64(adap, \
4520
	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
S
Santosh Rastapur 已提交
4521
	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)

	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
	p->tx_drop             = GET_STAT(TX_PORT_DROP);
	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);

	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);

	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;

#undef GET_STAT
#undef GET_STAT_COM
}

/**
4590
 *	t4_get_lb_stats - collect loopback port statistics
4591
 *	@adap: the adapter
4592 4593
 *	@idx: the loopback port index
 *	@p: the stats structure to fill
4594
 *
4595
 *	Return HW statistics for the given loopback port.
4596
 */
4597
void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
4598
{
4599
	u32 bgmap = t4_get_mps_bg_map(adap, idx);
4600

4601 4602
#define GET_STAT(name) \
	t4_read_reg64(adap, \
4603
	(is_t4(adap->params.chip) ? \
4604 4605 4606
	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
4607

4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
	p->octets           = GET_STAT(BYTES);
	p->frames           = GET_STAT(FRAMES);
	p->bcast_frames     = GET_STAT(BCAST);
	p->mcast_frames     = GET_STAT(MCAST);
	p->ucast_frames     = GET_STAT(UCAST);
	p->error_frames     = GET_STAT(ERROR);

	p->frames_64        = GET_STAT(64B);
	p->frames_65_127    = GET_STAT(65B_127B);
	p->frames_128_255   = GET_STAT(128B_255B);
	p->frames_256_511   = GET_STAT(256B_511B);
	p->frames_512_1023  = GET_STAT(512B_1023B);
	p->frames_1024_1518 = GET_STAT(1024B_1518B);
	p->frames_1519_max  = GET_STAT(1519B_MAX);
	p->drop             = GET_STAT(DROP_FRAMES);

	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
4632

4633 4634
#undef GET_STAT
#undef GET_STAT_COM
4635 4636
}

V
Vipul Pandya 已提交
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
/*     t4_mk_filtdelwr - create a delete filter WR
 *     @ftid: the filter ID
 *     @wr: the filter work request to populate
 *     @qid: ingress queue to receive the delete notification
 *
 *     Creates a filter work request to delete the supplied filter.  If @qid is
 *     negative the delete notification is suppressed.
 */
void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
{
	memset(wr, 0, sizeof(*wr));
4648 4649 4650 4651 4652
	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
				    FW_FILTER_WR_NOREPLY_V(qid < 0));
	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
V
Vipul Pandya 已提交
4653
	if (qid >= 0)
4654 4655
		wr->rx_chan_rx_rpl_iq =
			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
V
Vipul Pandya 已提交
4656 4657
}

4658
#define INIT_CMD(var, cmd, rd_wr) do { \
4659 4660 4661 4662
	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
					FW_CMD_REQUEST_F | \
					FW_CMD_##rd_wr##_F); \
	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
4663 4664
} while (0)

4665 4666 4667
int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
			  u32 addr, u32 val)
{
4668
	u32 ldst_addrspace;
4669 4670 4671
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
4672 4673 4674 4675 4676 4677 4678 4679
	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
					FW_CMD_REQUEST_F |
					FW_CMD_WRITE_F |
					ldst_addrspace);
	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
	c.u.addrval.addr = cpu_to_be32(addr);
	c.u.addrval.val = cpu_to_be32(val);
4680 4681 4682 4683

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
/**
 *	t4_mdio_rd - read a PHY register through MDIO
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@phy_addr: the PHY address
 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
 *	@reg: the register to read
 *	@valp: where to store the value
 *
 *	Issues a FW command through the given mailbox to read a PHY register.
 */
int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
	       unsigned int mmd, unsigned int reg, u16 *valp)
{
	int ret;
4699
	u32 ldst_addrspace;
4700 4701 4702
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
4703 4704 4705 4706 4707 4708 4709 4710
	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
					FW_CMD_REQUEST_F | FW_CMD_READ_F |
					ldst_addrspace);
	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
					 FW_LDST_CMD_MMD_V(mmd));
	c.u.mdio.raddr = cpu_to_be16(reg);
4711 4712 4713

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0)
4714
		*valp = be16_to_cpu(c.u.mdio.rval);
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
	return ret;
}

/**
 *	t4_mdio_wr - write a PHY register through MDIO
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@phy_addr: the PHY address
 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
 *	@reg: the register to write
 *	@valp: value to write
 *
 *	Issues a FW command through the given mailbox to write a PHY register.
 */
int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
	       unsigned int mmd, unsigned int reg, u16 val)
{
4732
	u32 ldst_addrspace;
4733 4734 4735
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
4736 4737 4738 4739 4740 4741 4742 4743 4744
	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
					ldst_addrspace);
	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
					 FW_LDST_CMD_MMD_V(mmd));
	c.u.mdio.raddr = cpu_to_be16(reg);
	c.u.mdio.rval = cpu_to_be16(val);
4745 4746 4747 4748

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
/**
 *	t4_sge_decode_idma_state - decode the idma state
 *	@adap: the adapter
 *	@state: the state idma is stuck in
 */
void t4_sge_decode_idma_state(struct adapter *adapter, int state)
{
	static const char * const t4_decode[] = {
		"IDMA_IDLE",
		"IDMA_PUSH_MORE_CPL_FIFO",
		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
		"Not used",
		"IDMA_PHYSADDR_SEND_PCIEHDR",
		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
		"IDMA_PHYSADDR_SEND_PAYLOAD",
		"IDMA_SEND_FIFO_TO_IMSG",
		"IDMA_FL_REQ_DATA_FL_PREP",
		"IDMA_FL_REQ_DATA_FL",
		"IDMA_FL_DROP",
		"IDMA_FL_H_REQ_HEADER_FL",
		"IDMA_FL_H_SEND_PCIEHDR",
		"IDMA_FL_H_PUSH_CPL_FIFO",
		"IDMA_FL_H_SEND_CPL",
		"IDMA_FL_H_SEND_IP_HDR_FIRST",
		"IDMA_FL_H_SEND_IP_HDR",
		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
		"IDMA_FL_H_SEND_IP_HDR_PADDING",
		"IDMA_FL_D_SEND_PCIEHDR",
		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
		"IDMA_FL_D_REQ_NEXT_DATA_FL",
		"IDMA_FL_SEND_PCIEHDR",
		"IDMA_FL_PUSH_CPL_FIFO",
		"IDMA_FL_SEND_CPL",
		"IDMA_FL_SEND_PAYLOAD_FIRST",
		"IDMA_FL_SEND_PAYLOAD",
		"IDMA_FL_REQ_NEXT_DATA_FL",
		"IDMA_FL_SEND_NEXT_PCIEHDR",
		"IDMA_FL_SEND_PADDING",
		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
		"IDMA_FL_SEND_FIFO_TO_IMSG",
		"IDMA_FL_REQ_DATAFL_DONE",
		"IDMA_FL_REQ_HEADERFL_DONE",
	};
	static const char * const t5_decode[] = {
		"IDMA_IDLE",
		"IDMA_ALMOST_IDLE",
		"IDMA_PUSH_MORE_CPL_FIFO",
		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
		"IDMA_PHYSADDR_SEND_PCIEHDR",
		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
		"IDMA_PHYSADDR_SEND_PAYLOAD",
		"IDMA_SEND_FIFO_TO_IMSG",
		"IDMA_FL_REQ_DATA_FL",
		"IDMA_FL_DROP",
		"IDMA_FL_DROP_SEND_INC",
		"IDMA_FL_H_REQ_HEADER_FL",
		"IDMA_FL_H_SEND_PCIEHDR",
		"IDMA_FL_H_PUSH_CPL_FIFO",
		"IDMA_FL_H_SEND_CPL",
		"IDMA_FL_H_SEND_IP_HDR_FIRST",
		"IDMA_FL_H_SEND_IP_HDR",
		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
		"IDMA_FL_H_SEND_IP_HDR_PADDING",
		"IDMA_FL_D_SEND_PCIEHDR",
		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
		"IDMA_FL_D_REQ_NEXT_DATA_FL",
		"IDMA_FL_SEND_PCIEHDR",
		"IDMA_FL_PUSH_CPL_FIFO",
		"IDMA_FL_SEND_CPL",
		"IDMA_FL_SEND_PAYLOAD_FIRST",
		"IDMA_FL_SEND_PAYLOAD",
		"IDMA_FL_REQ_NEXT_DATA_FL",
		"IDMA_FL_SEND_NEXT_PCIEHDR",
		"IDMA_FL_SEND_PADDING",
		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
	};
	static const u32 sge_regs[] = {
4829 4830 4831
		SGE_DEBUG_DATA_LOW_INDEX_2_A,
		SGE_DEBUG_DATA_LOW_INDEX_3_A,
		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
	};
	const char **sge_idma_decode;
	int sge_idma_decode_nstates;
	int i;

	if (is_t4(adapter->params.chip)) {
		sge_idma_decode = (const char **)t4_decode;
		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
	} else {
		sge_idma_decode = (const char **)t5_decode;
		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
	}

	if (state < sge_idma_decode_nstates)
		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
	else
		CH_WARN(adapter, "idma state %d unknown\n", state);

	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
		CH_WARN(adapter, "SGE register %#x value %#x\n",
			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
}

4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
/**
 *      t4_sge_ctxt_flush - flush the SGE context cache
 *      @adap: the adapter
 *      @mbox: mailbox to use for the FW command
 *
 *      Issues a FW command through the given mailbox to flush the
 *      SGE context cache.
 */
int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
{
	int ret;
	u32 ldst_addrspace;
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
					FW_CMD_REQUEST_F | FW_CMD_READ_F |
					ldst_addrspace);
	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	return ret;
}

4881
/**
4882 4883 4884 4885 4886 4887
 *      t4_fw_hello - establish communication with FW
 *      @adap: the adapter
 *      @mbox: mailbox to use for the FW command
 *      @evt_mbox: mailbox to receive async FW events
 *      @master: specifies the caller's willingness to be the device master
 *	@state: returns the current device state (if non-NULL)
4888
 *
4889 4890
 *	Issues a command to establish communication with FW.  Returns either
 *	an error (negative integer) or the mailbox of the Master PF.
4891 4892 4893 4894 4895 4896
 */
int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
		enum dev_master master, enum dev_state *state)
{
	int ret;
	struct fw_hello_cmd c;
4897 4898 4899
	u32 v;
	unsigned int master_mbox;
	int retries = FW_CMD_HELLO_RETRIES;
4900

4901 4902
retry:
	memset(&c, 0, sizeof(c));
4903
	INIT_CMD(c, HELLO, WRITE);
4904
	c.err_to_clearinit = cpu_to_be32(
4905 4906
		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
4907 4908
		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
					mbox : FW_HELLO_CMD_MBMASTER_M) |
4909 4910 4911
		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
		FW_HELLO_CMD_CLEARINIT_F);
4912

4913 4914 4915
	/*
	 * Issue the HELLO command to the firmware.  If it's not successful
	 * but indicates that we got a "busy" or "timeout" condition, retry
4916 4917 4918
	 * the HELLO until we exhaust our retry limit.  If we do exceed our
	 * retry limit, check to see if the firmware left us any error
	 * information and report that if so.
4919
	 */
4920
	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4921 4922 4923
	if (ret < 0) {
		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
			goto retry;
4924
		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
4925
			t4_report_fw_error(adap);
4926 4927 4928
		return ret;
	}

4929
	v = be32_to_cpu(c.err_to_clearinit);
4930
	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
4931
	if (state) {
4932
		if (v & FW_HELLO_CMD_ERR_F)
4933
			*state = DEV_STATE_ERR;
4934
		else if (v & FW_HELLO_CMD_INIT_F)
4935
			*state = DEV_STATE_INIT;
4936 4937 4938
		else
			*state = DEV_STATE_UNINIT;
	}
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948

	/*
	 * If we're not the Master PF then we need to wait around for the
	 * Master PF Driver to finish setting up the adapter.
	 *
	 * Note that we also do this wait if we're a non-Master-capable PF and
	 * there is no current Master PF; a Master PF may show up momentarily
	 * and we wouldn't want to fail pointlessly.  (This can happen when an
	 * OS loads lots of different drivers rapidly at the same time).  In
	 * this case, the Master PF returned by the firmware will be
4949
	 * PCIE_FW_MASTER_M so the test below will work ...
4950
	 */
4951
	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
	    master_mbox != mbox) {
		int waiting = FW_CMD_HELLO_TIMEOUT;

		/*
		 * Wait for the firmware to either indicate an error or
		 * initialized state.  If we see either of these we bail out
		 * and report the issue to the caller.  If we exhaust the
		 * "hello timeout" and we haven't exhausted our retries, try
		 * again.  Otherwise bail with a timeout error.
		 */
		for (;;) {
			u32 pcie_fw;

			msleep(50);
			waiting -= 50;

			/*
			 * If neither Error nor Initialialized are indicated
			 * by the firmware keep waiting till we exaust our
			 * timeout ... and then retry if we haven't exhausted
			 * our retries ...
			 */
4974 4975
			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
				if (waiting <= 0) {
					if (retries-- > 0)
						goto retry;

					return -ETIMEDOUT;
				}
				continue;
			}

			/*
			 * We either have an Error or Initialized condition
			 * report errors preferentially.
			 */
			if (state) {
4990
				if (pcie_fw & PCIE_FW_ERR_F)
4991
					*state = DEV_STATE_ERR;
4992
				else if (pcie_fw & PCIE_FW_INIT_F)
4993 4994 4995 4996 4997 4998 4999 5000
					*state = DEV_STATE_INIT;
			}

			/*
			 * If we arrived before a Master PF was selected and
			 * there's not a valid Master PF, grab its identity
			 * for our caller.
			 */
5001
			if (master_mbox == PCIE_FW_MASTER_M &&
5002
			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
5003
				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5004 5005 5006 5007 5008
			break;
		}
	}

	return master_mbox;
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
}

/**
 *	t4_fw_bye - end communication with FW
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *
 *	Issues a command to terminate communication with FW.
 */
int t4_fw_bye(struct adapter *adap, unsigned int mbox)
{
	struct fw_bye_cmd c;

5022
	memset(&c, 0, sizeof(c));
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
	INIT_CMD(c, BYE, WRITE);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_init_cmd - ask FW to initialize the device
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *
 *	Issues a command to FW to partially initialize the device.  This
 *	performs initialization that generally doesn't depend on user input.
 */
int t4_early_init(struct adapter *adap, unsigned int mbox)
{
	struct fw_initialize_cmd c;

5039
	memset(&c, 0, sizeof(c));
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
	INIT_CMD(c, INITIALIZE, WRITE);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_fw_reset - issue a reset to FW
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@reset: specifies the type of reset to perform
 *
 *	Issues a reset command of the specified type to FW.
 */
int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
{
	struct fw_reset_cmd c;

5056
	memset(&c, 0, sizeof(c));
5057
	INIT_CMD(c, RESET, WRITE);
5058
	c.val = cpu_to_be32(reset);
5059 5060 5061
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

5062 5063 5064 5065 5066 5067 5068 5069 5070
/**
 *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW RESET command (if desired)
 *	@force: force uP into RESET even if FW RESET command fails
 *
 *	Issues a RESET command to firmware (if desired) with a HALT indication
 *	and then puts the microprocessor into RESET state.  The RESET command
 *	will only be issued if a legitimate mailbox is provided (mbox <=
5071
 *	PCIE_FW_MASTER_M).
5072 5073 5074 5075 5076 5077
 *
 *	This is generally used in order for the host to safely manipulate the
 *	adapter without fear of conflicting with whatever the firmware might
 *	be doing.  The only way out of this state is to RESTART the firmware
 *	...
 */
5078
static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
5079 5080 5081 5082 5083 5084 5085
{
	int ret = 0;

	/*
	 * If a legitimate mailbox is provided, issue a RESET command
	 * with a HALT indication.
	 */
5086
	if (mbox <= PCIE_FW_MASTER_M) {
5087 5088 5089 5090
		struct fw_reset_cmd c;

		memset(&c, 0, sizeof(c));
		INIT_CMD(c, RESET, WRITE);
5091 5092
		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
	}

	/*
	 * Normally we won't complete the operation if the firmware RESET
	 * command fails but if our caller insists we'll go ahead and put the
	 * uP into RESET.  This can be useful if the firmware is hung or even
	 * missing ...  We'll have to take the risk of putting the uP into
	 * RESET without the cooperation of firmware in that case.
	 *
	 * We also force the firmware's HALT flag to be on in case we bypassed
	 * the firmware RESET command above or we're dealing with old firmware
	 * which doesn't have the HALT capability.  This will serve as a flag
	 * for the incoming firmware to know that it's coming out of a HALT
	 * rather than a RESET ... if it's new enough to understand that ...
	 */
	if (ret == 0 || force) {
5110
		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
5111
		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
5112
				 PCIE_FW_HALT_F);
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
	}

	/*
	 * And we always return the result of the firmware RESET command
	 * even when we force the uP into RESET ...
	 */
	return ret;
}

/**
 *	t4_fw_restart - restart the firmware by taking the uP out of RESET
 *	@adap: the adapter
 *	@reset: if we want to do a RESET to restart things
 *
 *	Restart firmware previously halted by t4_fw_halt().  On successful
 *	return the previous PF Master remains as the new PF Master and there
 *	is no need to issue a new HELLO command, etc.
 *
 *	We do this in two ways:
 *
 *	 1. If we're dealing with newer firmware we'll simply want to take
 *	    the chip's microprocessor out of RESET.  This will cause the
 *	    firmware to start up from its start vector.  And then we'll loop
 *	    until the firmware indicates it's started again (PCIE_FW.HALT
 *	    reset to 0) or we timeout.
 *
 *	 2. If we're dealing with older firmware then we'll need to RESET
 *	    the chip since older firmware won't recognize the PCIE_FW.HALT
 *	    flag and automatically RESET itself on startup.
 */
5143
static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
5144 5145 5146 5147 5148 5149 5150
{
	if (reset) {
		/*
		 * Since we're directing the RESET instead of the firmware
		 * doing it automatically, we need to clear the PCIE_FW.HALT
		 * bit.
		 */
5151
		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
5152 5153 5154 5155 5156 5157 5158 5159

		/*
		 * If we've been given a valid mailbox, first try to get the
		 * firmware to do the RESET.  If that works, great and we can
		 * return success.  Otherwise, if we haven't been given a
		 * valid mailbox or the RESET command failed, fall back to
		 * hitting the chip with a hammer.
		 */
5160
		if (mbox <= PCIE_FW_MASTER_M) {
5161
			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
5162 5163
			msleep(100);
			if (t4_fw_reset(adap, mbox,
5164
					PIORST_F | PIORSTMODE_F) == 0)
5165 5166 5167
				return 0;
		}

5168
		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
5169 5170 5171 5172
		msleep(2000);
	} else {
		int ms;

5173
		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
5174
		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
5175
			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
				return 0;
			msleep(100);
			ms += 100;
		}
		return -ETIMEDOUT;
	}
	return 0;
}

/**
 *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW RESET command (if desired)
 *	@fw_data: the firmware image to write
 *	@size: image size
 *	@force: force upgrade even if firmware doesn't cooperate
 *
 *	Perform all of the steps necessary for upgrading an adapter's
 *	firmware image.  Normally this requires the cooperation of the
 *	existing firmware in order to halt all existing activities
 *	but if an invalid mailbox token is passed in we skip that step
 *	(though we'll still put the adapter microprocessor into RESET in
 *	that case).
 *
 *	On successful return the new firmware will have been loaded and
 *	the adapter will have been fully RESET losing all previous setup
 *	state.  On unsuccessful return the adapter may be completely hosed ...
 *	positive errno indicates that the adapter is ~probably~ intact, a
 *	negative errno indicates that things are looking bad ...
 */
5206 5207
int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
		  const u8 *fw_data, unsigned int size, int force)
5208 5209 5210 5211
{
	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
	int reset, ret;

5212 5213 5214
	if (!t4_fw_matches_chip(adap, fw_hdr))
		return -EINVAL;

5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
	ret = t4_fw_halt(adap, mbox, force);
	if (ret < 0 && !force)
		return ret;

	ret = t4_load_fw(adap, fw_data, size);
	if (ret < 0)
		return ret;

	/*
	 * Older versions of the firmware don't understand the new
	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
	 * restart.  So for newly loaded older firmware we'll have to do the
	 * RESET for it so it starts up on a clean slate.  We can tell if
	 * the newly loaded firmware will handle this right by checking
	 * its header flags to see if it advertises the capability.
	 */
5231
	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
5232 5233 5234
	return t4_fw_restart(adap, mbox, reset);
}

5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
/**
 *	t4_fixup_host_params - fix up host-dependent parameters
 *	@adap: the adapter
 *	@page_size: the host's Base Page Size
 *	@cache_line_size: the host's Cache Line Size
 *
 *	Various registers in T4 contain values which are dependent on the
 *	host's Base Page and Cache Line Sizes.  This function will fix all of
 *	those registers with the appropriate values as passed in ...
 */
int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
			 unsigned int cache_line_size)
{
	unsigned int page_shift = fls(page_size) - 1;
	unsigned int sge_hps = page_shift - 10;
	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
	unsigned int fl_align_log = fls(fl_align) - 1;

5254 5255 5256 5257 5258 5259 5260 5261 5262
	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
		     HOSTPAGESIZEPF0_V(sge_hps) |
		     HOSTPAGESIZEPF1_V(sge_hps) |
		     HOSTPAGESIZEPF2_V(sge_hps) |
		     HOSTPAGESIZEPF3_V(sge_hps) |
		     HOSTPAGESIZEPF4_V(sge_hps) |
		     HOSTPAGESIZEPF5_V(sge_hps) |
		     HOSTPAGESIZEPF6_V(sge_hps) |
		     HOSTPAGESIZEPF7_V(sge_hps));
5263

5264
	if (is_t4(adap->params.chip)) {
5265 5266 5267 5268 5269 5270
		t4_set_reg_field(adap, SGE_CONTROL_A,
				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
				 EGRSTATUSPAGESIZE_F,
				 INGPADBOUNDARY_V(fl_align_log -
						  INGPADBOUNDARY_SHIFT_X) |
				 EGRSTATUSPAGESIZE_V(stat_len != 64));
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299
	} else {
		/* T5 introduced the separation of the Free List Padding and
		 * Packing Boundaries.  Thus, we can select a smaller Padding
		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
		 * Bandwidth, and use a Packing Boundary which is large enough
		 * to avoid false sharing between CPUs, etc.
		 *
		 * For the PCI Link, the smaller the Padding Boundary the
		 * better.  For the Memory Controller, a smaller Padding
		 * Boundary is better until we cross under the Memory Line
		 * Size (the minimum unit of transfer to/from Memory).  If we
		 * have a Padding Boundary which is smaller than the Memory
		 * Line Size, that'll involve a Read-Modify-Write cycle on the
		 * Memory Controller which is never good.  For T5 the smallest
		 * Padding Boundary which we can select is 32 bytes which is
		 * larger than any known Memory Controller Line Size so we'll
		 * use that.
		 *
		 * T5 has a different interpretation of the "0" value for the
		 * Packing Boundary.  This corresponds to 16 bytes instead of
		 * the expected 32 bytes.  We never have a Packing Boundary
		 * less than 32 bytes so we can't use that special value but
		 * on the other hand, if we wanted 32 bytes, the best we can
		 * really do is 64 bytes.
		*/
		if (fl_align <= 32) {
			fl_align = 64;
			fl_align_log = 6;
		}
5300 5301 5302 5303 5304
		t4_set_reg_field(adap, SGE_CONTROL_A,
				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
				 EGRSTATUSPAGESIZE_F,
				 INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
				 EGRSTATUSPAGESIZE_V(stat_len != 64));
5305 5306 5307
		t4_set_reg_field(adap, SGE_CONTROL2_A,
				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
				 INGPACKBOUNDARY_V(fl_align_log -
5308
						   INGPACKBOUNDARY_SHIFT_X));
5309
	}
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
	/*
	 * Adjust various SGE Free List Host Buffer Sizes.
	 *
	 * This is something of a crock since we're using fixed indices into
	 * the array which are also known by the sge.c code and the T4
	 * Firmware Configuration File.  We need to come up with a much better
	 * approach to managing this array.  For now, the first four entries
	 * are:
	 *
	 *   0: Host Page Size
	 *   1: 64KB
	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
	 *
	 * For the single-MTU buffers in unpacked mode we need to include
	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
5327
	 * Padding boundary.  All of these are accommodated in the Factory
5328 5329 5330
	 * Default Firmware Configuration File but we need to adjust it for
	 * this host's cache line size.
	 */
5331 5332 5333
	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
5334
		     & ~(fl_align-1));
5335 5336
	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
5337 5338
		     & ~(fl_align-1));

5339
	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360

	return 0;
}

/**
 *	t4_fw_initialize - ask FW to initialize the device
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *
 *	Issues a command to FW to partially initialize the device.  This
 *	performs initialization that generally doesn't depend on user input.
 */
int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
{
	struct fw_initialize_cmd c;

	memset(&c, 0, sizeof(c));
	INIT_CMD(c, INITIALIZE, WRITE);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

5361
/**
5362
 *	t4_query_params_rw - query FW or device parameters
5363 5364 5365 5366 5367 5368 5369
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF
 *	@vf: the VF
 *	@nparams: the number of parameters
 *	@params: the parameter names
 *	@val: the parameter values
5370
 *	@rw: Write and read flag
5371 5372 5373 5374
 *
 *	Reads the value of FW or device parameters.  Up to 7 parameters can be
 *	queried at once.
 */
5375 5376 5377
int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
		       unsigned int vf, unsigned int nparams, const u32 *params,
		       u32 *val, int rw)
5378 5379 5380 5381 5382 5383 5384 5385 5386
{
	int i, ret;
	struct fw_params_cmd c;
	__be32 *p = &c.param[0].mnem;

	if (nparams > 7)
		return -EINVAL;

	memset(&c, 0, sizeof(c));
5387 5388 5389 5390 5391 5392
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
				  FW_PARAMS_CMD_PFN_V(pf) |
				  FW_PARAMS_CMD_VFN_V(vf));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));

5393 5394 5395 5396 5397 5398
	for (i = 0; i < nparams; i++) {
		*p++ = cpu_to_be32(*params++);
		if (rw)
			*p = cpu_to_be32(*(val + i));
		p++;
	}
5399 5400 5401 5402

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0)
		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
5403
			*val++ = be32_to_cpu(*p);
5404 5405 5406
	return ret;
}

5407 5408 5409 5410 5411 5412 5413
int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int nparams, const u32 *params,
		    u32 *val)
{
	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
}

5414
/**
5415
 *      t4_set_params_timeout - sets FW or device parameters
5416 5417 5418 5419 5420 5421 5422
 *      @adap: the adapter
 *      @mbox: mailbox to use for the FW command
 *      @pf: the PF
 *      @vf: the VF
 *      @nparams: the number of parameters
 *      @params: the parameter names
 *      @val: the parameter values
5423
 *      @timeout: the timeout time
5424 5425 5426 5427
 *
 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
 *      specified at once.
 */
5428
int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
5429 5430
			  unsigned int pf, unsigned int vf,
			  unsigned int nparams, const u32 *params,
5431
			  const u32 *val, int timeout)
5432 5433 5434 5435 5436 5437 5438 5439
{
	struct fw_params_cmd c;
	__be32 *p = &c.param[0].mnem;

	if (nparams > 7)
		return -EINVAL;

	memset(&c, 0, sizeof(c));
5440
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
5441 5442 5443
				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
				  FW_PARAMS_CMD_PFN_V(pf) |
				  FW_PARAMS_CMD_VFN_V(vf));
5444 5445 5446 5447 5448 5449 5450
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));

	while (nparams--) {
		*p++ = cpu_to_be32(*params++);
		*p++ = cpu_to_be32(*val++);
	}

5451
	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
5452 5453
}

5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470
/**
 *	t4_set_params - sets FW or device parameters
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF
 *	@vf: the VF
 *	@nparams: the number of parameters
 *	@params: the parameter names
 *	@val: the parameter values
 *
 *	Sets the value of FW or device parameters.  Up to 7 parameters can be
 *	specified at once.
 */
int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
		  unsigned int vf, unsigned int nparams, const u32 *params,
		  const u32 *val)
{
5471 5472
	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
				     FW_CMD_MAX_TIMEOUT);
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
}

/**
 *	t4_cfg_pfvf - configure PF/VF resource limits
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF being configured
 *	@vf: the VF being configured
 *	@txq: the max number of egress queues
 *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
 *	@rxqi: the max number of interrupt-capable ingress queues
 *	@rxq: the max number of interruptless ingress queues
 *	@tc: the PCI traffic class
 *	@vi: the max number of virtual interfaces
 *	@cmask: the channel access rights mask for the PF/VF
 *	@pmask: the port access rights mask for the PF/VF
 *	@nexact: the maximum number of exact MPS filters
 *	@rcaps: read capabilities
 *	@wxcaps: write/execute capabilities
 *
 *	Configures resource limits and capabilities for a physical or virtual
 *	function.
 */
int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
		unsigned int rxqi, unsigned int rxq, unsigned int tc,
		unsigned int vi, unsigned int cmask, unsigned int pmask,
		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
{
	struct fw_pfvf_cmd c;

	memset(&c, 0, sizeof(c));
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
				  FW_PFVF_CMD_VFN_V(vf));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
				     FW_PFVF_CMD_NIQ_V(rxq));
	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
				    FW_PFVF_CMD_PMASK_V(pmask) |
				    FW_PFVF_CMD_NEQ_V(txq));
	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
				      FW_PFVF_CMD_NVI_V(vi) |
				      FW_PFVF_CMD_NEXACTF_V(nexact));
	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_alloc_vi - allocate a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@port: physical port associated with the VI
 *	@pf: the PF owning the VI
 *	@vf: the VF owning the VI
 *	@nmac: number of MAC addresses needed (1 to 5)
 *	@mac: the MAC addresses of the VI
 *	@rss_size: size of RSS table slice associated with this VI
 *
 *	Allocates a virtual interface for the given physical port.  If @mac is
 *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
 *	@mac should be large enough to hold @nmac Ethernet addresses, they are
 *	stored consecutively so the space needed is @nmac * 6 bytes.
 *	Returns a negative error number or the non-negative VI id.
 */
int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
		unsigned int *rss_size)
{
	int ret;
	struct fw_vi_cmd c;

	memset(&c, 0, sizeof(c));
5548 5549 5550 5551
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
5552
	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
	c.nmac = nmac - 1;

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret)
		return ret;

	if (mac) {
		memcpy(mac, c.mac, sizeof(c.mac));
		switch (nmac) {
		case 5:
			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
		case 4:
			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
		case 3:
			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
		case 2:
			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
		}
	}
	if (rss_size)
5573 5574
		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
5575 5576
}

5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
/**
 *	t4_free_vi - free a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the VI
 *	@vf: the VF owning the VI
 *	@viid: virtual interface identifiler
 *
 *	Free a previously allocated virtual interface.
 */
int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
	       unsigned int vf, unsigned int viid)
{
	struct fw_vi_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
				  FW_CMD_REQUEST_F |
				  FW_CMD_EXEC_F |
				  FW_VI_CMD_PFN_V(pf) |
				  FW_VI_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612
}

/**
 *	t4_set_rxmode - set Rx properties of a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@mtu: the new MTU or -1
 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
5613
 *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
5614 5615 5616 5617 5618
 *	@sleep_ok: if true we may sleep while awaiting command completion
 *
 *	Sets Rx properties of a virtual interface.
 */
int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
5619 5620
		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
		  bool sleep_ok)
5621 5622 5623 5624 5625 5626 5627
{
	struct fw_vi_rxmode_cmd c;

	/* convert to FW values */
	if (mtu < 0)
		mtu = FW_RXMODE_MTU_NO_CHG;
	if (promisc < 0)
5628
		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
5629
	if (all_multi < 0)
5630
		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
5631
	if (bcast < 0)
5632
		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
5633
	if (vlanex < 0)
5634
		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
5635 5636

	memset(&c, 0, sizeof(c));
5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
				   FW_VI_RXMODE_CMD_VIID_V(viid));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
	c.mtu_to_vlanexen =
		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}

/**
 *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@free: if true any existing filters for this VI id are first removed
 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
 *	@addr: the MAC address(es)
 *	@idx: where to store the index of each allocated filter
 *	@hash: pointer to hash address filter bitmap
 *	@sleep_ok: call is allowed to sleep
 *
 *	Allocates an exact-match filter for each of the supplied addresses and
 *	sets it to the corresponding address.  If @idx is not %NULL it should
 *	have at least @naddr entries, each of which will be set to the index of
 *	the filter allocated for the corresponding MAC address.  If a filter
 *	could not be allocated for an address its index is set to 0xffff.
 *	If @hash is not %NULL addresses that fail to allocate an exact filter
 *	are hashed and update the hash filter bitmap pointed at by @hash.
 *
 *	Returns a negative error number or the number of filters allocated.
 */
int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
		      unsigned int viid, bool free, unsigned int naddr,
		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
{
5676
	int offset, ret = 0;
5677
	struct fw_vi_mac_cmd c;
5678 5679 5680
	unsigned int nfilters = 0;
	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
	unsigned int rem = naddr;
5681

5682
	if (naddr > max_naddr)
5683 5684
		return -EINVAL;

5685 5686 5687 5688 5689 5690 5691
	for (offset = 0; offset < naddr ; /**/) {
		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
					 rem : ARRAY_SIZE(c.u.exact));
		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
						     u.exact[fw_naddr]), 16);
		struct fw_vi_mac_exact *p;
		int i;
5692

5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
		memset(&c, 0, sizeof(c));
		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
					   FW_CMD_REQUEST_F |
					   FW_CMD_WRITE_F |
					   FW_CMD_EXEC_V(free) |
					   FW_VI_MAC_CMD_VIID_V(viid));
		c.freemacs_to_len16 =
			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
				    FW_CMD_LEN16_V(len16));

		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
			p->valid_to_idx =
				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
					    FW_VI_MAC_CMD_IDX_V(
						    FW_VI_MAC_ADD_MAC));
			memcpy(p->macaddr, addr[offset + i],
			       sizeof(p->macaddr));
		}
5711

5712 5713 5714 5715 5716 5717 5718
		/* It's okay if we run out of space in our MAC address arena.
		 * Some of the addresses we submit may get stored so we need
		 * to run through the reply to see what the results were ...
		 */
		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
		if (ret && ret != -FW_ENOMEM)
			break;
5719

5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
			u16 index = FW_VI_MAC_CMD_IDX_G(
					be16_to_cpu(p->valid_to_idx));

			if (idx)
				idx[offset + i] = (index >= max_naddr ?
						   0xffff : index);
			if (index < max_naddr)
				nfilters++;
			else if (hash)
				*hash |= (1ULL <<
					  hash_mac_addr(addr[offset + i]));
		}
5733

5734 5735 5736
		free = false;
		offset += fw_naddr;
		rem -= fw_naddr;
5737
	}
5738 5739 5740

	if (ret == 0 || ret == -FW_ENOMEM)
		ret = nfilters;
5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
	return ret;
}

/**
 *	t4_change_mac - modifies the exact-match filter for a MAC address
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@idx: index of existing filter for old value of MAC address, or -1
 *	@addr: the new MAC address value
 *	@persist: whether a new MAC allocation should be persistent
 *	@add_smt: if true also add the address to the HW SMT
 *
 *	Modifies an exact-match filter and sets it to the new MAC address.
 *	Note that in general it is not possible to modify the value of a given
 *	filter so the generic way to modify an address filter is to free the one
 *	being used by the old address value and allocate a new filter for the
 *	new address value.  @idx can be -1 if the address is a new addition.
 *
 *	Returns a negative error number or the index of the filter with the new
 *	MAC value.
 */
int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
		  int idx, const u8 *addr, bool persist, bool add_smt)
{
	int ret, mode;
	struct fw_vi_mac_cmd c;
	struct fw_vi_mac_exact *p = c.u.exact;
5769
	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
5770 5771 5772 5773 5774 5775

	if (idx < 0)                             /* new allocation */
		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;

	memset(&c, 0, sizeof(c));
5776 5777 5778 5779 5780 5781 5782
	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
				   FW_VI_MAC_CMD_VIID_V(viid));
	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
				      FW_VI_MAC_CMD_IDX_V(idx));
5783 5784 5785 5786
	memcpy(p->macaddr, addr, sizeof(p->macaddr));

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0) {
5787
		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
S
Santosh Rastapur 已提交
5788
		if (ret >= max_mac_addr)
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
			ret = -ENOMEM;
	}
	return ret;
}

/**
 *	t4_set_addr_hash - program the MAC inexact-match hash filter
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@ucast: whether the hash filter should also match unicast addresses
 *	@vec: the value to be written to the hash filter
 *	@sleep_ok: call is allowed to sleep
 *
 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
 */
int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
		     bool ucast, u64 vec, bool sleep_ok)
{
	struct fw_vi_mac_cmd c;

	memset(&c, 0, sizeof(c));
5811 5812 5813 5814 5815 5816
	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
				   FW_VI_ENABLE_CMD_VIID_V(viid));
	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
					  FW_CMD_LEN16_V(1));
5817 5818 5819 5820
	c.u.hash.hashvec = cpu_to_be64(vec);
	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}

5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
/**
 *      t4_enable_vi_params - enable/disable a virtual interface
 *      @adap: the adapter
 *      @mbox: mailbox to use for the FW command
 *      @viid: the VI id
 *      @rx_en: 1=enable Rx, 0=disable Rx
 *      @tx_en: 1=enable Tx, 0=disable Tx
 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
 *
 *      Enables/disables a virtual interface.  Note that setting DCB Enable
 *      only makes sense when enabling a Virtual Interface ...
 */
int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
{
	struct fw_vi_enable_cmd c;

	memset(&c, 0, sizeof(c));
5839 5840 5841 5842 5843 5844 5845
	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				   FW_VI_ENABLE_CMD_VIID_V(viid));
	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
				     FW_LEN16(c));
5846
	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
5847 5848
}

5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861
/**
 *	t4_enable_vi - enable/disable a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@rx_en: 1=enable Rx, 0=disable Rx
 *	@tx_en: 1=enable Tx, 0=disable Tx
 *
 *	Enables/disables a virtual interface.
 */
int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
		 bool rx_en, bool tx_en)
{
5862
	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
}

/**
 *	t4_identify_port - identify a VI's port by blinking its LED
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@nblinks: how many times to blink LED at 2.5 Hz
 *
 *	Identifies a VI's port by blinking its LED.
 */
int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
		     unsigned int nblinks)
{
	struct fw_vi_enable_cmd c;

5879
	memset(&c, 0, sizeof(c));
5880 5881 5882 5883 5884
	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				   FW_VI_ENABLE_CMD_VIID_V(viid));
	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
	c.blinkdur = cpu_to_be16(nblinks);
5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_iq_free - free an ingress queue and its FLs
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queues
 *	@vf: the VF owning the queues
 *	@iqtype: the ingress queue type
 *	@iqid: ingress queue id
 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
 *
 *	Frees an ingress queue and its associated FLs, if any.
 */
int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
	       unsigned int fl0id, unsigned int fl1id)
{
	struct fw_iq_cmd c;

	memset(&c, 0, sizeof(c));
5908 5909 5910 5911 5912 5913 5914 5915
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
				  FW_IQ_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
	c.iqid = cpu_to_be16(iqid);
	c.fl0id = cpu_to_be16(fl0id);
	c.fl1id = cpu_to_be16(fl1id);
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_eth_eq_free - free an Ethernet egress queue
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queue
 *	@vf: the VF owning the queue
 *	@eqid: egress queue id
 *
 *	Frees an Ethernet egress queue.
 */
int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		   unsigned int vf, unsigned int eqid)
{
	struct fw_eq_eth_cmd c;

	memset(&c, 0, sizeof(c));
5935 5936 5937 5938 5939 5940
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				  FW_EQ_ETH_CMD_PFN_V(pf) |
				  FW_EQ_ETH_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_ctrl_eq_free - free a control egress queue
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queue
 *	@vf: the VF owning the queue
 *	@eqid: egress queue id
 *
 *	Frees a control egress queue.
 */
int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int eqid)
{
	struct fw_eq_ctrl_cmd c;

	memset(&c, 0, sizeof(c));
5960 5961 5962 5963 5964 5965
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				  FW_EQ_CTRL_CMD_PFN_V(pf) |
				  FW_EQ_CTRL_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_ofld_eq_free - free an offload egress queue
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queue
 *	@vf: the VF owning the queue
 *	@eqid: egress queue id
 *
 *	Frees a control egress queue.
 */
int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int eqid)
{
	struct fw_eq_ofld_cmd c;

	memset(&c, 0, sizeof(c));
5985 5986 5987 5988 5989 5990
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				  FW_EQ_OFLD_CMD_PFN_V(pf) |
				  FW_EQ_OFLD_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_handle_fw_rpl - process a FW reply message
 *	@adap: the adapter
 *	@rpl: start of the FW message
 *
 *	Processes a FW message, such as link state change messages.
 */
int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
{
	u8 opcode = *(const u8 *)rpl;

	if (opcode == FW_PORT_CMD) {    /* link/module state change message */
		int speed = 0, fc = 0;
		const struct fw_port_cmd *p = (void *)rpl;
6008
		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
6009 6010 6011
		int port = adap->chan_map[chan];
		struct port_info *pi = adap2pinfo(adap, port);
		struct link_config *lc = &pi->link_cfg;
6012
		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
6013 6014
		int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
		u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
6015

6016
		if (stat & FW_PORT_CMD_RXPAUSE_F)
6017
			fc |= PAUSE_RX;
6018
		if (stat & FW_PORT_CMD_TXPAUSE_F)
6019
			fc |= PAUSE_TX;
6020
		if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
6021
			speed = 100;
6022
		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
6023
			speed = 1000;
6024
		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
6025
			speed = 10000;
6026
		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
6027
			speed = 40000;
6028 6029 6030 6031 6032 6033

		if (link_ok != lc->link_ok || speed != lc->speed ||
		    fc != lc->fc) {                    /* something changed */
			lc->link_ok = link_ok;
			lc->speed = speed;
			lc->fc = fc;
6034
			lc->supported = be16_to_cpu(p->u.info.pcap);
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
			t4_os_link_changed(adap, port, link_ok);
		}
		if (mod != pi->mod_type) {
			pi->mod_type = mod;
			t4_os_portmod_changed(adap, port);
		}
	}
	return 0;
}

6045
static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
6046 6047 6048
{
	u16 val;

6049 6050
	if (pci_is_pcie(adapter->pdev)) {
		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063
		p->speed = val & PCI_EXP_LNKSTA_CLS;
		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
	}
}

/**
 *	init_link_config - initialize a link's SW state
 *	@lc: structure holding the link state
 *	@caps: link capabilities
 *
 *	Initializes the SW state maintained for each link, including the link's
 *	capabilities and default speed/flow-control/autonegotiation settings.
 */
6064
static void init_link_config(struct link_config *lc, unsigned int caps)
6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
{
	lc->supported = caps;
	lc->requested_speed = 0;
	lc->speed = 0;
	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
	if (lc->supported & FW_PORT_CAP_ANEG) {
		lc->advertising = lc->supported & ADVERT_MASK;
		lc->autoneg = AUTONEG_ENABLE;
		lc->requested_fc |= PAUSE_AUTONEG;
	} else {
		lc->advertising = 0;
		lc->autoneg = AUTONEG_DISABLE;
	}
}

6080 6081 6082
#define CIM_PF_NOACCESS 0xeeeeeeee

int t4_wait_dev_ready(void __iomem *regs)
6083
{
6084 6085
	u32 whoami;

6086
	whoami = readl(regs + PL_WHOAMI_A);
6087
	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
6088
		return 0;
6089

6090
	msleep(500);
6091
	whoami = readl(regs + PL_WHOAMI_A);
6092
	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
6093 6094
}

6095 6096 6097 6098 6099
struct flash_desc {
	u32 vendor_and_model_id;
	u32 size_mb;
};

B
Bill Pemberton 已提交
6100
static int get_flash_params(struct adapter *adap)
6101
{
6102 6103 6104 6105 6106 6107 6108
	/* Table for non-Numonix supported flash parts.  Numonix parts are left
	 * to the preexisting code.  All flash parts have 64KB sectors.
	 */
	static struct flash_desc supported_flash[] = {
		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
	};

6109 6110 6111 6112 6113 6114
	int ret;
	u32 info;

	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
	if (!ret)
		ret = sf1_read(adap, 3, 0, 1, &info);
6115
	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
6116 6117 6118
	if (ret)
		return ret;

6119 6120 6121 6122 6123 6124 6125 6126
	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
		if (supported_flash[ret].vendor_and_model_id == info) {
			adap->params.sf_size = supported_flash[ret].size_mb;
			adap->params.sf_nsec =
				adap->params.sf_size / SF_SEC_SIZE;
			return 0;
		}

6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
		return -EINVAL;
	info >>= 16;                           /* log2 of size */
	if (info >= 0x14 && info < 0x18)
		adap->params.sf_nsec = 1 << (info - 16);
	else if (info == 0x18)
		adap->params.sf_nsec = 64;
	else
		return -EINVAL;
	adap->params.sf_size = 1 << info;
	adap->params.sf_fw_start =
6138
		t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
6139 6140 6141 6142

	if (adap->params.sf_size < FLASH_MIN_SIZE)
		dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
			 adap->params.sf_size, FLASH_MIN_SIZE);
6143 6144 6145
	return 0;
}

6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
{
	u16 val;
	u32 pcie_cap;

	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (pcie_cap) {
		pci_read_config_word(adapter->pdev,
				     pcie_cap + PCI_EXP_DEVCTL2, &val);
		val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
		val |= range;
		pci_write_config_word(adapter->pdev,
				      pcie_cap + PCI_EXP_DEVCTL2, val);
	}
}

6162 6163 6164 6165 6166 6167 6168 6169 6170
/**
 *	t4_prep_adapter - prepare SW and HW for operation
 *	@adapter: the adapter
 *	@reset: if true perform a HW reset
 *
 *	Initialize adapter SW state for the various HW modules, set initial
 *	values for some adapter tunables, take PHYs out of reset, and
 *	initialize the MDIO interface.
 */
B
Bill Pemberton 已提交
6171
int t4_prep_adapter(struct adapter *adapter)
6172
{
S
Santosh Rastapur 已提交
6173 6174
	int ret, ver;
	uint16_t device_id;
6175
	u32 pl_rev;
6176 6177

	get_pci_mode(adapter, &adapter->params.pci);
6178
	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
6179

6180 6181 6182 6183 6184 6185
	ret = get_flash_params(adapter);
	if (ret < 0) {
		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
		return ret;
	}

S
Santosh Rastapur 已提交
6186 6187 6188 6189
	/* Retrieve adapter's device ID
	 */
	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
	ver = device_id >> 12;
6190
	adapter->params.chip = 0;
S
Santosh Rastapur 已提交
6191 6192
	switch (ver) {
	case CHELSIO_T4:
6193
		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6194 6195 6196 6197 6198 6199
		adapter->params.arch.sge_fl_db = DBPRIO_F;
		adapter->params.arch.mps_tcam_size =
				 NUM_MPS_CLS_SRAM_L_INSTANCES;
		adapter->params.arch.mps_rplc_size = 128;
		adapter->params.arch.nchan = NCHAN;
		adapter->params.arch.vfcount = 128;
S
Santosh Rastapur 已提交
6200 6201
		break;
	case CHELSIO_T5:
6202
		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217
		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
		adapter->params.arch.mps_tcam_size =
				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
		adapter->params.arch.mps_rplc_size = 128;
		adapter->params.arch.nchan = NCHAN;
		adapter->params.arch.vfcount = 128;
		break;
	case CHELSIO_T6:
		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
		adapter->params.arch.sge_fl_db = 0;
		adapter->params.arch.mps_tcam_size =
				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
		adapter->params.arch.mps_rplc_size = 256;
		adapter->params.arch.nchan = 2;
		adapter->params.arch.vfcount = 256;
S
Santosh Rastapur 已提交
6218 6219 6220 6221 6222 6223 6224
		break;
	default:
		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
			device_id);
		return -EINVAL;
	}

6225
	adapter->params.cim_la_size = CIMLA_SIZE;
6226 6227 6228 6229 6230 6231 6232
	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);

	/*
	 * Default port for debugging in case we can't reach FW.
	 */
	adapter->params.nports = 1;
	adapter->params.portvec = 1;
6233
	adapter->params.vpd.cclk = 50000;
6234 6235 6236

	/* Set pci completion timeout value to 4 seconds. */
	set_pcie_completion_timeout(adapter, 0xd);
6237 6238 6239
	return 0;
}

6240
/**
6241
 *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
6242 6243 6244
 *	@adapter: the adapter
 *	@qid: the Queue ID
 *	@qtype: the Ingress or Egress type for @qid
6245
 *	@user: true if this request is for a user mode queue
6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265
 *	@pbar2_qoffset: BAR2 Queue Offset
 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
 *
 *	Returns the BAR2 SGE Queue Registers information associated with the
 *	indicated Absolute Queue ID.  These are passed back in return value
 *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
 *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
 *
 *	This may return an error which indicates that BAR2 SGE Queue
 *	registers aren't available.  If an error is not returned, then the
 *	following values are returned:
 *
 *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
 *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
 *
 *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
 *	require the "Inferred Queue ID" ability may be used.  E.g. the
 *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
 *	then these "Inferred Queue ID" register may not be used.
 */
6266
int t4_bar2_sge_qregs(struct adapter *adapter,
6267 6268
		      unsigned int qid,
		      enum t4_bar2_qtype qtype,
6269
		      int user,
6270 6271 6272 6273 6274 6275 6276
		      u64 *pbar2_qoffset,
		      unsigned int *pbar2_qid)
{
	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
	u64 bar2_page_offset, bar2_qoffset;
	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;

6277 6278
	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
	if (!user && is_t4(adapter->params.chip))
6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297
		return -EINVAL;

	/* Get our SGE Page Size parameters.
	 */
	page_shift = adapter->params.sge.hps + 10;
	page_size = 1 << page_shift;

	/* Get the right Queues per Page parameters for our Queue.
	 */
	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
		     ? adapter->params.sge.eq_qpp
		     : adapter->params.sge.iq_qpp);
	qpp_mask = (1 << qpp_shift) - 1;

	/*  Calculate the basics of the BAR2 SGE Queue register area:
	 *  o The BAR2 page the Queue registers will be in.
	 *  o The BAR2 Queue ID.
	 *  o The BAR2 Queue ID Offset into the BAR2 page.
	 */
6298
	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329
	bar2_qid = qid & qpp_mask;
	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;

	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
	 * hardware will infer the Absolute Queue ID simply from the writes to
	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
	 * from the BAR2 Page and BAR2 Queue ID.
	 *
	 * One important censequence of this is that some BAR2 SGE registers
	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
	 * there.  But other registers synthesize the SGE Queue ID purely
	 * from the writes to the registers -- the Write Combined Doorbell
	 * Buffer is a good example.  These BAR2 SGE Registers are only
	 * available for those BAR2 SGE Register areas where the SGE Absolute
	 * Queue ID can be inferred from simple writes.
	 */
	bar2_qoffset = bar2_page_offset;
	bar2_qinferred = (bar2_qid_offset < page_size);
	if (bar2_qinferred) {
		bar2_qoffset += bar2_qid_offset;
		bar2_qid = 0;
	}

	*pbar2_qoffset = bar2_qoffset;
	*pbar2_qid = bar2_qid;
	return 0;
}

6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
/**
 *	t4_init_devlog_params - initialize adapter->params.devlog
 *	@adap: the adapter
 *
 *	Initialize various fields of the adapter's Firmware Device Log
 *	Parameters structure.
 */
int t4_init_devlog_params(struct adapter *adap)
{
	struct devlog_params *dparams = &adap->params.devlog;
	u32 pf_dparams;
	unsigned int devlog_meminfo;
	struct fw_devlog_cmd devlog_cmd;
	int ret;

	/* If we're dealing with newer firmware, the Device Log Paramerters
	 * are stored in a designated register which allows us to access the
	 * Device Log even if we can't talk to the firmware.
	 */
	pf_dparams =
		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
	if (pf_dparams) {
		unsigned int nentries, nentries128;

		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;

		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
		nentries = (nentries128 + 1) * 128;
		dparams->size = nentries * sizeof(struct fw_devlog_e);

		return 0;
	}

	/* Otherwise, ask the firmware for it's Device Log Parameters.
	 */
	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
6367 6368 6369
	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
6370 6371 6372 6373 6374
	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
			 &devlog_cmd);
	if (ret)
		return ret;

6375 6376
	devlog_meminfo =
		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
6377 6378
	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
6379
	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
6380 6381 6382 6383

	return 0;
}

6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397
/**
 *	t4_init_sge_params - initialize adap->params.sge
 *	@adapter: the adapter
 *
 *	Initialize various fields of the adapter's SGE Parameters structure.
 */
int t4_init_sge_params(struct adapter *adapter)
{
	struct sge_params *sge_params = &adapter->params.sge;
	u32 hps, qpp;
	unsigned int s_hps, s_qpp;

	/* Extract the SGE Page Size for our PF.
	 */
6398
	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
6399
	s_hps = (HOSTPAGESIZEPF0_S +
6400
		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
6401 6402 6403 6404 6405
	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);

	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
	 */
	s_qpp = (QUEUESPERPAGEPF0_S +
6406
		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
6407 6408
	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
6409
	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
6410
	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
6411 6412 6413 6414

	return 0;
}

6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425
/**
 *      t4_init_tp_params - initialize adap->params.tp
 *      @adap: the adapter
 *
 *      Initialize various fields of the adapter's TP Parameters structure.
 */
int t4_init_tp_params(struct adapter *adap)
{
	int chan;
	u32 v;

6426 6427 6428
	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
	adap->params.tp.tre = TIMERRESOLUTION_G(v);
	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
6429 6430 6431 6432 6433 6434 6435 6436

	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
	for (chan = 0; chan < NCHAN; chan++)
		adap->params.tp.tx_modq[chan] = chan;

	/* Cache the adapter's Compressed Filter Mode and global Incress
	 * Configuration.
	 */
6437
	if (t4_use_ldst(adap)) {
6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449
		t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
				TP_VLAN_PRI_MAP_A, 1);
		t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
				TP_INGRESS_CONFIG_A, 1);
	} else {
		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 &adap->params.tp.vlan_pri_map, 1,
				 TP_VLAN_PRI_MAP_A);
		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 &adap->params.tp.ingress_config, 1,
				 TP_INGRESS_CONFIG_A);
	}
6450 6451 6452 6453 6454

	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
	 * shift positions of several elements of the Compressed Filter Tuple
	 * for this adapter which we need frequently ...
	 */
6455 6456 6457
	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
6458
	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
6459
							       PROTOCOL_F);
6460 6461

	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
6462
	 * represents the presence of an Outer VLAN instead of a VNIC ID.
6463
	 */
6464
	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489
		adap->params.tp.vnic_shift = -1;

	return 0;
}

/**
 *      t4_filter_field_shift - calculate filter field shift
 *      @adap: the adapter
 *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
 *
 *      Return the shift position of a filter field within the Compressed
 *      Filter Tuple.  The filter field is specified via its selection bit
 *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
 */
int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
{
	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
	unsigned int sel;
	int field_shift;

	if ((filter_mode & filter_sel) == 0)
		return -1;

	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
		switch (filter_mode & sel) {
6490 6491
		case FCOE_F:
			field_shift += FT_FCOE_W;
6492
			break;
6493 6494
		case PORT_F:
			field_shift += FT_PORT_W;
6495
			break;
6496 6497
		case VNIC_ID_F:
			field_shift += FT_VNIC_ID_W;
6498
			break;
6499 6500
		case VLAN_F:
			field_shift += FT_VLAN_W;
6501
			break;
6502 6503
		case TOS_F:
			field_shift += FT_TOS_W;
6504
			break;
6505 6506
		case PROTOCOL_F:
			field_shift += FT_PROTOCOL_W;
6507
			break;
6508 6509
		case ETHERTYPE_F:
			field_shift += FT_ETHERTYPE_W;
6510
			break;
6511 6512
		case MACMATCH_F:
			field_shift += FT_MACMATCH_W;
6513
			break;
6514 6515
		case MPSHITTYPE_F:
			field_shift += FT_MPSHITTYPE_W;
6516
			break;
6517 6518
		case FRAGMENTATION_F:
			field_shift += FT_FRAGMENTATION_W;
6519 6520 6521 6522 6523 6524
			break;
		}
	}
	return field_shift;
}

6525 6526 6527 6528 6529 6530 6531 6532 6533 6534
int t4_init_rss_mode(struct adapter *adap, int mbox)
{
	int i, ret;
	struct fw_rss_vi_config_cmd rvc;

	memset(&rvc, 0, sizeof(rvc));

	for_each_port(adap, i) {
		struct port_info *p = adap2pinfo(adap, i);

6535 6536 6537 6538 6539
		rvc.op_to_viid =
			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
6540 6541 6542
		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
		if (ret)
			return ret;
6543
		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
6544 6545 6546 6547
	}
	return 0;
}

B
Bill Pemberton 已提交
6548
int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
6549 6550 6551 6552
{
	u8 addr[6];
	int ret, i, j = 0;
	struct fw_port_cmd c;
6553
	struct fw_rss_vi_config_cmd rvc;
6554 6555

	memset(&c, 0, sizeof(c));
6556
	memset(&rvc, 0, sizeof(rvc));
6557 6558 6559 6560 6561 6562 6563 6564

	for_each_port(adap, i) {
		unsigned int rss_size;
		struct port_info *p = adap2pinfo(adap, i);

		while ((adap->params.portvec & (1 << j)) == 0)
			j++;

6565 6566 6567 6568
		c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
					     FW_CMD_REQUEST_F | FW_CMD_READ_F |
					     FW_PORT_CMD_PORTID_V(j));
		c.action_to_len16 = cpu_to_be32(
6569
			FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583
			FW_LEN16(c));
		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
		if (ret)
			return ret;

		ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
		if (ret < 0)
			return ret;

		p->viid = ret;
		p->tx_chan = j;
		p->lport = j;
		p->rss_size = rss_size;
		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
6584
		adap->port[i]->dev_port = j;
6585

6586
		ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
6587 6588 6589
		p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
			FW_PORT_CMD_MDIOADDR_G(ret) : -1;
		p->port_type = FW_PORT_CMD_PTYPE_G(ret);
6590
		p->mod_type = FW_PORT_MOD_TYPE_NA;
6591

6592 6593 6594 6595 6596
		rvc.op_to_viid =
			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
				    FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
6597 6598 6599
		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
		if (ret)
			return ret;
6600
		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
6601

6602
		init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
6603 6604 6605 6606
		j++;
	}
	return 0;
}
6607

6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642
/**
 *	t4_read_cimq_cfg - read CIM queue configuration
 *	@adap: the adapter
 *	@base: holds the queue base addresses in bytes
 *	@size: holds the queue sizes in bytes
 *	@thres: holds the queue full thresholds in bytes
 *
 *	Returns the current configuration of the CIM queues, starting with
 *	the IBQs, then the OBQs.
 */
void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
{
	unsigned int i, v;
	int cim_num_obq = is_t4(adap->params.chip) ?
				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;

	for (i = 0; i < CIM_NUM_IBQ; i++) {
		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
			     QUENUMSELECT_V(i));
		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
		/* value is in 256-byte units */
		*base++ = CIMQBASE_G(v) * 256;
		*size++ = CIMQSIZE_G(v) * 256;
		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
	}
	for (i = 0; i < cim_num_obq; i++) {
		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
			     QUENUMSELECT_V(i));
		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
		/* value is in 256-byte units */
		*base++ = CIMQBASE_G(v) * 256;
		*size++ = CIMQSIZE_G(v) * 256;
	}
}

6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681
/**
 *	t4_read_cim_ibq - read the contents of a CIM inbound queue
 *	@adap: the adapter
 *	@qid: the queue index
 *	@data: where to store the queue contents
 *	@n: capacity of @data in 32-bit words
 *
 *	Reads the contents of the selected CIM queue starting at address 0 up
 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
 *	error and the number of 32-bit words actually read on success.
 */
int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
{
	int i, err, attempts;
	unsigned int addr;
	const unsigned int nwords = CIM_IBQ_SIZE * 4;

	if (qid > 5 || (n & 3))
		return -EINVAL;

	addr = qid * nwords;
	if (n > nwords)
		n = nwords;

	/* It might take 3-10ms before the IBQ debug read access is allowed.
	 * Wait for 1 Sec with a delay of 1 usec.
	 */
	attempts = 1000000;

	for (i = 0; i < n; i++, addr++) {
		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
			     IBQDBGEN_F);
		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
				      attempts, 1);
		if (err)
			return err;
		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
	}
	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724
	return i;
}

/**
 *	t4_read_cim_obq - read the contents of a CIM outbound queue
 *	@adap: the adapter
 *	@qid: the queue index
 *	@data: where to store the queue contents
 *	@n: capacity of @data in 32-bit words
 *
 *	Reads the contents of the selected CIM queue starting at address 0 up
 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
 *	error and the number of 32-bit words actually read on success.
 */
int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
{
	int i, err;
	unsigned int addr, v, nwords;
	int cim_num_obq = is_t4(adap->params.chip) ?
				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;

	if ((qid > (cim_num_obq - 1)) || (n & 3))
		return -EINVAL;

	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
		     QUENUMSELECT_V(qid));
	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);

	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
	nwords = CIMQSIZE_G(v) * 64;  /* same */
	if (n > nwords)
		n = nwords;

	for (i = 0; i < n; i++, addr++) {
		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
			     OBQDBGEN_F);
		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
				      2, 1);
		if (err)
			return err;
		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
	}
	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
6725 6726 6727
	return i;
}

6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845
/**
 *	t4_cim_read - read a block from CIM internal address space
 *	@adap: the adapter
 *	@addr: the start address within the CIM address space
 *	@n: number of words to read
 *	@valp: where to store the result
 *
 *	Reads a block of 4-byte words from the CIM intenal address space.
 */
int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
		unsigned int *valp)
{
	int ret = 0;

	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
		return -EBUSY;

	for ( ; !ret && n--; addr += 4) {
		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
				      0, 5, 2);
		if (!ret)
			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
	}
	return ret;
}

/**
 *	t4_cim_write - write a block into CIM internal address space
 *	@adap: the adapter
 *	@addr: the start address within the CIM address space
 *	@n: number of words to write
 *	@valp: set of values to write
 *
 *	Writes a block of 4-byte words into the CIM intenal address space.
 */
int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
		 const unsigned int *valp)
{
	int ret = 0;

	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
		return -EBUSY;

	for ( ; !ret && n--; addr += 4) {
		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
				      0, 5, 2);
	}
	return ret;
}

static int t4_cim_write1(struct adapter *adap, unsigned int addr,
			 unsigned int val)
{
	return t4_cim_write(adap, addr, 1, &val);
}

/**
 *	t4_cim_read_la - read CIM LA capture buffer
 *	@adap: the adapter
 *	@la_buf: where to store the LA data
 *	@wrptr: the HW write pointer within the capture buffer
 *
 *	Reads the contents of the CIM LA buffer with the most recent entry at
 *	the end	of the returned data and with the entry at @wrptr first.
 *	We try to leave the LA in the running state we find it in.
 */
int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
{
	int i, ret;
	unsigned int cfg, val, idx;

	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
	if (ret)
		return ret;

	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
		if (ret)
			return ret;
	}

	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
	if (ret)
		goto restart;

	idx = UPDBGLAWRPTR_G(val);
	if (wrptr)
		*wrptr = idx;

	for (i = 0; i < adap->params.cim_la_size; i++) {
		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
		if (ret)
			break;
		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
		if (ret)
			break;
		if (val & UPDBGLARDEN_F) {
			ret = -ETIMEDOUT;
			break;
		}
		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
		if (ret)
			break;
		idx = (idx + 1) & UPDBGLARDPTR_M;
	}
restart:
	if (cfg & UPDBGLAEN_F) {
		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
				      cfg & ~UPDBGLARDEN_F);
		if (!ret)
			ret = r;
	}
	return ret;
}
6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892

/**
 *	t4_tp_read_la - read TP LA capture buffer
 *	@adap: the adapter
 *	@la_buf: where to store the LA data
 *	@wrptr: the HW write pointer within the capture buffer
 *
 *	Reads the contents of the TP LA buffer with the most recent entry at
 *	the end	of the returned data and with the entry at @wrptr first.
 *	We leave the LA in the running state we find it in.
 */
void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
{
	bool last_incomplete;
	unsigned int i, cfg, val, idx;

	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
	if (cfg & DBGLAENABLE_F)			/* freeze LA */
		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));

	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
	idx = DBGLAWPTR_G(val);
	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
	if (last_incomplete)
		idx = (idx + 1) & DBGLARPTR_M;
	if (wrptr)
		*wrptr = idx;

	val &= 0xffff;
	val &= ~DBGLARPTR_V(DBGLARPTR_M);
	val |= adap->params.tp.la_mask;

	for (i = 0; i < TPLA_SIZE; i++) {
		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
		idx = (idx + 1) & DBGLARPTR_M;
	}

	/* Wipe out last entry if it isn't valid */
	if (last_incomplete)
		la_buf[TPLA_SIZE - 1] = ~0ULL;

	if (cfg & DBGLAENABLE_F)                    /* restore running state */
		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
			     cfg | adap->params.tp.la_mask);
}
6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019

/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
 * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
 * state for more than the Warning Threshold then we'll issue a warning about
 * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
 * appears to be hung every Warning Repeat second till the situation clears.
 * If the situation clears, we'll note that as well.
 */
#define SGE_IDMA_WARN_THRESH 1
#define SGE_IDMA_WARN_REPEAT 300

/**
 *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
 *	@adapter: the adapter
 *	@idma: the adapter IDMA Monitor state
 *
 *	Initialize the state of an SGE Ingress DMA Monitor.
 */
void t4_idma_monitor_init(struct adapter *adapter,
			  struct sge_idma_monitor_state *idma)
{
	/* Initialize the state variables for detecting an SGE Ingress DMA
	 * hang.  The SGE has internal counters which count up on each clock
	 * tick whenever the SGE finds its Ingress DMA State Engines in the
	 * same state they were on the previous clock tick.  The clock used is
	 * the Core Clock so we have a limit on the maximum "time" they can
	 * record; typically a very small number of seconds.  For instance,
	 * with a 600MHz Core Clock, we can only count up to a bit more than
	 * 7s.  So we'll synthesize a larger counter in order to not run the
	 * risk of having the "timers" overflow and give us the flexibility to
	 * maintain a Hung SGE State Machine of our own which operates across
	 * a longer time frame.
	 */
	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
	idma->idma_stalled[0] = 0;
	idma->idma_stalled[1] = 0;
}

/**
 *	t4_idma_monitor - monitor SGE Ingress DMA state
 *	@adapter: the adapter
 *	@idma: the adapter IDMA Monitor state
 *	@hz: number of ticks/second
 *	@ticks: number of ticks since the last IDMA Monitor call
 */
void t4_idma_monitor(struct adapter *adapter,
		     struct sge_idma_monitor_state *idma,
		     int hz, int ticks)
{
	int i, idma_same_state_cnt[2];

	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
	  * are counters inside the SGE which count up on each clock when the
	  * SGE finds its Ingress DMA State Engines in the same states they
	  * were in the previous clock.  The counters will peg out at
	  * 0xffffffff without wrapping around so once they pass the 1s
	  * threshold they'll stay above that till the IDMA state changes.
	  */
	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);

	for (i = 0; i < 2; i++) {
		u32 debug0, debug11;

		/* If the Ingress DMA Same State Counter ("timer") is less
		 * than 1s, then we can reset our synthesized Stall Timer and
		 * continue.  If we have previously emitted warnings about a
		 * potential stalled Ingress Queue, issue a note indicating
		 * that the Ingress Queue has resumed forward progress.
		 */
		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
					 "resumed after %d seconds\n",
					 i, idma->idma_qid[i],
					 idma->idma_stalled[i] / hz);
			idma->idma_stalled[i] = 0;
			continue;
		}

		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
		 * domain.  The first time we get here it'll be because we
		 * passed the 1s Threshold; each additional time it'll be
		 * because the RX Timer Callback is being fired on its regular
		 * schedule.
		 *
		 * If the stall is below our Potential Hung Ingress Queue
		 * Warning Threshold, continue.
		 */
		if (idma->idma_stalled[i] == 0) {
			idma->idma_stalled[i] = hz;
			idma->idma_warn[i] = 0;
		} else {
			idma->idma_stalled[i] += ticks;
			idma->idma_warn[i] -= ticks;
		}

		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
			continue;

		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
		 */
		if (idma->idma_warn[i] > 0)
			continue;
		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;

		/* Read and save the SGE IDMA State and Queue ID information.
		 * We do this every time in case it changes across time ...
		 * can't be too careful ...
		 */
		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;

		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;

		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
			 i, idma->idma_qid[i], idma->idma_state[i],
			 idma->idma_stalled[i] / hz,
			 debug0, debug11);
		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
	}
}