e500_mmu_host.c 20.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
 *
 * Author: Yu Liu, yu.liu@freescale.com
 *         Scott Wood, scottwood@freescale.com
 *         Ashish Kalra, ashish.kalra@freescale.com
 *         Varun Sethi, varun.sethi@freescale.com
 *         Alexander Graf, agraf@suse.de
 *
 * Description:
 * This file is based on arch/powerpc/kvm/44x_tlb.c,
 * by Hollis Blanchard <hollisb@us.ibm.com>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/log2.h>
#include <linux/uaccess.h>
#include <linux/sched.h>
#include <linux/rwsem.h>
#include <linux/vmalloc.h>
#include <linux/hugetlb.h>
#include <asm/kvm_ppc.h>

#include "e500.h"
#include "timing.h"
#include "e500_mmu_host.h"

38 39
#include "trace_booke.h"

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
#define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)

static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];

static inline unsigned int tlb1_max_shadow_size(void)
{
	/* reserve one entry for magic page */
	return host_tlb_params[1].entries - tlbcam_index - 1;
}

static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
{
	/* Mask off reserved bits. */
	mas3 &= MAS3_ATTRIB_MASK;

#ifndef CONFIG_KVM_BOOKE_HV
	if (!usermode) {
		/* Guest is in supervisor mode,
		 * so we need to translate guest
		 * supervisor permissions into user permissions. */
		mas3 &= ~E500_TLB_USER_PERM_MASK;
		mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
	}
	mas3 |= E500_TLB_SUPER_PERM_MASK;
#endif
	return mas3;
}

/*
 * writing shadow tlb entry to host TLB
 */
static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
				     uint32_t mas0)
{
	unsigned long flags;

	local_irq_save(flags);
	mtspr(SPRN_MAS0, mas0);
	mtspr(SPRN_MAS1, stlbe->mas1);
	mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
	mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
	mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
#ifdef CONFIG_KVM_BOOKE_HV
	mtspr(SPRN_MAS8, stlbe->mas8);
#endif
	asm volatile("isync; tlbwe" : : : "memory");

#ifdef CONFIG_KVM_BOOKE_HV
	/* Must clear mas8 for other host tlbwe's */
	mtspr(SPRN_MAS8, 0);
	isync();
#endif
	local_irq_restore(flags);

	trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
	                              stlbe->mas2, stlbe->mas7_3);
}

/*
 * Acquire a mas0 with victim hint, as if we just took a TLB miss.
 *
 * We don't care about the address we're searching for, other than that it's
 * in the right set and is not present in the TLB.  Using a zero PID and a
 * userspace address means we don't have to set and then restore MAS5, or
 * calculate a proper MAS6 value.
 */
static u32 get_host_mas0(unsigned long eaddr)
{
	unsigned long flags;
	u32 mas0;
110
	u32 mas4;
111 112 113

	local_irq_save(flags);
	mtspr(SPRN_MAS6, 0);
114 115
	mas4 = mfspr(SPRN_MAS4);
	mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK);
116 117
	asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
	mas0 = mfspr(SPRN_MAS0);
118
	mtspr(SPRN_MAS4, mas4);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
	local_irq_restore(flags);

	return mas0;
}

/* sesel is for tlb1 only */
static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
		int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
{
	u32 mas0;

	if (tlbsel == 0) {
		mas0 = get_host_mas0(stlbe->mas2);
		__write_host_tlbe(stlbe, mas0);
	} else {
		__write_host_tlbe(stlbe,
				  MAS0_TLBSEL(1) |
				  MAS0_ESEL(to_htlb1_esel(sesel)));
	}
}

/* sesel is for tlb1 only */
static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
			struct kvm_book3e_206_tlb_entry *gtlbe,
			struct kvm_book3e_206_tlb_entry *stlbe,
			int stlbsel, int sesel)
{
	int stid;

	preempt_disable();
	stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);

	stlbe->mas1 |= MAS1_TID(stid);
	write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
	preempt_enable();
}

#ifdef CONFIG_KVM_E500V2
/* XXX should be a hook in the gva2hpa translation */
void kvmppc_map_magic(struct kvm_vcpu *vcpu)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
	struct kvm_book3e_206_tlb_entry magic;
	ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
	unsigned int stid;
	pfn_t pfn;

	pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
	get_page(pfn_to_page(pfn));

	preempt_disable();
	stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);

	magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
		     MAS1_TSIZE(BOOK3E_PAGESZ_4K);
	magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
	magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
		       MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
	magic.mas8 = 0;

	__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
	preempt_enable();
}
#endif

void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
			 int esel)
{
	struct kvm_book3e_206_tlb_entry *gtlbe =
		get_entry(vcpu_e500, tlbsel, esel);
	struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;

	/* Don't bother with unmapped entries */
S
Scott Wood 已提交
192 193 194 195 196
	if (!(ref->flags & E500_TLB_VALID)) {
		WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
		     "%s: flags %x\n", __func__, ref->flags);
		WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
	}
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

	if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
		u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
		int hw_tlb_indx;
		unsigned long flags;

		local_irq_save(flags);
		while (tmp) {
			hw_tlb_indx = __ilog2_u64(tmp & -tmp);
			mtspr(SPRN_MAS0,
			      MAS0_TLBSEL(1) |
			      MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
			mtspr(SPRN_MAS1, 0);
			asm volatile("tlbwe");
			vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
			tmp &= tmp - 1;
		}
		mb();
		vcpu_e500->g2h_tlb1_map[esel] = 0;
		ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
		local_irq_restore(flags);
218
	}
219

220 221 222 223 224 225 226
	if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
		/*
		 * TLB1 entry is backed by 4k pages. This should happen
		 * rarely and is not worth optimizing. Invalidate everything.
		 */
		kvmppc_e500_tlbil_all(vcpu_e500);
		ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
227 228
	}

229 230 231 232 233 234
	/*
	 * If TLB entry is still valid then it's a TLB0 entry, and thus
	 * backed by at most one host tlbe per shadow pid
	 */
	if (ref->flags & E500_TLB_VALID)
		kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
235 236

	/* Mark the TLB as not backed by the host anymore */
237
	ref->flags = 0;
238 239 240 241 242 243 244 245 246
}

static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
{
	return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
}

static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
					 struct kvm_book3e_206_tlb_entry *gtlbe,
247
					 pfn_t pfn, unsigned int wimg)
248 249
{
	ref->pfn = pfn;
250
	ref->flags = E500_TLB_VALID;
251

252 253 254
	/* Use guest supplied MAS2_G and MAS2_E */
	ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg;

255 256 257
	/* Mark the page accessed */
	kvm_set_pfn_accessed(pfn);

258 259 260 261 262 263 264
	if (tlbe_is_writable(gtlbe))
		kvm_set_pfn_dirty(pfn);
}

static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
{
	if (ref->flags & E500_TLB_VALID) {
S
Scott Wood 已提交
265
		/* FIXME: don't log bogus pfn for TLB1 */
266 267 268 269 270
		trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
		ref->flags = 0;
	}
}

271
static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
272 273 274 275 276 277 278 279 280 281 282
{
	if (vcpu_e500->g2h_tlb1_map)
		memset(vcpu_e500->g2h_tlb1_map, 0,
		       sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
	if (vcpu_e500->h2g_tlb1_rmap)
		memset(vcpu_e500->h2g_tlb1_rmap, 0,
		       sizeof(unsigned int) * host_tlb_params[1].entries);
}

static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
{
S
Scott Wood 已提交
283
	int tlbsel;
284 285
	int i;

S
Scott Wood 已提交
286 287 288 289 290 291
	for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
		for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
			struct tlbe_ref *ref =
				&vcpu_e500->gtlb_priv[tlbsel][i].ref;
			kvmppc_e500_ref_release(ref);
		}
292 293 294 295 296 297
	}
}

void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
S
Scott Wood 已提交
298 299
	kvmppc_e500_tlbil_all(vcpu_e500);
	clear_tlb_privs(vcpu_e500);
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	clear_tlb1_bitmap(vcpu_e500);
}

/* TID must be supplied by the caller */
static void kvmppc_e500_setup_stlbe(
	struct kvm_vcpu *vcpu,
	struct kvm_book3e_206_tlb_entry *gtlbe,
	int tsize, struct tlbe_ref *ref, u64 gvaddr,
	struct kvm_book3e_206_tlb_entry *stlbe)
{
	pfn_t pfn = ref->pfn;
	u32 pr = vcpu->arch.shared->msr & MSR_PR;

	BUG_ON(!(ref->flags & E500_TLB_VALID));

	/* Force IPROT=0 for all guest mappings. */
	stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
317
	stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR);
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
			e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);

#ifdef CONFIG_KVM_BOOKE_HV
	stlbe->mas8 = MAS8_TGS | vcpu->kvm->arch.lpid;
#endif
}

static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
	u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
	int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
	struct tlbe_ref *ref)
{
	struct kvm_memory_slot *slot;
	unsigned long pfn = 0; /* silence GCC warning */
	unsigned long hva;
	int pfnmap = 0;
	int tsize = BOOK3E_PAGESZ_4K;
336 337 338
	int ret = 0;
	unsigned long mmu_seq;
	struct kvm *kvm = vcpu_e500->vcpu.kvm;
339 340 341 342
	unsigned long tsize_pages = 0;
	pte_t *ptep;
	unsigned int wimg = 0;
	pgd_t *pgdir;
343 344 345 346

	/* used to check for invalidations in progress */
	mmu_seq = kvm->mmu_notifier_seq;
	smp_rmb();
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

	/*
	 * Translate guest physical to true physical, acquiring
	 * a page reference if it is normal, non-reserved memory.
	 *
	 * gfn_to_memslot() must succeed because otherwise we wouldn't
	 * have gotten this far.  Eventually we should just pass the slot
	 * pointer through from the first lookup.
	 */
	slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
	hva = gfn_to_hva_memslot(slot, gfn);

	if (tlbsel == 1) {
		struct vm_area_struct *vma;
		down_read(&current->mm->mmap_sem);

		vma = find_vma(current->mm, hva);
		if (vma && hva >= vma->vm_start &&
		    (vma->vm_flags & VM_PFNMAP)) {
			/*
			 * This VMA is a physically contiguous region (e.g.
			 * /dev/mem) that bypasses normal Linux page
			 * management.  Find the overlap between the
			 * vma and the memslot.
			 */

			unsigned long start, end;
			unsigned long slot_start, slot_end;

			pfnmap = 1;

			start = vma->vm_pgoff;
			end = start +
			      ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);

			pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);

			slot_start = pfn - (gfn - slot->base_gfn);
			slot_end = slot_start + slot->npages;

			if (start < slot_start)
				start = slot_start;
			if (end > slot_end)
				end = slot_end;

			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
				MAS1_TSIZE_SHIFT;

			/*
			 * e500 doesn't implement the lowest tsize bit,
			 * or 1K pages.
			 */
			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);

			/*
			 * Now find the largest tsize (up to what the guest
			 * requested) that will cover gfn, stay within the
			 * range, and for which gfn and pfn are mutually
			 * aligned.
			 */

			for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
409
				unsigned long gfn_start, gfn_end;
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
				tsize_pages = 1 << (tsize - 2);

				gfn_start = gfn & ~(tsize_pages - 1);
				gfn_end = gfn_start + tsize_pages;

				if (gfn_start + pfn - gfn < start)
					continue;
				if (gfn_end + pfn - gfn > end)
					continue;
				if ((gfn & (tsize_pages - 1)) !=
				    (pfn & (tsize_pages - 1)))
					continue;

				gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
				pfn &= ~(tsize_pages - 1);
				break;
			}
		} else if (vma && hva >= vma->vm_start &&
			   (vma->vm_flags & VM_HUGETLB)) {
			unsigned long psize = vma_kernel_pagesize(vma);

			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
				MAS1_TSIZE_SHIFT;

			/*
			 * Take the largest page size that satisfies both host
			 * and guest mapping
			 */
			tsize = min(__ilog2(psize) - 10, tsize);

			/*
			 * e500 doesn't implement the lowest tsize bit,
			 * or 1K pages.
			 */
			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
		}

		up_read(&current->mm->mmap_sem);
	}

	if (likely(!pfnmap)) {
451
		tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
452 453
		pfn = gfn_to_pfn_memslot(slot, gfn);
		if (is_error_noslot_pfn(pfn)) {
454 455 456
			if (printk_ratelimit())
				pr_err("%s: real page not found for gfn %lx\n",
				       __func__, (long)gfn);
457 458 459 460 461 462 463 464
			return -EINVAL;
		}

		/* Align guest and physical address to page map boundaries */
		pfn &= ~(tsize_pages - 1);
		gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
	}

465 466 467 468 469 470
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq)) {
		ret = -EAGAIN;
		goto out;
	}

471 472 473 474 475 476 477 478 479

	pgdir = vcpu_e500->vcpu.arch.pgdir;
	ptep = lookup_linux_ptep(pgdir, hva, &tsize_pages);
	if (pte_present(*ptep))
		wimg = (*ptep >> PTE_WIMGE_SHIFT) & MAS2_WIMGE_MASK;
	else {
		if (printk_ratelimit())
			pr_err("%s: pte not present: gfn %lx, pfn %lx\n",
				__func__, (long)gfn, pfn);
480 481
		ret = -EINVAL;
		goto out;
482 483
	}
	kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg);
484 485 486 487 488 489 490

	kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
				ref, gvaddr, stlbe);

	/* Clear i-cache for new pages */
	kvmppc_mmu_flush_icache(pfn);

491 492 493
out:
	spin_unlock(&kvm->mmu_lock);

494 495 496
	/* Drop refcount on page, so that mmu notifiers can clear it */
	kvm_release_pfn_clean(pfn);

497
	return ret;
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
}

/* XXX only map the one-one case, for now use TLB0 */
static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
				struct kvm_book3e_206_tlb_entry *stlbe)
{
	struct kvm_book3e_206_tlb_entry *gtlbe;
	struct tlbe_ref *ref;
	int stlbsel = 0;
	int sesel = 0;
	int r;

	gtlbe = get_entry(vcpu_e500, 0, esel);
	ref = &vcpu_e500->gtlb_priv[0][esel].ref;

	r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
			get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
			gtlbe, 0, stlbe, ref);
	if (r)
		return r;

	write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);

	return 0;
}

524 525 526 527 528 529 530 531 532 533
static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
				     struct tlbe_ref *ref,
				     int esel)
{
	unsigned int sesel = vcpu_e500->host_tlb1_nv++;

	if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
		vcpu_e500->host_tlb1_nv = 0;

	if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
534
		unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
535 536
		vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
	}
537 538 539

	vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
	vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
540
	vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
S
Scott Wood 已提交
541
	WARN_ON(!(ref->flags & E500_TLB_VALID));
542 543 544 545

	return sesel;
}

546 547
/* Caller must ensure that the specified guest TLB entry is safe to insert into
 * the shadow TLB. */
548
/* For both one-one and one-to-many */
549 550 551 552
static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
		u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
		struct kvm_book3e_206_tlb_entry *stlbe, int esel)
{
S
Scott Wood 已提交
553
	struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
554
	int sesel;
555 556 557
	int r;

	r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
S
Scott Wood 已提交
558
				   ref);
559 560 561
	if (r)
		return r;

562 563 564 565 566
	/* Use TLB0 when we can only map a page with 4k */
	if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
		vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
		write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
		return 0;
567 568
	}

569
	/* Otherwise map into TLB1 */
S
Scott Wood 已提交
570
	sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
571
	write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

	return 0;
}

void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
		    unsigned int index)
{
	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
	struct tlbe_priv *priv;
	struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
	int tlbsel = tlbsel_of(index);
	int esel = esel_of(index);

	gtlbe = get_entry(vcpu_e500, tlbsel, esel);

	switch (tlbsel) {
	case 0:
		priv = &vcpu_e500->gtlb_priv[tlbsel][esel];

S
Scott Wood 已提交
591
		/* Triggers after clear_tlb_privs or on initial mapping */
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
		if (!(priv->ref.flags & E500_TLB_VALID)) {
			kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
		} else {
			kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
						&priv->ref, eaddr, &stlbe);
			write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
		}
		break;

	case 1: {
		gfn_t gfn = gpaddr >> PAGE_SHIFT;
		kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
				     esel);
		break;
	}

	default:
		BUG();
		break;
	}
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
#ifdef CONFIG_KVM_BOOKE_HV
int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type,
			  u32 *instr)
{
	gva_t geaddr;
	hpa_t addr;
	hfn_t pfn;
	hva_t eaddr;
	u32 mas1, mas2, mas3;
	u64 mas7_mas3;
	struct page *page;
	unsigned int addr_space, psize_shift;
	bool pr;
	unsigned long flags;

	/* Search TLB for guest pc to get the real address */
	geaddr = kvmppc_get_pc(vcpu);

	addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG;

	local_irq_save(flags);
	mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space);
	mtspr(SPRN_MAS5, MAS5_SGS | vcpu->kvm->arch.lpid);
	asm volatile("tlbsx 0, %[geaddr]\n" : :
		     [geaddr] "r" (geaddr));
	mtspr(SPRN_MAS5, 0);
	mtspr(SPRN_MAS8, 0);
	mas1 = mfspr(SPRN_MAS1);
	mas2 = mfspr(SPRN_MAS2);
	mas3 = mfspr(SPRN_MAS3);
#ifdef CONFIG_64BIT
	mas7_mas3 = mfspr(SPRN_MAS7_MAS3);
#else
	mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3;
#endif
	local_irq_restore(flags);

	/*
	 * If the TLB entry for guest pc was evicted, return to the guest.
	 * There are high chances to find a valid TLB entry next time.
	 */
	if (!(mas1 & MAS1_VALID))
		return EMULATE_AGAIN;

	/*
	 * Another thread may rewrite the TLB entry in parallel, don't
	 * execute from the address if the execute permission is not set
	 */
	pr = vcpu->arch.shared->msr & MSR_PR;
	if (unlikely((pr && !(mas3 & MAS3_UX)) ||
		     (!pr && !(mas3 & MAS3_SX)))) {
		pr_err_ratelimited(
			"%s: Instuction emulation from guest addres %08lx without execute permission\n",
			__func__, geaddr);
		return EMULATE_AGAIN;
	}

	/*
	 * The real address will be mapped by a cacheable, memory coherent,
	 * write-back page. Check for mismatches when LRAT is used.
	 */
	if (has_feature(vcpu, VCPU_FTR_MMU_V2) &&
	    unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) {
		pr_err_ratelimited(
			"%s: Instuction emulation from guest addres %08lx mismatches storage attributes\n",
			__func__, geaddr);
		return EMULATE_AGAIN;
	}

	/* Get pfn */
	psize_shift = MAS1_GET_TSIZE(mas1) + 10;
	addr = (mas7_mas3 & (~0ULL << psize_shift)) |
	       (geaddr & ((1ULL << psize_shift) - 1ULL));
	pfn = addr >> PAGE_SHIFT;

	/* Guard against emulation from devices area */
	if (unlikely(!page_is_ram(pfn))) {
		pr_err_ratelimited("%s: Instruction emulation from non-RAM host addres %08llx is not supported\n",
			 __func__, addr);
		return EMULATE_AGAIN;
	}

	/* Map a page and get guest's instruction */
	page = pfn_to_page(pfn);
	eaddr = (unsigned long)kmap_atomic(page);
	*instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK));
	kunmap_atomic((u32 *)eaddr);

	return EMULATE_DONE;
}
#else
705 706 707 708 709
int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type,
			  u32 *instr)
{
	return EMULATE_AGAIN;
}
710
#endif
711

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
/************* MMU Notifiers *************/

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
	trace_kvm_unmap_hva(hva);

	/*
	 * Flush all shadow tlb entries everywhere. This is slow, but
	 * we are 100% sure that we catch the to be unmapped page
	 */
	kvm_flush_remote_tlbs(kvm);

	return 0;
}

int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	/* kvm_unmap_hva flushes everything anyways */
	kvm_unmap_hva(kvm, start);

	return 0;
}

int kvm_age_hva(struct kvm *kvm, unsigned long hva)
{
	/* XXX could be more clever ;) */
	return 0;
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	/* XXX could be more clever ;) */
	return 0;
}

void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	/* The page will get remapped properly on its next fault */
	kvm_unmap_hva(kvm, hva);
}

/*****************************************/

int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
{
	host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
	host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;

	/*
	 * This should never happen on real e500 hardware, but is
	 * architecturally possible -- e.g. in some weird nested
	 * virtualization case.
	 */
	if (host_tlb_params[0].entries == 0 ||
	    host_tlb_params[1].entries == 0) {
		pr_err("%s: need to know host tlb size\n", __func__);
		return -ENODEV;
	}

	host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
				  TLBnCFG_ASSOC_SHIFT;
	host_tlb_params[1].ways = host_tlb_params[1].entries;

	if (!is_power_of_2(host_tlb_params[0].entries) ||
	    !is_power_of_2(host_tlb_params[0].ways) ||
	    host_tlb_params[0].entries < host_tlb_params[0].ways ||
	    host_tlb_params[0].ways == 0) {
		pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
		       __func__, host_tlb_params[0].entries,
		       host_tlb_params[0].ways);
		return -ENODEV;
	}

	host_tlb_params[0].sets =
		host_tlb_params[0].entries / host_tlb_params[0].ways;
	host_tlb_params[1].sets = 1;

	vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) *
					   host_tlb_params[1].entries,
					   GFP_KERNEL);
	if (!vcpu_e500->h2g_tlb1_rmap)
S
Scott Wood 已提交
793
		return -EINVAL;
794 795 796 797 798 799 800 801

	return 0;
}

void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
{
	kfree(vcpu_e500->h2g_tlb1_rmap);
}