single_step.c 21.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright 2010 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 *
 * A code-rewriter that enables instruction single-stepping.
 * Derived from iLib's single-stepping code.
 */

18
#ifndef __tilegx__   /* Hardware support for single step unavailable. */
19 20 21 22 23 24 25

/* These functions are only used on the TILE platform */
#include <linux/slab.h>
#include <linux/thread_info.h>
#include <linux/uaccess.h>
#include <linux/mman.h>
#include <linux/types.h>
26
#include <linux/err.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include <asm/cacheflush.h>
#include <asm/opcode-tile.h>
#include <asm/opcode_constants.h>
#include <arch/abi.h>

#define signExtend17(val) sign_extend((val), 17)
#define TILE_X1_MASK (0xffffffffULL << 31)

int unaligned_printk;

static int __init setup_unaligned_printk(char *str)
{
	long val;
	if (strict_strtol(str, 0, &val) != 0)
		return 0;
	unaligned_printk = val;
43 44
	pr_info("Printk for each unaligned data accesses is %s\n",
		unaligned_printk ? "enabled" : "disabled");
45 46 47 48 49 50 51 52 53 54 55 56 57 58
	return 1;
}
__setup("unaligned_printk=", setup_unaligned_printk);

unsigned int unaligned_fixup_count;

enum mem_op {
	MEMOP_NONE,
	MEMOP_LOAD,
	MEMOP_STORE,
	MEMOP_LOAD_POSTINCR,
	MEMOP_STORE_POSTINCR
};

59
static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, s32 offset)
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
{
	tile_bundle_bits result;

	/* mask out the old offset */
	tile_bundle_bits mask = create_BrOff_X1(-1);
	result = n & (~mask);

	/* or in the new offset */
	result |= create_BrOff_X1(offset);

	return result;
}

static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src)
{
	tile_bundle_bits result;
	tile_bundle_bits op;

	result = n & (~TILE_X1_MASK);

	op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
		create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
		create_Dest_X1(dest) |
		create_SrcB_X1(TREG_ZERO) |
		create_SrcA_X1(src) ;

	result |= op;
	return result;
}

static inline tile_bundle_bits nop_X1(tile_bundle_bits n)
{
	return move_X1(n, TREG_ZERO, TREG_ZERO);
}

static inline tile_bundle_bits addi_X1(
	tile_bundle_bits n, int dest, int src, int imm)
{
	n &= ~TILE_X1_MASK;

	n |=  (create_SrcA_X1(src) |
	       create_Dest_X1(dest) |
	       create_Imm8_X1(imm) |
	       create_S_X1(0) |
	       create_Opcode_X1(IMM_0_OPCODE_X1) |
	       create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));

	return n;
}

static tile_bundle_bits rewrite_load_store_unaligned(
	struct single_step_state *state,
	tile_bundle_bits bundle,
	struct pt_regs *regs,
	enum mem_op mem_op,
	int size, int sign_ext)
{
117
	unsigned char __user *addr;
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	int val_reg, addr_reg, err, val;

	/* Get address and value registers */
	if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
		addr_reg = get_SrcA_Y2(bundle);
		val_reg = get_SrcBDest_Y2(bundle);
	} else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
		addr_reg = get_SrcA_X1(bundle);
		val_reg  = get_Dest_X1(bundle);
	} else {
		addr_reg = get_SrcA_X1(bundle);
		val_reg  = get_SrcB_X1(bundle);
	}

	/*
	 * If registers are not GPRs, don't try to handle it.
	 *
	 * FIXME: we could handle non-GPR loads by getting the real value
	 * from memory, writing it to the single step buffer, using a
	 * temp_reg to hold a pointer to that memory, then executing that
	 * instruction and resetting temp_reg.  For non-GPR stores, it's a
	 * little trickier; we could use the single step buffer for that
	 * too, but we'd have to add some more state bits so that we could
	 * call back in here to copy that value to the real target.  For
	 * now, we just handle the simple case.
	 */
	if ((val_reg >= PTREGS_NR_GPRS &&
	     (val_reg != TREG_ZERO ||
	      mem_op == MEMOP_LOAD ||
	      mem_op == MEMOP_LOAD_POSTINCR)) ||
	    addr_reg >= PTREGS_NR_GPRS)
		return bundle;

	/* If it's aligned, don't handle it specially */
152
	addr = (void __user *)regs->regs[addr_reg];
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	if (((unsigned long)addr % size) == 0)
		return bundle;

#ifndef __LITTLE_ENDIAN
# error We assume little-endian representation with copy_xx_user size 2 here
#endif
	/* Handle unaligned load/store */
	if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
		unsigned short val_16;
		switch (size) {
		case 2:
			err = copy_from_user(&val_16, addr, sizeof(val_16));
			val = sign_ext ? ((short)val_16) : val_16;
			break;
		case 4:
			err = copy_from_user(&val, addr, sizeof(val));
			break;
		default:
			BUG();
		}
		if (err == 0) {
			state->update_reg = val_reg;
			state->update_value = val;
			state->update = 1;
		}
	} else {
		val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
		err = copy_to_user(addr, &val, size);
	}

	if (err) {
		siginfo_t info = {
			.si_signo = SIGSEGV,
			.si_code = SEGV_MAPERR,
187
			.si_addr = addr
188 189 190 191 192 193 194 195 196
		};
		force_sig_info(info.si_signo, &info, current);
		return (tile_bundle_bits) 0;
	}

	if (unaligned_fixup == 0) {
		siginfo_t info = {
			.si_signo = SIGBUS,
			.si_code = BUS_ADRALN,
197
			.si_addr = addr
198 199 200 201 202 203
		};
		force_sig_info(info.si_signo, &info, current);
		return (tile_bundle_bits) 0;
	}

	if (unaligned_printk || unaligned_fixup_count == 0) {
204 205 206 207 208 209 210
		pr_info("Process %d/%s: PC %#lx: Fixup of"
			" unaligned %s at %#lx.\n",
			current->pid, current->comm, regs->pc,
			(mem_op == MEMOP_LOAD ||
			 mem_op == MEMOP_LOAD_POSTINCR) ?
			"load" : "store",
			(unsigned long)addr);
211
		if (!unaligned_printk) {
212 213 214 215 216 217 218 219 220 221 222 223
#define P pr_info
P("\n");
P("Unaligned fixups in the kernel will slow your application considerably.\n");
P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
P("access will become a SIGBUS you can debug. No further warnings will be\n");
P("shown so as to avoid additional slowdown, but you can track the number\n");
P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
P("\n");
#undef P
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
		}
	}
	++unaligned_fixup_count;

	if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
		/* Convert the Y2 instruction to a prefetch. */
		bundle &= ~(create_SrcBDest_Y2(-1) |
			    create_Opcode_Y2(-1));
		bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
			   create_Opcode_Y2(LW_OPCODE_Y2));
	/* Replace the load postincr with an addi */
	} else if (mem_op == MEMOP_LOAD_POSTINCR) {
		bundle = addi_X1(bundle, addr_reg, addr_reg,
				 get_Imm8_X1(bundle));
	/* Replace the store postincr with an addi */
	} else if (mem_op == MEMOP_STORE_POSTINCR) {
		bundle = addi_X1(bundle, addr_reg, addr_reg,
				 get_Dest_Imm8_X1(bundle));
	} else {
		/* Convert the X1 instruction to a nop. */
		bundle &= ~(create_Opcode_X1(-1) |
			    create_UnShOpcodeExtension_X1(-1) |
			    create_UnOpcodeExtension_X1(-1));
		bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
			   create_UnShOpcodeExtension_X1(
				   UN_0_SHUN_0_OPCODE_X1) |
			   create_UnOpcodeExtension_X1(
				   NOP_UN_0_SHUN_0_OPCODE_X1));
	}

	return bundle;
}

257 258 259 260 261 262 263 264 265 266 267 268
/*
 * Called after execve() has started the new image.  This allows us
 * to reset the info state.  Note that the the mmap'ed memory, if there
 * was any, has already been unmapped by the exec.
 */
void single_step_execve(void)
{
	struct thread_info *ti = current_thread_info();
	kfree(ti->step_state);
	ti->step_state = NULL;
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
/**
 * single_step_once() - entry point when single stepping has been triggered.
 * @regs: The machine register state
 *
 *  When we arrive at this routine via a trampoline, the single step
 *  engine copies the executing bundle to the single step buffer.
 *  If the instruction is a condition branch, then the target is
 *  reset to one past the next instruction. If the instruction
 *  sets the lr, then that is noted. If the instruction is a jump
 *  or call, then the new target pc is preserved and the current
 *  bundle instruction set to null.
 *
 *  The necessary post-single-step rewriting information is stored in
 *  single_step_state->  We use data segment values because the
 *  stack will be rewound when we run the rewritten single-stepped
 *  instruction.
 */
void single_step_once(struct pt_regs *regs)
{
	extern tile_bundle_bits __single_step_ill_insn;
	extern tile_bundle_bits __single_step_j_insn;
	extern tile_bundle_bits __single_step_addli_insn;
	extern tile_bundle_bits __single_step_auli_insn;
	struct thread_info *info = (void *)current_thread_info();
	struct single_step_state *state = info->step_state;
	int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
295
	tile_bundle_bits __user *buffer, *pc;
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	tile_bundle_bits bundle;
	int temp_reg;
	int target_reg = TREG_LR;
	int err;
	enum mem_op mem_op = MEMOP_NONE;
	int size = 0, sign_ext = 0;  /* happy compiler */

	asm(
"    .pushsection .rodata.single_step\n"
"    .align 8\n"
"    .globl    __single_step_ill_insn\n"
"__single_step_ill_insn:\n"
"    ill\n"
"    .globl    __single_step_addli_insn\n"
"__single_step_addli_insn:\n"
"    { nop; addli r0, zero, 0 }\n"
"    .globl    __single_step_auli_insn\n"
"__single_step_auli_insn:\n"
"    { nop; auli r0, r0, 0 }\n"
"    .globl    __single_step_j_insn\n"
"__single_step_j_insn:\n"
"    j .\n"
"    .popsection\n"
	);

321 322 323 324 325 326 327 328
	/*
	 * Enable interrupts here to allow touching userspace and the like.
	 * The callers expect this: do_trap() already has interrupts
	 * enabled, and do_work_pending() handles functions that enable
	 * interrupts internally.
	 */
	local_irq_enable();

329 330 331 332
	if (state == NULL) {
		/* allocate a page of writable, executable memory */
		state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
		if (state == NULL) {
333
			pr_err("Out of kernel memory trying to single-step\n");
334 335 336 337 338
			return;
		}

		/* allocate a cache line of writable, executable memory */
		down_write(&current->mm->mmap_sem);
339
		buffer = (void __user *) do_mmap(NULL, 0, 64,
340 341 342 343 344
					  PROT_EXEC | PROT_READ | PROT_WRITE,
					  MAP_PRIVATE | MAP_ANONYMOUS,
					  0);
		up_write(&current->mm->mmap_sem);

345
		if (IS_ERR((void __force *)buffer)) {
346
			kfree(state);
347
			pr_err("Out of kernel pages trying to single-step\n");
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
			return;
		}

		state->buffer = buffer;
		state->is_enabled = 0;

		info->step_state = state;

		/* Validate our stored instruction patterns */
		BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
		       ADDLI_OPCODE_X1);
		BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
		       AULI_OPCODE_X1);
		BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
		BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
		BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
	}

	/*
	 * If we are returning from a syscall, we still haven't hit the
	 * "ill" for the swint1 instruction.  So back the PC up to be
	 * pointing at the swint1, but we'll actually return directly
	 * back to the "ill" so we come back in via SIGILL as if we
	 * had "executed" the swint1 without ever being in kernel space.
	 */
	if (regs->faultnum == INT_SWINT_1)
		regs->pc -= 8;

376 377 378 379 380
	pc = (tile_bundle_bits __user *)(regs->pc);
	if (get_user(bundle, pc) != 0) {
		pr_err("Couldn't read instruction at %p trying to step\n", pc);
		return;
	}
381 382

	/* We'll follow the instruction with 2 ill op bundles */
383
	state->orig_pc = (unsigned long)pc;
384 385 386 387 388 389 390 391 392 393 394 395
	state->next_pc = (unsigned long)(pc + 1);
	state->branch_next_pc = 0;
	state->update = 0;

	if (!(bundle & TILE_BUNDLE_Y_ENCODING_MASK)) {
		/* two wide, check for control flow */
		int opcode = get_Opcode_X1(bundle);

		switch (opcode) {
		/* branches */
		case BRANCH_OPCODE_X1:
		{
396
			s32 offset = signExtend17(get_BrOff_X1(bundle));
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

			/*
			 * For branches, we use a rewriting trick to let the
			 * hardware evaluate whether the branch is taken or
			 * untaken.  We record the target offset and then
			 * rewrite the branch instruction to target 1 insn
			 * ahead if the branch is taken.  We then follow the
			 * rewritten branch with two bundles, each containing
			 * an "ill" instruction. The supervisor examines the
			 * pc after the single step code is executed, and if
			 * the pc is the first ill instruction, then the
			 * branch (if any) was not taken.  If the pc is the
			 * second ill instruction, then the branch was
			 * taken. The new pc is computed for these cases, and
			 * inserted into the registers for the thread.  If
			 * the pc is the start of the single step code, then
			 * an exception or interrupt was taken before the
			 * code started processing, and the same "original"
			 * pc is restored.  This change, different from the
			 * original implementation, has the advantage of
			 * executing a single user instruction.
			 */
			state->branch_next_pc = (unsigned long)(pc + offset);

			/* rewrite branch offset to go forward one bundle */
			bundle = set_BrOff_X1(bundle, 2);
		}
		break;

		/* jumps */
		case JALB_OPCODE_X1:
		case JALF_OPCODE_X1:
			state->update = 1;
			state->next_pc =
				(unsigned long) (pc + get_JOffLong_X1(bundle));
			break;

		case JB_OPCODE_X1:
		case JF_OPCODE_X1:
			state->next_pc =
				(unsigned long) (pc + get_JOffLong_X1(bundle));
			bundle = nop_X1(bundle);
			break;

		case SPECIAL_0_OPCODE_X1:
			switch (get_RRROpcodeExtension_X1(bundle)) {
			/* jump-register */
			case JALRP_SPECIAL_0_OPCODE_X1:
			case JALR_SPECIAL_0_OPCODE_X1:
				state->update = 1;
				state->next_pc =
					regs->regs[get_SrcA_X1(bundle)];
				break;

			case JRP_SPECIAL_0_OPCODE_X1:
			case JR_SPECIAL_0_OPCODE_X1:
				state->next_pc =
					regs->regs[get_SrcA_X1(bundle)];
				bundle = nop_X1(bundle);
				break;

			case LNK_SPECIAL_0_OPCODE_X1:
				state->update = 1;
				target_reg = get_Dest_X1(bundle);
				break;

			/* stores */
			case SH_SPECIAL_0_OPCODE_X1:
				mem_op = MEMOP_STORE;
				size = 2;
				break;

			case SW_SPECIAL_0_OPCODE_X1:
				mem_op = MEMOP_STORE;
				size = 4;
				break;
			}
			break;

		/* loads and iret */
		case SHUN_0_OPCODE_X1:
			if (get_UnShOpcodeExtension_X1(bundle) ==
			    UN_0_SHUN_0_OPCODE_X1) {
				switch (get_UnOpcodeExtension_X1(bundle)) {
				case LH_UN_0_SHUN_0_OPCODE_X1:
					mem_op = MEMOP_LOAD;
					size = 2;
					sign_ext = 1;
					break;

				case LH_U_UN_0_SHUN_0_OPCODE_X1:
					mem_op = MEMOP_LOAD;
					size = 2;
					sign_ext = 0;
					break;

				case LW_UN_0_SHUN_0_OPCODE_X1:
					mem_op = MEMOP_LOAD;
					size = 4;
					break;

				case IRET_UN_0_SHUN_0_OPCODE_X1:
				{
					unsigned long ex0_0 = __insn_mfspr(
						SPR_EX_CONTEXT_0_0);
					unsigned long ex0_1 = __insn_mfspr(
						SPR_EX_CONTEXT_0_1);
					/*
					 * Special-case it if we're iret'ing
					 * to PL0 again.  Otherwise just let
					 * it run and it will generate SIGILL.
					 */
					if (EX1_PL(ex0_1) == USER_PL) {
						state->next_pc = ex0_0;
						regs->ex1 = ex0_1;
						bundle = nop_X1(bundle);
					}
				}
				}
			}
			break;

#if CHIP_HAS_WH64()
		/* postincrement operations */
		case IMM_0_OPCODE_X1:
			switch (get_ImmOpcodeExtension_X1(bundle)) {
			case LWADD_IMM_0_OPCODE_X1:
				mem_op = MEMOP_LOAD_POSTINCR;
				size = 4;
				break;

			case LHADD_IMM_0_OPCODE_X1:
				mem_op = MEMOP_LOAD_POSTINCR;
				size = 2;
				sign_ext = 1;
				break;

			case LHADD_U_IMM_0_OPCODE_X1:
				mem_op = MEMOP_LOAD_POSTINCR;
				size = 2;
				sign_ext = 0;
				break;

			case SWADD_IMM_0_OPCODE_X1:
				mem_op = MEMOP_STORE_POSTINCR;
				size = 4;
				break;

			case SHADD_IMM_0_OPCODE_X1:
				mem_op = MEMOP_STORE_POSTINCR;
				size = 2;
				break;

			default:
				break;
			}
			break;
#endif /* CHIP_HAS_WH64() */
		}

		if (state->update) {
			/*
			 * Get an available register.  We start with a
			 * bitmask with 1's for available registers.
			 * We truncate to the low 32 registers since
			 * we are guaranteed to have set bits in the
			 * low 32 bits, then use ctz to pick the first.
			 */
			u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
					   (1ULL << get_SrcA_X0(bundle)) |
					   (1ULL << get_SrcB_X0(bundle)) |
					   (1ULL << target_reg));
			temp_reg = __builtin_ctz(mask);
			state->update_reg = temp_reg;
			state->update_value = regs->regs[temp_reg];
			regs->regs[temp_reg] = (unsigned long) (pc+1);
			regs->flags |= PT_FLAGS_RESTORE_REGS;
			bundle = move_X1(bundle, target_reg, temp_reg);
		}
	} else {
		int opcode = get_Opcode_Y2(bundle);

		switch (opcode) {
		/* loads */
		case LH_OPCODE_Y2:
			mem_op = MEMOP_LOAD;
			size = 2;
			sign_ext = 1;
			break;

		case LH_U_OPCODE_Y2:
			mem_op = MEMOP_LOAD;
			size = 2;
			sign_ext = 0;
			break;

		case LW_OPCODE_Y2:
			mem_op = MEMOP_LOAD;
			size = 4;
			break;

		/* stores */
		case SH_OPCODE_Y2:
			mem_op = MEMOP_STORE;
			size = 2;
			break;

		case SW_OPCODE_Y2:
			mem_op = MEMOP_STORE;
			size = 4;
			break;
		}
	}

	/*
	 * Check if we need to rewrite an unaligned load/store.
	 * Returning zero is a special value meaning we need to SIGSEGV.
	 */
	if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) {
		bundle = rewrite_load_store_unaligned(state, bundle, regs,
						      mem_op, size, sign_ext);
		if (bundle == 0)
			return;
	}

	/* write the bundle to our execution area */
	buffer = state->buffer;
	err = __put_user(bundle, buffer++);

	/*
	 * If we're really single-stepping, we take an INT_ILL after.
	 * If we're just handling an unaligned access, we can just
	 * jump directly back to where we were in user code.
	 */
	if (is_single_step) {
		err |= __put_user(__single_step_ill_insn, buffer++);
		err |= __put_user(__single_step_ill_insn, buffer++);
	} else {
		long delta;

		if (state->update) {
			/* We have some state to update; do it inline */
			int ha16;
			bundle = __single_step_addli_insn;
			bundle |= create_Dest_X1(state->update_reg);
			bundle |= create_Imm16_X1(state->update_value);
			err |= __put_user(bundle, buffer++);
			bundle = __single_step_auli_insn;
			bundle |= create_Dest_X1(state->update_reg);
			bundle |= create_SrcA_X1(state->update_reg);
			ha16 = (state->update_value + 0x8000) >> 16;
			bundle |= create_Imm16_X1(ha16);
			err |= __put_user(bundle, buffer++);
			state->update = 0;
		}

		/* End with a jump back to the next instruction */
		delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) -
			(unsigned long)buffer) >>
			TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
		bundle = __single_step_j_insn;
		bundle |= create_JOffLong_X1(delta);
		err |= __put_user(bundle, buffer++);
	}

	if (err) {
663
		pr_err("Fault when writing to single-step buffer\n");
664 665 666 667 668 669 670
		return;
	}

	/*
	 * Flush the buffer.
	 * We do a local flush only, since this is a thread-specific buffer.
	 */
671 672
	__flush_icache_range((unsigned long)state->buffer,
			     (unsigned long)buffer);
673 674 675

	/* Indicate enabled */
	state->is_enabled = is_single_step;
676
	regs->pc = (unsigned long)state->buffer;
677 678 679 680 681 682

	/* Fault immediately if we are coming back from a syscall. */
	if (regs->faultnum == INT_SWINT_1)
		regs->pc += 8;
}

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
#else
#include <linux/smp.h>
#include <linux/ptrace.h>
#include <arch/spr_def.h>

static DEFINE_PER_CPU(unsigned long, ss_saved_pc);


/*
 * Called directly on the occasion of an interrupt.
 *
 * If the process doesn't have single step set, then we use this as an
 * opportunity to turn single step off.
 *
 * It has been mentioned that we could conditionally turn off single stepping
 * on each entry into the kernel and rely on single_step_once to turn it
 * on for the processes that matter (as we already do), but this
 * implementation is somewhat more efficient in that we muck with registers
 * once on a bum interrupt rather than on every entry into the kernel.
 *
 * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
 * so we have to run through this process again before we can say that an
 * instruction has executed.
 *
 * swint will set CANCELED, but it's a legitimate instruction.  Fortunately
 * it changes the PC.  If it hasn't changed, then we know that the interrupt
 * wasn't generated by swint and we'll need to run this process again before
 * we can say an instruction has executed.
 *
 * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
 * on with our lives.
 */

void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
{
	unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
	struct thread_info *info = (void *)current_thread_info();
	int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
	unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);

	if (is_single_step == 0) {
		__insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);

	} else if ((*ss_pc != regs->pc) ||
		   (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {

		ptrace_notify(SIGTRAP);
		control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
		control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
		__insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
	}
}


/*
 * Called from need_singlestep.  Set up the control registers and the enable
 * register, then return back.
 */

void single_step_once(struct pt_regs *regs)
{
	unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
	unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);

	*ss_pc = regs->pc;
	control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
	control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
	__insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
	__insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
}

754 755 756 757 758
void single_step_execve(void)
{
	/* Nothing */
}

759
#endif /* !__tilegx__ */