intel_ringbuffer.h 19.5 KB
Newer Older
1 2 3
#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_

4
#include <linux/hashtable.h>
5
#include "i915_gem_batch_pool.h"
6 7 8

#define I915_CMD_HASH_ORDER 9

9 10 11 12 13 14
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
 * to give some inclination as to some of the magic values used in the various
 * workarounds!
 */
#define CACHELINE_BYTES 64
15
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
16

17 18 19 20 21 22 23 24 25 26 27
/*
 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
 * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
 * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
 *
 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
 * cacheline, the Head Pointer must not be greater than the Tail
 * Pointer."
 */
#define I915_RING_FREE_SPACE 64

28
struct  intel_hw_status_page {
29
	u32		*page_addr;
30
	unsigned int	gfx_addr;
31
	struct		drm_i915_gem_object *obj;
32 33
};

B
Ben Widawsky 已提交
34 35
#define I915_READ_TAIL(ring) I915_READ(RING_TAIL((ring)->mmio_base))
#define I915_WRITE_TAIL(ring, val) I915_WRITE(RING_TAIL((ring)->mmio_base), val)
36

B
Ben Widawsky 已提交
37 38
#define I915_READ_START(ring) I915_READ(RING_START((ring)->mmio_base))
#define I915_WRITE_START(ring, val) I915_WRITE(RING_START((ring)->mmio_base), val)
39

B
Ben Widawsky 已提交
40 41
#define I915_READ_HEAD(ring)  I915_READ(RING_HEAD((ring)->mmio_base))
#define I915_WRITE_HEAD(ring, val) I915_WRITE(RING_HEAD((ring)->mmio_base), val)
42

B
Ben Widawsky 已提交
43 44
#define I915_READ_CTL(ring) I915_READ(RING_CTL((ring)->mmio_base))
#define I915_WRITE_CTL(ring, val) I915_WRITE(RING_CTL((ring)->mmio_base), val)
45

B
Ben Widawsky 已提交
46 47
#define I915_READ_IMR(ring) I915_READ(RING_IMR((ring)->mmio_base))
#define I915_WRITE_IMR(ring, val) I915_WRITE(RING_IMR((ring)->mmio_base), val)
48

49
#define I915_READ_MODE(ring) I915_READ(RING_MI_MODE((ring)->mmio_base))
50
#define I915_WRITE_MODE(ring, val) I915_WRITE(RING_MI_MODE((ring)->mmio_base), val)
51

52 53 54
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
 */
55 56 57
#define gen8_semaphore_seqno_size sizeof(uint64_t)
#define GEN8_SEMAPHORE_OFFSET(__from, __to)			     \
	(((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
58 59
#define GEN8_SIGNAL_OFFSET(__ring, to)			     \
	(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
60
	 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
61 62
#define GEN8_WAIT_OFFSET(__ring, from)			     \
	(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
63
	 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
64

65
enum intel_ring_hangcheck_action {
66
	HANGCHECK_IDLE = 0,
67 68 69 70 71
	HANGCHECK_WAIT,
	HANGCHECK_ACTIVE,
	HANGCHECK_KICK,
	HANGCHECK_HUNG,
};
72

73 74
#define HANGCHECK_SCORE_RING_HUNG 31

75
struct intel_ring_hangcheck {
76
	u64 acthd;
77
	unsigned long user_interrupts;
78
	u32 seqno;
79
	int score;
80
	enum intel_ring_hangcheck_action action;
81
	int deadlock;
82
	u32 instdone[I915_NUM_INSTDONE_REG];
83 84
};

85 86 87
struct intel_ringbuffer {
	struct drm_i915_gem_object *obj;
	void __iomem *virtual_start;
88
	struct i915_vma *vma;
89

90
	struct intel_engine_cs *engine;
91
	struct list_head link;
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	u32 head;
	u32 tail;
	int space;
	int size;
	int effective_size;

	/** We track the position of the requests in the ring buffer, and
	 * when each is retired we increment last_retired_head as the GPU
	 * must have finished processing the request and so we know we
	 * can advance the ringbuffer up to that position.
	 *
	 * last_retired_head is set to -1 after the value is consumed so
	 * we can detect new retirements.
	 */
	u32 last_retired_head;
};

110
struct i915_gem_context;
111
struct drm_i915_reg_table;
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/*
 * we use a single page to load ctx workarounds so all of these
 * values are referred in terms of dwords
 *
 * struct i915_wa_ctx_bb:
 *  offset: specifies batch starting position, also helpful in case
 *    if we want to have multiple batches at different offsets based on
 *    some criteria. It is not a requirement at the moment but provides
 *    an option for future use.
 *  size: size of the batch in DWORDS
 */
struct  i915_ctx_workarounds {
	struct i915_wa_ctx_bb {
		u32 offset;
		u32 size;
	} indirect_ctx, per_ctx;
	struct drm_i915_gem_object *obj;
};

132 133
struct drm_i915_gem_request;

134 135
struct intel_engine_cs {
	struct drm_i915_private *i915;
136
	const char	*name;
137
	enum intel_engine_id {
138
		RCS = 0,
139
		BCS,
140 141 142
		VCS,
		VCS2,	/* Keep instances of the same type engine together. */
		VECS
143
	} id;
144
#define I915_NUM_ENGINES 5
145
#define _VCS(n) (VCS + (n))
146
	unsigned int exec_id;
147 148
	unsigned int hw_id;
	unsigned int guc_id; /* XXX same as hw_id? */
149
	u32		mmio_base;
150
	unsigned int irq_shift;
151
	struct intel_ringbuffer *buffer;
152
	struct list_head buffers;
153

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
	/* Rather than have every client wait upon all user interrupts,
	 * with the herd waking after every interrupt and each doing the
	 * heavyweight seqno dance, we delegate the task (of being the
	 * bottom-half of the user interrupt) to the first client. After
	 * every interrupt, we wake up one client, who does the heavyweight
	 * coherent seqno read and either goes back to sleep (if incomplete),
	 * or wakes up all the completed clients in parallel, before then
	 * transferring the bottom-half status to the next client in the queue.
	 *
	 * Compared to walking the entire list of waiters in a single dedicated
	 * bottom-half, we reduce the latency of the first waiter by avoiding
	 * a context switch, but incur additional coherent seqno reads when
	 * following the chain of request breadcrumbs. Since it is most likely
	 * that we have a single client waiting on each seqno, then reducing
	 * the overhead of waking that client is much preferred.
	 */
	struct intel_breadcrumbs {
171 172 173 174
		struct task_struct *irq_seqno_bh; /* bh for user interrupts */
		unsigned long irq_wakeups;
		bool irq_posted;

175 176
		spinlock_t lock; /* protects the lists of requests */
		struct rb_root waiters; /* sorted by retirement, priority */
177
		struct rb_root signals; /* sorted by retirement */
178
		struct intel_wait *first_wait; /* oldest waiter by retirement */
179
		struct task_struct *signaler; /* used for fence signalling */
180
		struct drm_i915_gem_request *first_signal;
181
		struct timer_list fake_irq; /* used after a missed interrupt */
182 183 184

		bool irq_enabled : 1;
		bool rpm_wakelock : 1;
185 186
	} breadcrumbs;

187 188 189 190 191 192 193
	/*
	 * A pool of objects to use as shadow copies of client batch buffers
	 * when the command parser is enabled. Prevents the client from
	 * modifying the batch contents after software parsing.
	 */
	struct i915_gem_batch_pool batch_pool;

194
	struct intel_hw_status_page status_page;
195
	struct i915_ctx_workarounds wa_ctx;
196

197 198
	u32             irq_keep_mask; /* always keep these interrupts */
	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
199 200
	void		(*irq_enable)(struct intel_engine_cs *ring);
	void		(*irq_disable)(struct intel_engine_cs *ring);
201

202
	int		(*init_hw)(struct intel_engine_cs *ring);
203

204
	int		(*init_context)(struct drm_i915_gem_request *req);
205

206
	void		(*write_tail)(struct intel_engine_cs *ring,
207
				      u32 value);
208
	int __must_check (*flush)(struct drm_i915_gem_request *req,
209 210
				  u32	invalidate_domains,
				  u32	flush_domains);
211
	int		(*add_request)(struct drm_i915_gem_request *req);
212 213 214 215 216 217
	/* Some chipsets are not quite as coherent as advertised and need
	 * an expensive kick to force a true read of the up-to-date seqno.
	 * However, the up-to-date seqno is not always required and the last
	 * seen value is good enough. Note that the seqno will always be
	 * monotonic, even if not coherent.
	 */
218
	void		(*irq_seqno_barrier)(struct intel_engine_cs *ring);
219
	int		(*dispatch_execbuffer)(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
220
					       u64 offset, u32 length,
221
					       unsigned dispatch_flags);
222
#define I915_DISPATCH_SECURE 0x1
223
#define I915_DISPATCH_PINNED 0x2
224
#define I915_DISPATCH_RS     0x4
225
	void		(*cleanup)(struct intel_engine_cs *ring);
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
	/* GEN8 signal/wait table - never trust comments!
	 *	  signal to	signal to    signal to   signal to      signal to
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
	 *  ie. transpose of g(x, y)
	 *
	 *	 sync from	sync from    sync from    sync from	sync from
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
	 *  ie. transpose of f(x, y)
	 */
264
	struct {
265
		u32	sync_seqno[I915_NUM_ENGINES-1];
266

267 268 269
		union {
			struct {
				/* our mbox written by others */
270
				u32		wait[I915_NUM_ENGINES];
271
				/* mboxes this ring signals to */
272
				i915_reg_t	signal[I915_NUM_ENGINES];
273
			} mbox;
274
			u64		signal_ggtt[I915_NUM_ENGINES];
275
		};
276 277

		/* AKA wait() */
278 279
		int	(*sync_to)(struct drm_i915_gem_request *to_req,
				   struct intel_engine_cs *from,
280
				   u32 seqno);
281
		int	(*signal)(struct drm_i915_gem_request *signaller_req,
282 283
				  /* num_dwords needed by caller */
				  unsigned int num_dwords);
284
	} semaphore;
285

286
	/* Execlists */
287 288
	struct tasklet_struct irq_tasklet;
	spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
289
	struct list_head execlist_queue;
290
	unsigned int fw_domains;
291 292
	unsigned int next_context_status_buffer;
	unsigned int idle_lite_restore_wa;
293 294
	bool disable_lite_restore_wa;
	u32 ctx_desc_template;
295
	int		(*emit_request)(struct drm_i915_gem_request *request);
296
	int		(*emit_flush)(struct drm_i915_gem_request *request,
297 298
				      u32 invalidate_domains,
				      u32 flush_domains);
299
	int		(*emit_bb_start)(struct drm_i915_gem_request *req,
300
					 u64 offset, unsigned dispatch_flags);
301

302 303 304 305 306
	/**
	 * List of objects currently involved in rendering from the
	 * ringbuffer.
	 *
	 * Includes buffers having the contents of their GPU caches
307
	 * flushed, not necessarily primitives.  last_read_req
308 309 310 311 312 313 314 315 316 317 318 319
	 * represents when the rendering involved will be completed.
	 *
	 * A reference is held on the buffer while on this list.
	 */
	struct list_head active_list;

	/**
	 * List of breadcrumbs associated with GPU requests currently
	 * outstanding.
	 */
	struct list_head request_list;

320 321 322 323 324 325 326
	/**
	 * Seqno of request most recently submitted to request_list.
	 * Used exclusively by hang checker to avoid grabbing lock while
	 * inspecting request list.
	 */
	u32 last_submitted_seqno;

327
	bool gpu_caches_dirty;
328

329
	struct i915_gem_context *last_context;
330

331 332
	struct intel_ring_hangcheck hangcheck;

333 334 335 336
	struct {
		struct drm_i915_gem_object *obj;
		u32 gtt_offset;
	} scratch;
337

338 339
	bool needs_cmd_parser;

340
	/*
341
	 * Table of commands the command parser needs to know about
342 343
	 * for this ring.
	 */
344
	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
345 346 347 348

	/*
	 * Table of registers allowed in commands that read/write registers.
	 */
349 350
	const struct drm_i915_reg_table *reg_tables;
	int reg_table_count;
351 352 353 354 355 356 357 358 359 360 361 362

	/*
	 * Returns the bitmask for the length field of the specified command.
	 * Return 0 for an unrecognized/invalid command.
	 *
	 * If the command parser finds an entry for a command in the ring's
	 * cmd_tables, it gets the command's length based on the table entry.
	 * If not, it calls this function to determine the per-ring length field
	 * encoding for the command (i.e. certain opcode ranges use certain bits
	 * to encode the command length in the header).
	 */
	u32 (*get_cmd_length_mask)(u32 cmd_header);
363 364
};

365 366 367 368
struct intel_engine_cs *
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id);

369
static inline bool
370
intel_engine_initialized(const struct intel_engine_cs *engine)
371
{
372
	return engine->i915 != NULL;
373
}
374

375
static inline unsigned
376
intel_engine_flag(const struct intel_engine_cs *engine)
377
{
378
	return 1 << engine->id;
379 380
}

381
static inline u32
382
intel_ring_sync_index(struct intel_engine_cs *engine,
383
		      struct intel_engine_cs *other)
384 385 386 387
{
	int idx;

	/*
R
Rodrigo Vivi 已提交
388 389 390 391 392
	 * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
	 * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
	 * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
	 * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
	 * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
393 394
	 */

395
	idx = (other - engine) - 1;
396
	if (idx < 0)
397
		idx += I915_NUM_ENGINES;
398 399 400 401

	return idx;
}

402
static inline void
403
intel_flush_status_page(struct intel_engine_cs *engine, int reg)
404
{
405 406 407
	mb();
	clflush(&engine->status_page.page_addr[reg]);
	mb();
408 409
}

410
static inline u32
411
intel_read_status_page(struct intel_engine_cs *engine, int reg)
412
{
413
	/* Ensure that the compiler doesn't optimize away the load. */
414
	return READ_ONCE(engine->status_page.page_addr[reg]);
415 416
}

M
Mika Kuoppala 已提交
417
static inline void
418
intel_write_status_page(struct intel_engine_cs *engine,
M
Mika Kuoppala 已提交
419 420
			int reg, u32 value)
{
421
	engine->status_page.page_addr[reg] = value;
M
Mika Kuoppala 已提交
422 423
}

424
/*
C
Chris Wilson 已提交
425 426 427 428 429 430 431 432 433 434 435
 * Reads a dword out of the status page, which is written to from the command
 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 * MI_STORE_DATA_IMM.
 *
 * The following dwords have a reserved meaning:
 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 * 0x04: ring 0 head pointer
 * 0x05: ring 1 head pointer (915-class)
 * 0x06: ring 2 head pointer (915-class)
 * 0x10-0x1b: Context status DWords (GM45)
 * 0x1f: Last written status offset. (GM45)
436
 * 0x20-0x2f: Reserved (Gen6+)
C
Chris Wilson 已提交
437
 *
438
 * The area from dword 0x30 to 0x3ff is available for driver usage.
C
Chris Wilson 已提交
439
 */
440
#define I915_GEM_HWS_INDEX		0x30
441
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
442
#define I915_GEM_HWS_SCRATCH_INDEX	0x40
443
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
C
Chris Wilson 已提交
444

445 446
struct intel_ringbuffer *
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size);
447
int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
448
				     struct intel_ringbuffer *ringbuf);
449 450
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf);
void intel_ringbuffer_free(struct intel_ringbuffer *ring);
451

452 453
void intel_stop_engine(struct intel_engine_cs *engine);
void intel_cleanup_engine(struct intel_engine_cs *engine);
454

455 456
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);

457
int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
458
int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
459
static inline void intel_ring_emit(struct intel_engine_cs *engine,
460
				   u32 data)
461
{
462
	struct intel_ringbuffer *ringbuf = engine->buffer;
463 464
	iowrite32(data, ringbuf->virtual_start + ringbuf->tail);
	ringbuf->tail += 4;
465
}
466
static inline void intel_ring_emit_reg(struct intel_engine_cs *engine,
467
				       i915_reg_t reg)
468
{
469
	intel_ring_emit(engine, i915_mmio_reg_offset(reg));
470
}
471
static inline void intel_ring_advance(struct intel_engine_cs *engine)
472
{
473
	struct intel_ringbuffer *ringbuf = engine->buffer;
474
	ringbuf->tail &= ringbuf->size - 1;
475
}
476
int __intel_ring_space(int head, int tail, int size);
477
void intel_ring_update_space(struct intel_ringbuffer *ringbuf);
478

479
int __must_check intel_engine_idle(struct intel_engine_cs *engine);
480
void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno);
481
int intel_ring_flush_all_caches(struct drm_i915_gem_request *req);
482
int intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req);
483

484
int intel_init_pipe_control(struct intel_engine_cs *engine, int size);
485
void intel_fini_pipe_control(struct intel_engine_cs *engine);
486

487 488 489 490 491
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
492

493
u64 intel_ring_get_active_head(struct intel_engine_cs *engine);
494 495 496 497
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
{
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}
498

499
int init_workarounds_ring(struct intel_engine_cs *engine);
500

501
static inline u32 intel_ring_get_tail(struct intel_ringbuffer *ringbuf)
502
{
503
	return ringbuf->tail;
504 505
}

506 507 508
/*
 * Arbitrary size for largest possible 'add request' sequence. The code paths
 * are complex and variable. Empirical measurement shows that the worst case
509 510 511
 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 * we need to allocate double the largest single packet within that emission
 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
512
 */
513
#define MIN_SPACE_FOR_ADD_REQUEST 336
514

515 516 517 518 519
static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
{
	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
}

520 521 522 523 524 525 526
/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
struct intel_wait {
	struct rb_node node;
	struct task_struct *tsk;
	u32 seqno;
};

527 528 529 530 531
struct intel_signal_node {
	struct rb_node node;
	struct intel_wait wait;
};

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);

static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
{
	wait->tsk = current;
	wait->seqno = seqno;
}

static inline bool intel_wait_complete(const struct intel_wait *wait)
{
	return RB_EMPTY_NODE(&wait->node);
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait);
void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait);
549
void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
550 551 552

static inline bool intel_engine_has_waiter(struct intel_engine_cs *engine)
{
553
	return READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
554 555 556 557 558
}

static inline bool intel_engine_wakeup(struct intel_engine_cs *engine)
{
	bool wakeup = false;
559
	struct task_struct *tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
	/* Note that for this not to dangerously chase a dangling pointer,
	 * the caller is responsible for ensure that the task remain valid for
	 * wake_up_process() i.e. that the RCU grace period cannot expire.
	 *
	 * Also note that tsk is likely to be in !TASK_RUNNING state so an
	 * early test for tsk->state != TASK_RUNNING before wake_up_process()
	 * is unlikely to be beneficial.
	 */
	if (tsk)
		wakeup = wake_up_process(tsk);
	return wakeup;
}

void intel_engine_enable_fake_irq(struct intel_engine_cs *engine);
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
unsigned int intel_kick_waiters(struct drm_i915_private *i915);
576
unsigned int intel_kick_signalers(struct drm_i915_private *i915);
577

578
#endif /* _INTEL_RINGBUFFER_H_ */