perf_counter.c 99.9 KB
Newer Older
T
Thomas Gleixner 已提交
1 2 3
/*
 * Performance counter core code
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9
 *
 *  For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22 23 24
#include <linux/vmstat.h>
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
25 26 27
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
28
#include <linux/kernel_stat.h>
T
Thomas Gleixner 已提交
29 30
#include <linux/perf_counter.h>

31 32
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
33 34 35 36 37
/*
 * Each CPU has a list of per CPU counters:
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

38
int perf_max_counters __read_mostly = 1;
T
Thomas Gleixner 已提交
39 40 41
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

42
static atomic_t nr_counters __read_mostly;
P
Peter Zijlstra 已提交
43 44
static atomic_t nr_mmap_counters __read_mostly;
static atomic_t nr_comm_counters __read_mostly;
45

46
/*
47 48 49 50
 * perf counter paranoia level:
 *  0 - not paranoid
 *  1 - disallow cpu counters to unpriv
 *  2 - disallow kernel profiling to unpriv
51
 */
52
int sysctl_perf_counter_paranoid __read_mostly;
53 54 55 56 57 58 59 60 61 62 63

static inline bool perf_paranoid_cpu(void)
{
	return sysctl_perf_counter_paranoid > 0;
}

static inline bool perf_paranoid_kernel(void)
{
	return sysctl_perf_counter_paranoid > 1;
}

64
int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
65 66 67 68 69

/*
 * max perf counter sample rate
 */
int sysctl_perf_counter_sample_rate __read_mostly = 100000;
70

71 72
static atomic64_t perf_counter_id;

T
Thomas Gleixner 已提交
73
/*
74
 * Lock for (sysadmin-configurable) counter reservations:
T
Thomas Gleixner 已提交
75
 */
76
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
77 78 79 80

/*
 * Architecture provided APIs - weak aliases:
 */
81
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
T
Thomas Gleixner 已提交
82
{
83
	return NULL;
T
Thomas Gleixner 已提交
84 85
}

86 87 88
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

89
void __weak hw_perf_counter_setup(int cpu)	{ barrier(); }
90 91 92

int __weak
hw_perf_group_sched_in(struct perf_counter *group_leader,
93 94 95 96 97
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx, int cpu)
{
	return 0;
}
T
Thomas Gleixner 已提交
98

99 100
void __weak perf_counter_print_debug(void)	{ }

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
static DEFINE_PER_CPU(int, disable_count);

void __perf_disable(void)
{
	__get_cpu_var(disable_count)++;
}

bool __perf_enable(void)
{
	return !--__get_cpu_var(disable_count);
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

125 126 127 128 129
static void get_ctx(struct perf_counter_context *ctx)
{
	atomic_inc(&ctx->refcount);
}

130 131 132 133 134 135 136 137
static void free_ctx(struct rcu_head *head)
{
	struct perf_counter_context *ctx;

	ctx = container_of(head, struct perf_counter_context, rcu_head);
	kfree(ctx);
}

138 139
static void put_ctx(struct perf_counter_context *ctx)
{
140 141 142
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
143 144 145
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
146
	}
147 148
}

149 150 151 152 153
/*
 * Get the perf_counter_context for a task and lock it.
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
154 155
static struct perf_counter_context *
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
{
	struct perf_counter_context *ctx;

	rcu_read_lock();
 retry:
	ctx = rcu_dereference(task->perf_counter_ctxp);
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
		 * perf_counter_task_sched_out, though the
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
		if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
{
	struct perf_counter_context *ctx;
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		get_ctx(ctx);
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

static void perf_unpin_context(struct perf_counter_context *ctx)
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

212 213 214 215
/*
 * Add a counter from the lists for its context.
 * Must be called with ctx->mutex and ctx->lock held.
 */
216 217 218 219 220 221 222 223 224 225
static void
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *group_leader = counter->group_leader;

	/*
	 * Depending on whether it is a standalone or sibling counter,
	 * add it straight to the context's counter list, or to the group
	 * leader's sibling list:
	 */
P
Peter Zijlstra 已提交
226
	if (group_leader == counter)
227
		list_add_tail(&counter->list_entry, &ctx->counter_list);
P
Peter Zijlstra 已提交
228
	else {
229
		list_add_tail(&counter->list_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
230 231
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
232 233

	list_add_rcu(&counter->event_entry, &ctx->event_list);
234
	ctx->nr_counters++;
235 236
}

237 238
/*
 * Remove a counter from the lists for its context.
239
 * Must be called with ctx->mutex and ctx->lock held.
240
 */
241 242 243 244 245
static void
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
{
	struct perf_counter *sibling, *tmp;

246 247
	if (list_empty(&counter->list_entry))
		return;
248 249
	ctx->nr_counters--;

250
	list_del_init(&counter->list_entry);
P
Peter Zijlstra 已提交
251
	list_del_rcu(&counter->event_entry);
252

P
Peter Zijlstra 已提交
253 254 255
	if (counter->group_leader != counter)
		counter->group_leader->nr_siblings--;

256 257 258 259 260 261 262 263
	/*
	 * If this was a group counter with sibling counters then
	 * upgrade the siblings to singleton counters by adding them
	 * to the context list directly:
	 */
	list_for_each_entry_safe(sibling, tmp,
				 &counter->sibling_list, list_entry) {

264
		list_move_tail(&sibling->list_entry, &ctx->counter_list);
265 266 267 268
		sibling->group_leader = sibling;
	}
}

269 270 271 272 273 274 275 276 277
static void
counter_sched_out(struct perf_counter *counter,
		  struct perf_cpu_context *cpuctx,
		  struct perf_counter_context *ctx)
{
	if (counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter->state = PERF_COUNTER_STATE_INACTIVE;
278
	counter->tstamp_stopped = ctx->time;
279
	counter->pmu->disable(counter);
280 281 282 283 284
	counter->oncpu = -1;

	if (!is_software_counter(counter))
		cpuctx->active_oncpu--;
	ctx->nr_active--;
285
	if (counter->attr.exclusive || !cpuctx->active_oncpu)
286 287 288
		cpuctx->exclusive = 0;
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static void
group_sched_out(struct perf_counter *group_counter,
		struct perf_cpu_context *cpuctx,
		struct perf_counter_context *ctx)
{
	struct perf_counter *counter;

	if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
		return;

	counter_sched_out(group_counter, cpuctx, ctx);

	/*
	 * Schedule out siblings (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
		counter_sched_out(counter, cpuctx, ctx);

307
	if (group_counter->attr.exclusive)
308 309 310
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
311 312 313 314 315 316
/*
 * Cross CPU call to remove a performance counter
 *
 * We disable the counter on the hardware level first. After that we
 * remove it from the context list.
 */
317
static void __perf_counter_remove_from_context(void *info)
T
Thomas Gleixner 已提交
318 319 320 321 322 323 324 325 326 327
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
328
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
329 330
		return;

331
	spin_lock(&ctx->lock);
332 333 334 335 336
	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level.
	 */
	perf_disable();
T
Thomas Gleixner 已提交
337

338 339
	counter_sched_out(counter, cpuctx, ctx);

340
	list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
341 342 343 344 345 346 347 348 349 350 351

	if (!ctx->task) {
		/*
		 * Allow more per task counters with respect to the
		 * reservation:
		 */
		cpuctx->max_pertask =
			min(perf_max_counters - ctx->nr_counters,
			    perf_max_counters - perf_reserved_percpu);
	}

352
	perf_enable();
353
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
354 355 356 357 358 359
}


/*
 * Remove the counter from a task's (or a CPU's) list of counters.
 *
360
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
361 362 363
 *
 * CPU counters are removed with a smp call. For task counters we only
 * call when the task is on a CPU.
364 365 366 367 368 369 370
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
 * When called from perf_counter_exit_task, it's OK because the
 * context has been detached from its task.
T
Thomas Gleixner 已提交
371
 */
372
static void perf_counter_remove_from_context(struct perf_counter *counter)
T
Thomas Gleixner 已提交
373 374 375 376 377 378 379 380 381 382
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are removed via an smp call and
		 * the removal is always sucessful.
		 */
		smp_call_function_single(counter->cpu,
383
					 __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
384 385 386 387 388
					 counter, 1);
		return;
	}

retry:
389
	task_oncpu_function_call(task, __perf_counter_remove_from_context,
T
Thomas Gleixner 已提交
390 391 392 393 394 395
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
396
	if (ctx->nr_active && !list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
397 398 399 400 401 402
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
403
	 * can remove the counter safely, if the call above did not
T
Thomas Gleixner 已提交
404 405
	 * succeed.
	 */
406 407
	if (!list_empty(&counter->list_entry)) {
		list_del_counter(counter, ctx);
T
Thomas Gleixner 已提交
408 409 410 411
	}
	spin_unlock_irq(&ctx->lock);
}

412
static inline u64 perf_clock(void)
413
{
414
	return cpu_clock(smp_processor_id());
415 416 417 418 419
}

/*
 * Update the record of the current time in a context.
 */
420
static void update_context_time(struct perf_counter_context *ctx)
421
{
422 423 424 425
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
426 427 428 429 430 431 432 433 434 435
}

/*
 * Update the total_time_enabled and total_time_running fields for a counter.
 */
static void update_counter_times(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	u64 run_end;

436 437 438 439 440 441 442 443 444 445 446
	if (counter->state < PERF_COUNTER_STATE_INACTIVE)
		return;

	counter->total_time_enabled = ctx->time - counter->tstamp_enabled;

	if (counter->state == PERF_COUNTER_STATE_INACTIVE)
		run_end = counter->tstamp_stopped;
	else
		run_end = ctx->time;

	counter->total_time_running = run_end - counter->tstamp_running;
447 448 449 450 451 452 453 454 455 456 457 458 459 460
}

/*
 * Update total_time_enabled and total_time_running for all counters in a group.
 */
static void update_group_times(struct perf_counter *leader)
{
	struct perf_counter *counter;

	update_counter_times(leader);
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		update_counter_times(counter);
}

461 462 463 464 465 466 467 468 469 470 471 472 473
/*
 * Cross CPU call to disable a performance counter
 */
static void __perf_counter_disable(void *info)
{
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;

	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
474
	if (ctx->task && cpuctx->task_ctx != ctx)
475 476
		return;

477
	spin_lock(&ctx->lock);
478 479 480 481 482 483

	/*
	 * If the counter is on, turn it off.
	 * If it is in error state, leave it in error state.
	 */
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
484
		update_context_time(ctx);
485
		update_counter_times(counter);
486 487 488 489 490 491 492
		if (counter == counter->group_leader)
			group_sched_out(counter, cpuctx, ctx);
		else
			counter_sched_out(counter, cpuctx, ctx);
		counter->state = PERF_COUNTER_STATE_OFF;
	}

493
	spin_unlock(&ctx->lock);
494 495 496 497
}

/*
 * Disable a counter.
498 499 500 501 502 503 504 505 506 507
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisifed when called through
 * perf_counter_for_each_child or perf_counter_for_each because they
 * hold the top-level counter's child_mutex, so any descendant that
 * goes to exit will block in sync_child_counter.
 * When called from perf_pending_counter it's OK because counter->ctx
 * is the current context on this CPU and preemption is disabled,
 * hence we can't get into perf_counter_task_sched_out for this context.
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
 */
static void perf_counter_disable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Disable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_disable,
					 counter, 1);
		return;
	}

 retry:
	task_oncpu_function_call(task, __perf_counter_disable, counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * If the counter is still active, we need to retry the cross-call.
	 */
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
539 540
	if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
541
		counter->state = PERF_COUNTER_STATE_OFF;
542
	}
543 544 545 546

	spin_unlock_irq(&ctx->lock);
}

547 548 549 550 551 552
static int
counter_sched_in(struct perf_counter *counter,
		 struct perf_cpu_context *cpuctx,
		 struct perf_counter_context *ctx,
		 int cpu)
{
553
	if (counter->state <= PERF_COUNTER_STATE_OFF)
554 555 556 557 558 559 560 561 562
		return 0;

	counter->state = PERF_COUNTER_STATE_ACTIVE;
	counter->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

563
	if (counter->pmu->enable(counter)) {
564 565 566 567 568
		counter->state = PERF_COUNTER_STATE_INACTIVE;
		counter->oncpu = -1;
		return -EAGAIN;
	}

569
	counter->tstamp_running += ctx->time - counter->tstamp_stopped;
570

571 572
	if (!is_software_counter(counter))
		cpuctx->active_oncpu++;
573 574
	ctx->nr_active++;

575
	if (counter->attr.exclusive)
576 577
		cpuctx->exclusive = 1;

578 579 580
	return 0;
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
static int
group_sched_in(struct perf_counter *group_counter,
	       struct perf_cpu_context *cpuctx,
	       struct perf_counter_context *ctx,
	       int cpu)
{
	struct perf_counter *counter, *partial_group;
	int ret;

	if (group_counter->state == PERF_COUNTER_STATE_OFF)
		return 0;

	ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
	if (ret)
		return ret < 0 ? ret : 0;

	if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
			partial_group = counter;
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
	list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
		if (counter == partial_group)
			break;
		counter_sched_out(counter, cpuctx, ctx);
	}
	counter_sched_out(group_counter, cpuctx, ctx);

	return -EAGAIN;
}

627 628 629 630 631 632 633 634 635 636
/*
 * Return 1 for a group consisting entirely of software counters,
 * 0 if the group contains any hardware counters.
 */
static int is_software_only_group(struct perf_counter *leader)
{
	struct perf_counter *counter;

	if (!is_software_counter(leader))
		return 0;
P
Peter Zijlstra 已提交
637

638 639 640
	list_for_each_entry(counter, &leader->sibling_list, list_entry)
		if (!is_software_counter(counter))
			return 0;
P
Peter Zijlstra 已提交
641

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	return 1;
}

/*
 * Work out whether we can put this counter group on the CPU now.
 */
static int group_can_go_on(struct perf_counter *counter,
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
	 * Groups consisting entirely of software counters can always go on.
	 */
	if (is_software_only_group(counter))
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
	 * counters can go on.
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
	 * counters on the CPU, it can't go on.
	 */
667
	if (counter->attr.exclusive && cpuctx->active_oncpu)
668 669 670 671 672 673 674 675
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

676 677 678 679
static void add_counter_to_ctx(struct perf_counter *counter,
			       struct perf_counter_context *ctx)
{
	list_add_counter(counter, ctx);
680 681 682
	counter->tstamp_enabled = ctx->time;
	counter->tstamp_running = ctx->time;
	counter->tstamp_stopped = ctx->time;
683 684
}

T
Thomas Gleixner 已提交
685
/*
686
 * Cross CPU call to install and enable a performance counter
687 688
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
689 690 691 692 693 694
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter *counter = info;
	struct perf_counter_context *ctx = counter->ctx;
695
	struct perf_counter *leader = counter->group_leader;
T
Thomas Gleixner 已提交
696
	int cpu = smp_processor_id();
697
	int err;
T
Thomas Gleixner 已提交
698 699 700 701 702

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
703 704
	 * Or possibly this is the right context but it isn't
	 * on this cpu because it had no counters.
T
Thomas Gleixner 已提交
705
	 */
706
	if (ctx->task && cpuctx->task_ctx != ctx) {
707
		if (cpuctx->task_ctx || ctx->task != current)
708 709 710
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
711

712
	spin_lock(&ctx->lock);
713
	ctx->is_active = 1;
714
	update_context_time(ctx);
T
Thomas Gleixner 已提交
715 716 717 718 719

	/*
	 * Protect the list operation against NMI by disabling the
	 * counters on a global level. NOP for non NMI based counters.
	 */
720
	perf_disable();
T
Thomas Gleixner 已提交
721

722
	add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
723

724 725 726 727 728 729 730 731
	/*
	 * Don't put the counter on if it is disabled or if
	 * it is in a group and the group isn't on.
	 */
	if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
	    (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
		goto unlock;

732 733 734 735 736
	/*
	 * An exclusive counter can't go on if there are already active
	 * hardware counters, and no hardware counter can go on if there
	 * is already an exclusive counter on.
	 */
737
	if (!group_can_go_on(counter, cpuctx, 1))
738 739 740 741
		err = -EEXIST;
	else
		err = counter_sched_in(counter, cpuctx, ctx, cpu);

742 743 744 745 746 747 748 749
	if (err) {
		/*
		 * This counter couldn't go on.  If it is in a group
		 * then we have to pull the whole group off.
		 * If the counter group is pinned then put it in error state.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
750
		if (leader->attr.pinned) {
751
			update_group_times(leader);
752
			leader->state = PERF_COUNTER_STATE_ERROR;
753
		}
754
	}
T
Thomas Gleixner 已提交
755

756
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
757 758
		cpuctx->max_pertask--;

759
 unlock:
760
	perf_enable();
761

762
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
763 764 765 766 767 768 769 770 771 772 773
}

/*
 * Attach a performance counter to a context
 *
 * First we add the counter to the list with the hardware enable bit
 * in counter->hw_config cleared.
 *
 * If the counter is attached to a task which is on a CPU we use a smp
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
774 775
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
 */
static void
perf_install_in_context(struct perf_counter_context *ctx,
			struct perf_counter *counter,
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Per cpu counters are installed via an smp call and
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
					 counter, 1);
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
				 counter);

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
802
	if (ctx->is_active && list_empty(&counter->list_entry)) {
T
Thomas Gleixner 已提交
803 804 805 806 807 808 809 810 811
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
	 * can add the counter safely, if it the call above did not
	 * succeed.
	 */
812 813
	if (list_empty(&counter->list_entry))
		add_counter_to_ctx(counter, ctx);
T
Thomas Gleixner 已提交
814 815 816
	spin_unlock_irq(&ctx->lock);
}

817 818 819 820
/*
 * Cross CPU call to enable a performance counter
 */
static void __perf_counter_enable(void *info)
821
{
822 823 824 825 826
	struct perf_counter *counter = info;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *leader = counter->group_leader;
	int err;
827

828 829 830 831
	/*
	 * If this is a per-task counter, need to check whether this
	 * counter's task is the current task on this cpu.
	 */
832
	if (ctx->task && cpuctx->task_ctx != ctx) {
833
		if (cpuctx->task_ctx || ctx->task != current)
834 835 836
			return;
		cpuctx->task_ctx = ctx;
	}
837

838
	spin_lock(&ctx->lock);
839
	ctx->is_active = 1;
840
	update_context_time(ctx);
841 842 843 844

	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto unlock;
	counter->state = PERF_COUNTER_STATE_INACTIVE;
845
	counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
846 847

	/*
848 849
	 * If the counter is in a group and isn't the group leader,
	 * then don't put it on unless the group is on.
850
	 */
851 852
	if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
		goto unlock;
853

854
	if (!group_can_go_on(counter, cpuctx, 1)) {
855
		err = -EEXIST;
856
	} else {
857
		perf_disable();
858 859 860 861 862 863
		if (counter == leader)
			err = group_sched_in(counter, cpuctx, ctx,
					     smp_processor_id());
		else
			err = counter_sched_in(counter, cpuctx, ctx,
					       smp_processor_id());
864
		perf_enable();
865
	}
866 867 868 869 870 871 872 873

	if (err) {
		/*
		 * If this counter can't go on and it's part of a
		 * group, then the whole group has to come off.
		 */
		if (leader != counter)
			group_sched_out(leader, cpuctx, ctx);
874
		if (leader->attr.pinned) {
875
			update_group_times(leader);
876
			leader->state = PERF_COUNTER_STATE_ERROR;
877
		}
878 879 880
	}

 unlock:
881
	spin_unlock(&ctx->lock);
882 883 884 885
}

/*
 * Enable a counter.
886 887 888 889 890 891
 *
 * If counter->ctx is a cloned context, callers must make sure that
 * every task struct that counter->ctx->task could possibly point to
 * remains valid.  This condition is satisfied when called through
 * perf_counter_for_each_child or perf_counter_for_each as described
 * for perf_counter_disable.
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
 */
static void perf_counter_enable(struct perf_counter *counter)
{
	struct perf_counter_context *ctx = counter->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
		 * Enable the counter on the cpu that it's on
		 */
		smp_call_function_single(counter->cpu, __perf_counter_enable,
					 counter, 1);
		return;
	}

	spin_lock_irq(&ctx->lock);
	if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
		goto out;

	/*
	 * If the counter is in error state, clear that first.
	 * That way, if we see the counter in error state below, we
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		counter->state = PERF_COUNTER_STATE_OFF;

 retry:
	spin_unlock_irq(&ctx->lock);
	task_oncpu_function_call(task, __perf_counter_enable, counter);

	spin_lock_irq(&ctx->lock);

	/*
	 * If the context is active and the counter is still off,
	 * we need to retry the cross-call.
	 */
	if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
938
	if (counter->state == PERF_COUNTER_STATE_OFF) {
939
		counter->state = PERF_COUNTER_STATE_INACTIVE;
940 941
		counter->tstamp_enabled =
			ctx->time - counter->total_time_enabled;
942
	}
943 944 945 946
 out:
	spin_unlock_irq(&ctx->lock);
}

947
static int perf_counter_refresh(struct perf_counter *counter, int refresh)
948
{
949 950 951
	/*
	 * not supported on inherited counters
	 */
952
	if (counter->attr.inherit)
953 954
		return -EINVAL;

955 956
	atomic_add(refresh, &counter->event_limit);
	perf_counter_enable(counter);
957 958

	return 0;
959 960
}

961 962 963 964 965
void __perf_counter_sched_out(struct perf_counter_context *ctx,
			      struct perf_cpu_context *cpuctx)
{
	struct perf_counter *counter;

966 967
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
968
	if (likely(!ctx->nr_counters))
969
		goto out;
970
	update_context_time(ctx);
971

972
	perf_disable();
973
	if (ctx->nr_active) {
974 975 976 977 978 979
		list_for_each_entry(counter, &ctx->counter_list, list_entry) {
			if (counter != counter->group_leader)
				counter_sched_out(counter, cpuctx, ctx);
			else
				group_sched_out(counter, cpuctx, ctx);
		}
980
	}
981
	perf_enable();
982
 out:
983 984 985
	spin_unlock(&ctx->lock);
}

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
 * and they both have the same number of enabled counters.
 * If the number of enabled counters is the same, then the set
 * of enabled counters should be the same, because these are both
 * inherited contexts, therefore we can't access individual counters
 * in them directly with an fd; we can only enable/disable all
 * counters via prctl, or enable/disable all counters in a family
 * via ioctl, which will have the same effect on both contexts.
 */
static int context_equiv(struct perf_counter_context *ctx1,
			 struct perf_counter_context *ctx2)
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1001
		&& ctx1->parent_gen == ctx2->parent_gen
1002
		&& !ctx1->pin_count && !ctx2->pin_count;
1003 1004
}

T
Thomas Gleixner 已提交
1005 1006 1007 1008 1009 1010
/*
 * Called from scheduler to remove the counters of the current task,
 * with interrupts disabled.
 *
 * We stop each counter and update the counter value in counter->count.
 *
I
Ingo Molnar 已提交
1011
 * This does not protect us against NMI, but disable()
T
Thomas Gleixner 已提交
1012 1013 1014 1015
 * sets the disabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * not restart the counter.
 */
1016 1017
void perf_counter_task_sched_out(struct task_struct *task,
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
1018 1019
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1020
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1021
	struct perf_counter_context *next_ctx;
1022
	struct perf_counter_context *parent;
1023
	struct pt_regs *regs;
1024
	int do_switch = 1;
T
Thomas Gleixner 已提交
1025

1026
	regs = task_pt_regs(task);
1027
	perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1028

1029
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1030 1031
		return;

1032
	update_context_time(ctx);
1033 1034 1035

	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1036
	next_ctx = next->perf_counter_ctxp;
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1051 1052 1053 1054
			/*
			 * XXX do we need a memory barrier of sorts
			 * wrt to rcu_dereference() of perf_counter_ctxp
			 */
1055 1056 1057 1058 1059 1060 1061 1062
			task->perf_counter_ctxp = next_ctx;
			next->perf_counter_ctxp = ctx;
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1063
	}
1064
	rcu_read_unlock();
1065

1066 1067 1068 1069
	if (do_switch) {
		__perf_counter_sched_out(ctx, cpuctx);
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1070 1071
}

1072 1073 1074
/*
 * Called with IRQs disabled
 */
1075 1076 1077 1078
static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1079 1080
	if (!cpuctx->task_ctx)
		return;
1081 1082 1083 1084

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1085 1086 1087 1088
	__perf_counter_sched_out(ctx, cpuctx);
	cpuctx->task_ctx = NULL;
}

1089 1090 1091
/*
 * Called with IRQs disabled
 */
1092
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1093
{
1094
	__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1095 1096
}

1097 1098 1099
static void
__perf_counter_sched_in(struct perf_counter_context *ctx,
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1100 1101
{
	struct perf_counter *counter;
1102
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1103

1104 1105
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
T
Thomas Gleixner 已提交
1106
	if (likely(!ctx->nr_counters))
1107
		goto out;
T
Thomas Gleixner 已提交
1108

1109
	ctx->timestamp = perf_clock();
1110

1111
	perf_disable();
1112 1113 1114 1115 1116 1117 1118

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
1119
		    !counter->attr.pinned)
1120 1121 1122 1123
			continue;
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1124 1125 1126 1127 1128 1129
		if (counter != counter->group_leader)
			counter_sched_in(counter, cpuctx, ctx, cpu);
		else {
			if (group_can_go_on(counter, cpuctx, 1))
				group_sched_in(counter, cpuctx, ctx, cpu);
		}
1130 1131 1132 1133 1134

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1135 1136
		if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
			update_group_times(counter);
1137
			counter->state = PERF_COUNTER_STATE_ERROR;
1138
		}
1139 1140
	}

1141
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1142 1143 1144 1145 1146
		/*
		 * Ignore counters in OFF or ERROR state, and
		 * ignore pinned counters since we did them already.
		 */
		if (counter->state <= PERF_COUNTER_STATE_OFF ||
1147
		    counter->attr.pinned)
1148 1149
			continue;

1150 1151 1152 1153
		/*
		 * Listen to the 'cpu' scheduling filter constraint
		 * of counters:
		 */
T
Thomas Gleixner 已提交
1154 1155 1156
		if (counter->cpu != -1 && counter->cpu != cpu)
			continue;

1157 1158
		if (counter != counter->group_leader) {
			if (counter_sched_in(counter, cpuctx, ctx, cpu))
1159
				can_add_hw = 0;
1160 1161 1162 1163 1164
		} else {
			if (group_can_go_on(counter, cpuctx, can_add_hw)) {
				if (group_sched_in(counter, cpuctx, ctx, cpu))
					can_add_hw = 0;
			}
1165
		}
T
Thomas Gleixner 已提交
1166
	}
1167
	perf_enable();
1168
 out:
T
Thomas Gleixner 已提交
1169
	spin_unlock(&ctx->lock);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
}

/*
 * Called from scheduler to add the counters of the current task
 * with interrupts disabled.
 *
 * We restore the counter value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of counter _before_
 * accessing the counter control register. If a NMI hits, then it will
 * keep the counter running.
 */
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1186
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
1187

1188 1189
	if (likely(!ctx))
		return;
1190 1191
	if (cpuctx->task_ctx == ctx)
		return;
1192
	__perf_counter_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1193 1194 1195
	cpuctx->task_ctx = ctx;
}

1196 1197 1198 1199 1200 1201 1202
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
{
	struct perf_counter_context *ctx = &cpuctx->ctx;

	__perf_counter_sched_in(ctx, cpuctx, cpu);
}

1203 1204 1205
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_counter *counter, int enable);
1206 1207
static void perf_log_period(struct perf_counter *counter, u64 period);

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
static void perf_adjust_period(struct perf_counter *counter, u64 events)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
	period = div64_u64(events, counter->attr.sample_freq);

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	perf_log_period(counter, sample_period);

	hwc->sample_period = sample_period;
}

static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1231 1232
{
	struct perf_counter *counter;
1233
	struct hw_perf_counter *hwc;
1234
	u64 interrupts, freq;
1235 1236 1237 1238 1239 1240

	spin_lock(&ctx->lock);
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
		if (counter->state != PERF_COUNTER_STATE_ACTIVE)
			continue;

1241 1242 1243 1244
		hwc = &counter->hw;

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1245

1246 1247 1248
		/*
		 * unthrottle counters on the tick
		 */
1249 1250 1251
		if (interrupts == MAX_INTERRUPTS) {
			perf_log_throttle(counter, 1);
			counter->pmu->unthrottle(counter);
1252
			interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1253 1254
		}

1255
		if (!counter->attr.freq || !counter->attr.sample_freq)
1256 1257
			continue;

1258 1259 1260
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
		if (counter->attr.sample_freq < HZ) {
			freq = counter->attr.sample_freq;

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1276
		perf_adjust_period(counter, freq * interrupts);
1277

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
			counter->pmu->disable(counter);
			atomic_set(&hwc->period_left, 0);
			counter->pmu->enable(counter);
			perf_enable();
		}
1290 1291 1292 1293
	}
	spin_unlock(&ctx->lock);
}

1294 1295 1296 1297
/*
 * Round-robin a context's counters:
 */
static void rotate_ctx(struct perf_counter_context *ctx)
T
Thomas Gleixner 已提交
1298 1299 1300
{
	struct perf_counter *counter;

1301
	if (!ctx->nr_counters)
T
Thomas Gleixner 已提交
1302 1303 1304 1305
		return;

	spin_lock(&ctx->lock);
	/*
1306
	 * Rotate the first entry last (works just fine for group counters too):
T
Thomas Gleixner 已提交
1307
	 */
1308
	perf_disable();
1309
	list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1310
		list_move_tail(&counter->list_entry, &ctx->counter_list);
T
Thomas Gleixner 已提交
1311 1312
		break;
	}
1313
	perf_enable();
T
Thomas Gleixner 已提交
1314 1315

	spin_unlock(&ctx->lock);
1316 1317 1318 1319
}

void perf_counter_task_tick(struct task_struct *curr, int cpu)
{
1320 1321 1322 1323 1324 1325 1326
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	if (!atomic_read(&nr_counters))
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1327
	ctx = curr->perf_counter_ctxp;
1328

1329
	perf_ctx_adjust_freq(&cpuctx->ctx);
1330
	if (ctx)
1331
		perf_ctx_adjust_freq(ctx);
1332

1333
	perf_counter_cpu_sched_out(cpuctx);
1334 1335
	if (ctx)
		__perf_counter_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1336

1337
	rotate_ctx(&cpuctx->ctx);
1338 1339
	if (ctx)
		rotate_ctx(ctx);
1340

1341
	perf_counter_cpu_sched_in(cpuctx, cpu);
1342 1343
	if (ctx)
		perf_counter_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1344 1345 1346 1347 1348
}

/*
 * Cross CPU call to read the hardware counter
 */
I
Ingo Molnar 已提交
1349
static void __read(void *info)
T
Thomas Gleixner 已提交
1350
{
I
Ingo Molnar 已提交
1351
	struct perf_counter *counter = info;
1352
	struct perf_counter_context *ctx = counter->ctx;
I
Ingo Molnar 已提交
1353
	unsigned long flags;
I
Ingo Molnar 已提交
1354

1355
	local_irq_save(flags);
1356
	if (ctx->is_active)
1357
		update_context_time(ctx);
1358
	counter->pmu->read(counter);
1359
	update_counter_times(counter);
1360
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1361 1362
}

1363
static u64 perf_counter_read(struct perf_counter *counter)
T
Thomas Gleixner 已提交
1364 1365 1366 1367 1368
{
	/*
	 * If counter is enabled and currently active on a CPU, update the
	 * value in the counter structure:
	 */
1369
	if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
T
Thomas Gleixner 已提交
1370
		smp_call_function_single(counter->oncpu,
I
Ingo Molnar 已提交
1371
					 __read, counter, 1);
1372 1373
	} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
		update_counter_times(counter);
T
Thomas Gleixner 已提交
1374 1375
	}

1376
	return atomic64_read(&counter->count);
T
Thomas Gleixner 已提交
1377 1378
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
/*
 * Initialize the perf_counter context in a task_struct:
 */
static void
__perf_counter_init_context(struct perf_counter_context *ctx,
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
	INIT_LIST_HEAD(&ctx->counter_list);
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

T
Thomas Gleixner 已提交
1395 1396
static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
{
1397
	struct perf_counter_context *parent_ctx;
1398 1399
	struct perf_counter_context *ctx;
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1400
	struct task_struct *task;
1401
	unsigned long flags;
1402
	int err;
T
Thomas Gleixner 已提交
1403 1404 1405 1406 1407 1408

	/*
	 * If cpu is not a wildcard then this is a percpu counter:
	 */
	if (cpu != -1) {
		/* Must be root to operate on a CPU counter: */
1409
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
		 * We could be clever and allow to attach a counter to an
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1425
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1442 1443 1444 1445 1446 1447 1448
	/*
	 * Can't attach counters to a dying task.
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1449
	/* Reuse ptrace permission checks for now. */
1450 1451 1452 1453 1454
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1455
	ctx = perf_lock_task_context(task, &flags);
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	if (ctx) {
		parent_ctx = ctx->parent_ctx;
		if (parent_ctx) {
			put_ctx(parent_ctx);
			ctx->parent_ctx = NULL;		/* no longer a clone */
		}
		/*
		 * Get an extra reference before dropping the lock so that
		 * this context won't get freed if the task exits.
		 */
		get_ctx(ctx);
1467
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1468 1469
	}

1470 1471
	if (!ctx) {
		ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1472 1473 1474
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1475
		__perf_counter_init_context(ctx, task);
1476 1477
		get_ctx(ctx);
		if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1478 1479 1480 1481 1482
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1483
			goto retry;
1484
		}
1485
		get_task_struct(task);
1486 1487
	}

1488
	put_task_struct(task);
T
Thomas Gleixner 已提交
1489
	return ctx;
1490 1491 1492 1493

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1494 1495
}

P
Peter Zijlstra 已提交
1496 1497 1498 1499 1500
static void free_counter_rcu(struct rcu_head *head)
{
	struct perf_counter *counter;

	counter = container_of(head, struct perf_counter, rcu_head);
1501 1502
	if (counter->ns)
		put_pid_ns(counter->ns);
P
Peter Zijlstra 已提交
1503 1504 1505
	kfree(counter);
}

1506 1507
static void perf_pending_sync(struct perf_counter *counter);

1508 1509
static void free_counter(struct perf_counter *counter)
{
1510 1511
	perf_pending_sync(counter);

1512
	atomic_dec(&nr_counters);
1513
	if (counter->attr.mmap)
P
Peter Zijlstra 已提交
1514
		atomic_dec(&nr_mmap_counters);
1515
	if (counter->attr.comm)
P
Peter Zijlstra 已提交
1516
		atomic_dec(&nr_comm_counters);
1517

1518 1519 1520
	if (counter->destroy)
		counter->destroy(counter);

1521
	put_ctx(counter->ctx);
1522 1523 1524
	call_rcu(&counter->rcu_head, free_counter_rcu);
}

T
Thomas Gleixner 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
	struct perf_counter *counter = file->private_data;
	struct perf_counter_context *ctx = counter->ctx;

	file->private_data = NULL;

1535
	WARN_ON_ONCE(ctx->parent_ctx);
1536
	mutex_lock(&ctx->mutex);
1537
	perf_counter_remove_from_context(counter);
1538
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1539

1540 1541 1542 1543 1544
	mutex_lock(&counter->owner->perf_counter_mutex);
	list_del_init(&counter->owner_entry);
	mutex_unlock(&counter->owner->perf_counter_mutex);
	put_task_struct(counter->owner);

1545
	free_counter(counter);
T
Thomas Gleixner 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555

	return 0;
}

/*
 * Read the performance counter - simple non blocking version for now
 */
static ssize_t
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
{
1556 1557
	u64 values[3];
	int n;
T
Thomas Gleixner 已提交
1558

1559 1560 1561 1562 1563 1564 1565 1566
	/*
	 * Return end-of-file for a read on a counter that is in
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
	if (counter->state == PERF_COUNTER_STATE_ERROR)
		return 0;

1567
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1568
	mutex_lock(&counter->child_mutex);
1569 1570
	values[0] = perf_counter_read(counter);
	n = 1;
1571
	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1572 1573
		values[n++] = counter->total_time_enabled +
			atomic64_read(&counter->child_total_time_enabled);
1574
	if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1575 1576
		values[n++] = counter->total_time_running +
			atomic64_read(&counter->child_total_time_running);
1577
	if (counter->attr.read_format & PERF_FORMAT_ID)
1578
		values[n++] = counter->id;
1579
	mutex_unlock(&counter->child_mutex);
T
Thomas Gleixner 已提交
1580

1581 1582 1583 1584 1585 1586 1587 1588
	if (count < n * sizeof(u64))
		return -EINVAL;
	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
T
Thomas Gleixner 已提交
1589 1590 1591 1592 1593 1594 1595
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct perf_counter *counter = file->private_data;

1596
	return perf_read_hw(counter, buf, count);
T
Thomas Gleixner 已提交
1597 1598 1599 1600 1601
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1602
	struct perf_mmap_data *data;
1603
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1604 1605 1606 1607

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (data)
1608
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1609
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1610 1611 1612 1613 1614 1615

	poll_wait(file, &counter->waitq, wait);

	return events;
}

1616 1617
static void perf_counter_reset(struct perf_counter *counter)
{
P
Peter Zijlstra 已提交
1618
	(void)perf_counter_read(counter);
1619
	atomic64_set(&counter->count, 0);
P
Peter Zijlstra 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628
	perf_counter_update_userpage(counter);
}

static void perf_counter_for_each_sibling(struct perf_counter *counter,
					  void (*func)(struct perf_counter *))
{
	struct perf_counter_context *ctx = counter->ctx;
	struct perf_counter *sibling;

1629
	WARN_ON_ONCE(ctx->parent_ctx);
1630
	mutex_lock(&ctx->mutex);
P
Peter Zijlstra 已提交
1631 1632 1633 1634 1635
	counter = counter->group_leader;

	func(counter);
	list_for_each_entry(sibling, &counter->sibling_list, list_entry)
		func(sibling);
1636
	mutex_unlock(&ctx->mutex);
P
Peter Zijlstra 已提交
1637 1638
}

1639 1640 1641 1642 1643 1644
/*
 * Holding the top-level counter's child_mutex means that any
 * descendant process that has inherited this counter will block
 * in sync_child_counter if it goes to exit, thus satisfying the
 * task existence requirements of perf_counter_enable/disable.
 */
P
Peter Zijlstra 已提交
1645 1646 1647 1648 1649
static void perf_counter_for_each_child(struct perf_counter *counter,
					void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1650
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1651
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1652 1653 1654
	func(counter);
	list_for_each_entry(child, &counter->child_list, child_list)
		func(child);
1655
	mutex_unlock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1656 1657 1658 1659 1660 1661 1662
}

static void perf_counter_for_each(struct perf_counter *counter,
				  void (*func)(struct perf_counter *))
{
	struct perf_counter *child;

1663
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1664
	mutex_lock(&counter->child_mutex);
P
Peter Zijlstra 已提交
1665 1666 1667
	perf_counter_for_each_sibling(counter, func);
	list_for_each_entry(child, &counter->child_list, child_list)
		perf_counter_for_each_sibling(child, func);
1668
	mutex_unlock(&counter->child_mutex);
1669 1670
}

1671 1672 1673 1674 1675 1676 1677
static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
{
	struct perf_counter_context *ctx = counter->ctx;
	unsigned long size;
	int ret = 0;
	u64 value;

1678
	if (!counter->attr.sample_period)
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	spin_lock_irq(&ctx->lock);
1689
	if (counter->attr.freq) {
1690
		if (value > sysctl_perf_counter_sample_rate) {
1691 1692 1693 1694
			ret = -EINVAL;
			goto unlock;
		}

1695
		counter->attr.sample_freq = value;
1696
	} else {
1697 1698
		perf_log_period(counter, value);

1699
		counter->attr.sample_period = value;
1700 1701 1702 1703 1704 1705 1706 1707
		counter->hw.sample_period = value;
	}
unlock:
	spin_unlock_irq(&ctx->lock);

	return ret;
}

1708 1709 1710
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_counter *counter = file->private_data;
P
Peter Zijlstra 已提交
1711 1712
	void (*func)(struct perf_counter *);
	u32 flags = arg;
1713 1714 1715

	switch (cmd) {
	case PERF_COUNTER_IOC_ENABLE:
P
Peter Zijlstra 已提交
1716
		func = perf_counter_enable;
1717 1718
		break;
	case PERF_COUNTER_IOC_DISABLE:
P
Peter Zijlstra 已提交
1719
		func = perf_counter_disable;
1720
		break;
1721
	case PERF_COUNTER_IOC_RESET:
P
Peter Zijlstra 已提交
1722
		func = perf_counter_reset;
1723
		break;
P
Peter Zijlstra 已提交
1724 1725 1726

	case PERF_COUNTER_IOC_REFRESH:
		return perf_counter_refresh(counter, arg);
1727 1728 1729 1730

	case PERF_COUNTER_IOC_PERIOD:
		return perf_counter_period(counter, (u64 __user *)arg);

1731
	default:
P
Peter Zijlstra 已提交
1732
		return -ENOTTY;
1733
	}
P
Peter Zijlstra 已提交
1734 1735 1736 1737 1738 1739 1740

	if (flags & PERF_IOC_FLAG_GROUP)
		perf_counter_for_each(counter, func);
	else
		perf_counter_for_each_child(counter, func);

	return 0;
1741 1742
}

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
int perf_counter_task_enable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_enable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

int perf_counter_task_disable(void)
{
	struct perf_counter *counter;

	mutex_lock(&current->perf_counter_mutex);
	list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
		perf_counter_for_each_child(counter, perf_counter_disable);
	mutex_unlock(&current->perf_counter_mutex);

	return 0;
}

1767 1768 1769 1770 1771 1772
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
void perf_counter_update_userpage(struct perf_counter *counter)
1773
{
1774
	struct perf_counter_mmap_page *userpg;
1775
	struct perf_mmap_data *data;
1776 1777 1778 1779 1780 1781 1782

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	userpg = data->user_page;
1783

1784 1785 1786 1787 1788
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
1789
	++userpg->lock;
1790
	barrier();
1791 1792 1793 1794
	userpg->index = counter->hw.idx;
	userpg->offset = atomic64_read(&counter->count);
	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&counter->hw.prev_count);
1795

1796
	barrier();
1797
	++userpg->lock;
1798
	preempt_enable();
1799
unlock:
1800
	rcu_read_unlock();
1801 1802 1803 1804 1805
}

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_counter *counter = vma->vm_file->private_data;
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff == 0) {
		vmf->page = virt_to_page(data->user_page);
	} else {
		int nr = vmf->pgoff - 1;
1818

1819 1820
		if ((unsigned)nr > data->nr_pages)
			goto unlock;
1821

1822 1823
		vmf->page = virt_to_page(data->data_pages[nr]);
	}
1824
	get_page(vmf->page);
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	WARN_ON(atomic_read(&counter->mmap_count));

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;
1858
	atomic_set(&data->lock, -1);
1859 1860 1861

	rcu_assign_pointer(counter->data, data);

1862
	return 0;
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
	return -ENOMEM;
}

static void __perf_mmap_data_free(struct rcu_head *rcu_head)
{
1879
	struct perf_mmap_data *data;
1880 1881
	int i;

1882 1883
	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	free_page((unsigned long)data->user_page);
	for (i = 0; i < data->nr_pages; i++)
		free_page((unsigned long)data->data_pages[i]);
	kfree(data);
}

static void perf_mmap_data_free(struct perf_counter *counter)
{
	struct perf_mmap_data *data = counter->data;

	WARN_ON(atomic_read(&counter->mmap_count));

	rcu_assign_pointer(counter->data, NULL);
	call_rcu(&data->rcu_head, __perf_mmap_data_free);
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

	atomic_inc(&counter->mmap_count);
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
	struct perf_counter *counter = vma->vm_file->private_data;

1911
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1912
	if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1913 1914 1915
		struct user_struct *user = current_user();

		atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1916
		vma->vm_mm->locked_vm -= counter->data->nr_locked;
1917 1918 1919
		perf_mmap_data_free(counter);
		mutex_unlock(&counter->mmap_mutex);
	}
1920 1921 1922
}

static struct vm_operations_struct perf_mmap_vmops = {
1923
	.open  = perf_mmap_open,
1924
	.close = perf_mmap_close,
1925 1926 1927 1928 1929 1930
	.fault = perf_mmap_fault,
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct perf_counter *counter = file->private_data;
1931
	unsigned long user_locked, user_lock_limit;
1932
	struct user_struct *user = current_user();
1933
	unsigned long locked, lock_limit;
1934 1935
	unsigned long vma_size;
	unsigned long nr_pages;
1936
	long user_extra, extra;
1937
	int ret = 0;
1938 1939 1940

	if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
		return -EINVAL;
1941 1942 1943 1944

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

1945 1946 1947 1948 1949
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
1950 1951
		return -EINVAL;

1952
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
1953 1954
		return -EINVAL;

1955 1956
	if (vma->vm_pgoff != 0)
		return -EINVAL;
1957

1958
	WARN_ON_ONCE(counter->ctx->parent_ctx);
1959 1960 1961 1962 1963 1964 1965
	mutex_lock(&counter->mmap_mutex);
	if (atomic_inc_not_zero(&counter->mmap_count)) {
		if (nr_pages != counter->data->nr_pages)
			ret = -EINVAL;
		goto unlock;
	}

1966 1967
	user_extra = nr_pages + 1;
	user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
1968 1969 1970 1971 1972 1973

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

1974
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1975

1976 1977 1978
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
1979 1980 1981

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
1982
	locked = vma->vm_mm->locked_vm + extra;
1983

1984 1985 1986 1987
	if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
		ret = -EPERM;
		goto unlock;
	}
1988 1989 1990

	WARN_ON(counter->data);
	ret = perf_mmap_data_alloc(counter, nr_pages);
1991 1992 1993 1994
	if (ret)
		goto unlock;

	atomic_set(&counter->mmap_count, 1);
1995
	atomic_long_add(user_extra, &user->locked_vm);
1996 1997
	vma->vm_mm->locked_vm += extra;
	counter->data->nr_locked = extra;
1998
unlock:
1999
	mutex_unlock(&counter->mmap_mutex);
2000 2001 2002 2003

	vma->vm_flags &= ~VM_MAYWRITE;
	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2004 2005

	return ret;
2006 2007
}

P
Peter Zijlstra 已提交
2008 2009 2010
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2011
	struct perf_counter *counter = filp->private_data;
P
Peter Zijlstra 已提交
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	int retval;

	mutex_lock(&inode->i_mutex);
	retval = fasync_helper(fd, filp, on, &counter->fasync);
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2024 2025 2026 2027
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2028 2029
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2030
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2031
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2032 2033
};

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
/*
 * Perf counter wakeup
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

void perf_counter_wakeup(struct perf_counter *counter)
{
	wake_up_all(&counter->waitq);
2044 2045 2046 2047 2048

	if (counter->pending_kill) {
		kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
		counter->pending_kill = 0;
	}
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
static void perf_pending_counter(struct perf_pending_entry *entry)
{
	struct perf_counter *counter = container_of(entry,
			struct perf_counter, pending);

	if (counter->pending_disable) {
		counter->pending_disable = 0;
		perf_counter_disable(counter);
	}

	if (counter->pending_wakeup) {
		counter->pending_wakeup = 0;
		perf_counter_wakeup(counter);
	}
}

2076
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2077

2078
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2079 2080 2081
	PENDING_TAIL,
};

2082 2083
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2084
{
2085
	struct perf_pending_entry **head;
2086

2087
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2088 2089
		return;

2090 2091 2092
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2093 2094

	do {
2095 2096
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2097 2098 2099

	set_perf_counter_pending();

2100
	put_cpu_var(perf_pending_head);
2101 2102 2103 2104
}

static int __perf_pending_run(void)
{
2105
	struct perf_pending_entry *list;
2106 2107
	int nr = 0;

2108
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2109
	while (list != PENDING_TAIL) {
2110 2111
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2112 2113 2114

		list = list->next;

2115 2116
		func = entry->func;
		entry->next = NULL;
2117 2118 2119 2120 2121 2122 2123
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2124
		func(entry);
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
		nr++;
	}

	return nr;
}

static inline int perf_not_pending(struct perf_counter *counter)
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2146
	return counter->pending.next == NULL;
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
}

static void perf_pending_sync(struct perf_counter *counter)
{
	wait_event(counter->waitq, perf_not_pending(counter));
}

void perf_counter_do_pending(void)
{
	__perf_pending_run();
}

2159 2160 2161 2162
/*
 * Callchain support -- arch specific
 */

2163
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2164 2165 2166 2167
{
	return NULL;
}

2168 2169 2170 2171
/*
 * Output
 */

2172 2173 2174
struct perf_output_handle {
	struct perf_counter	*counter;
	struct perf_mmap_data	*data;
2175 2176
	unsigned long		head;
	unsigned long		offset;
2177
	int			nmi;
2178
	int			overflow;
2179 2180
	int			locked;
	unsigned long		flags;
2181 2182
};

2183
static void perf_output_wakeup(struct perf_output_handle *handle)
2184
{
2185 2186
	atomic_set(&handle->data->poll, POLL_IN);

2187
	if (handle->nmi) {
2188
		handle->counter->pending_wakeup = 1;
2189
		perf_pending_queue(&handle->counter->pending,
2190
				   perf_pending_counter);
2191
	} else
2192 2193 2194
		perf_counter_wakeup(handle->counter);
}

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
/*
 * Curious locking construct.
 *
 * We need to ensure a later event doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

2221
	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2222 2223 2224 2225 2226 2227 2228 2229
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2230 2231
	unsigned long head;
	int cpu;
2232

2233
	data->done_head = data->head;
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2244
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2245 2246 2247
		data->user_page->data_head = head;

	/*
2248
	 * NMI can happen here, which means we can miss a done_head update.
2249 2250
	 */

2251
	cpu = atomic_xchg(&data->lock, -1);
2252 2253 2254 2255 2256
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2257
	if (unlikely(atomic_long_read(&data->done_head))) {
2258 2259 2260
		/*
		 * Since we had it locked, we can lock it again.
		 */
2261
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2262 2263 2264 2265 2266
			cpu_relax();

		goto again;
	}

2267
	if (atomic_xchg(&data->wakeup, 0))
2268 2269 2270 2271 2272
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

2273
static int perf_output_begin(struct perf_output_handle *handle,
2274
			     struct perf_counter *counter, unsigned int size,
2275
			     int nmi, int overflow)
2276
{
2277
	struct perf_mmap_data *data;
2278
	unsigned int offset, head;
2279

2280 2281 2282 2283 2284 2285
	/*
	 * For inherited counters we send all the output towards the parent.
	 */
	if (counter->parent)
		counter = counter->parent;

2286 2287 2288 2289 2290
	rcu_read_lock();
	data = rcu_dereference(counter->data);
	if (!data)
		goto out;

2291
	handle->data	 = data;
2292 2293 2294
	handle->counter	 = counter;
	handle->nmi	 = nmi;
	handle->overflow = overflow;
2295

2296
	if (!data->nr_pages)
2297
		goto fail;
2298

2299 2300
	perf_output_lock(handle);

2301
	do {
2302
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2303
		head += size;
2304
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2305

2306
	handle->offset	= offset;
2307
	handle->head	= head;
2308 2309 2310

	if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
		atomic_set(&data->wakeup, 1);
2311

2312
	return 0;
2313

2314
fail:
2315
	perf_output_wakeup(handle);
2316 2317
out:
	rcu_read_unlock();
2318

2319 2320
	return -ENOSPC;
}
2321

2322
static void perf_output_copy(struct perf_output_handle *handle,
2323
			     const void *buf, unsigned int len)
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
{
	unsigned int pages_mask;
	unsigned int offset;
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
		unsigned int page_offset;
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
		page_offset = offset & (PAGE_SIZE - 1);
		size	    = min_t(unsigned int, PAGE_SIZE - page_offset, len);

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;
2350

2351 2352 2353 2354
	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
2355
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2356 2357
}

P
Peter Zijlstra 已提交
2358 2359 2360
#define perf_output_put(handle, x) \
	perf_output_copy((handle), &(x), sizeof(x))

2361
static void perf_output_end(struct perf_output_handle *handle)
2362
{
2363 2364 2365
	struct perf_counter *counter = handle->counter;
	struct perf_mmap_data *data = handle->data;

2366
	int wakeup_events = counter->attr.wakeup_events;
P
Peter Zijlstra 已提交
2367

2368
	if (handle->overflow && wakeup_events) {
2369
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2370
		if (events >= wakeup_events) {
2371
			atomic_sub(wakeup_events, &data->events);
2372
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2373
		}
2374 2375 2376
	}

	perf_output_unlock(handle);
2377
	rcu_read_unlock();
2378 2379
}

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
{
	/*
	 * only top level counters have the pid namespace they were created in
	 */
	if (counter->parent)
		counter = counter->parent;

	return task_tgid_nr_ns(p, counter->ns);
}

static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
{
	/*
	 * only top level counters have the pid namespace they were created in
	 */
	if (counter->parent)
		counter = counter->parent;

	return task_pid_nr_ns(p, counter->ns);
}

2402 2403
static void perf_counter_output(struct perf_counter *counter, int nmi,
				struct perf_sample_data *data)
2404
{
2405
	int ret;
2406
	u64 sample_type = counter->attr.sample_type;
2407 2408 2409
	struct perf_output_handle handle;
	struct perf_event_header header;
	u64 ip;
P
Peter Zijlstra 已提交
2410
	struct {
2411
		u32 pid, tid;
2412
	} tid_entry;
2413
	struct {
2414
		u64 id;
2415 2416
		u64 counter;
	} group_entry;
2417 2418
	struct perf_callchain_entry *callchain = NULL;
	int callchain_size = 0;
P
Peter Zijlstra 已提交
2419
	u64 time;
2420 2421 2422
	struct {
		u32 cpu, reserved;
	} cpu_entry;
2423

2424
	header.type = 0;
2425
	header.size = sizeof(header);
2426

2427
	header.misc = PERF_EVENT_MISC_OVERFLOW;
2428
	header.misc |= perf_misc_flags(data->regs);
2429

2430
	if (sample_type & PERF_SAMPLE_IP) {
2431
		ip = perf_instruction_pointer(data->regs);
2432
		header.type |= PERF_SAMPLE_IP;
2433 2434
		header.size += sizeof(ip);
	}
2435

2436
	if (sample_type & PERF_SAMPLE_TID) {
2437
		/* namespace issues */
2438 2439
		tid_entry.pid = perf_counter_pid(counter, current);
		tid_entry.tid = perf_counter_tid(counter, current);
2440

2441
		header.type |= PERF_SAMPLE_TID;
2442 2443 2444
		header.size += sizeof(tid_entry);
	}

2445
	if (sample_type & PERF_SAMPLE_TIME) {
2446 2447 2448 2449 2450
		/*
		 * Maybe do better on x86 and provide cpu_clock_nmi()
		 */
		time = sched_clock();

2451
		header.type |= PERF_SAMPLE_TIME;
2452 2453 2454
		header.size += sizeof(u64);
	}

2455 2456
	if (sample_type & PERF_SAMPLE_ADDR) {
		header.type |= PERF_SAMPLE_ADDR;
2457 2458 2459
		header.size += sizeof(u64);
	}

2460 2461
	if (sample_type & PERF_SAMPLE_ID) {
		header.type |= PERF_SAMPLE_ID;
2462 2463 2464
		header.size += sizeof(u64);
	}

2465 2466
	if (sample_type & PERF_SAMPLE_CPU) {
		header.type |= PERF_SAMPLE_CPU;
2467 2468 2469 2470 2471
		header.size += sizeof(cpu_entry);

		cpu_entry.cpu = raw_smp_processor_id();
	}

2472 2473 2474 2475 2476
	if (sample_type & PERF_SAMPLE_PERIOD) {
		header.type |= PERF_SAMPLE_PERIOD;
		header.size += sizeof(u64);
	}

2477 2478
	if (sample_type & PERF_SAMPLE_GROUP) {
		header.type |= PERF_SAMPLE_GROUP;
2479 2480 2481 2482
		header.size += sizeof(u64) +
			counter->nr_siblings * sizeof(group_entry);
	}

2483
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2484
		callchain = perf_callchain(data->regs);
2485 2486

		if (callchain) {
2487
			callchain_size = (1 + callchain->nr) * sizeof(u64);
2488

2489
			header.type |= PERF_SAMPLE_CALLCHAIN;
2490 2491 2492 2493
			header.size += callchain_size;
		}
	}

2494
	ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2495 2496
	if (ret)
		return;
2497

2498
	perf_output_put(&handle, header);
P
Peter Zijlstra 已提交
2499

2500
	if (sample_type & PERF_SAMPLE_IP)
2501
		perf_output_put(&handle, ip);
P
Peter Zijlstra 已提交
2502

2503
	if (sample_type & PERF_SAMPLE_TID)
2504
		perf_output_put(&handle, tid_entry);
P
Peter Zijlstra 已提交
2505

2506
	if (sample_type & PERF_SAMPLE_TIME)
2507 2508
		perf_output_put(&handle, time);

2509
	if (sample_type & PERF_SAMPLE_ADDR)
2510
		perf_output_put(&handle, data->addr);
2511

2512 2513
	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(&handle, counter->id);
2514

2515
	if (sample_type & PERF_SAMPLE_CPU)
2516 2517
		perf_output_put(&handle, cpu_entry);

2518
	if (sample_type & PERF_SAMPLE_PERIOD)
2519
		perf_output_put(&handle, data->period);
2520

2521
	/*
2522
	 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2523
	 */
2524
	if (sample_type & PERF_SAMPLE_GROUP) {
2525 2526
		struct perf_counter *leader, *sub;
		u64 nr = counter->nr_siblings;
P
Peter Zijlstra 已提交
2527

2528
		perf_output_put(&handle, nr);
2529

2530 2531 2532
		leader = counter->group_leader;
		list_for_each_entry(sub, &leader->sibling_list, list_entry) {
			if (sub != counter)
2533
				sub->pmu->read(sub);
2534

2535
			group_entry.id = sub->id;
2536
			group_entry.counter = atomic64_read(&sub->count);
2537

2538 2539
			perf_output_put(&handle, group_entry);
		}
2540
	}
P
Peter Zijlstra 已提交
2541

2542 2543
	if (callchain)
		perf_output_copy(&handle, callchain, callchain_size);
2544

2545
	perf_output_end(&handle);
2546 2547
}

P
Peter Zijlstra 已提交
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
/*
 * fork tracking
 */

struct perf_fork_event {
	struct task_struct	*task;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
	} event;
};

static void perf_counter_fork_output(struct perf_counter *counter,
				     struct perf_fork_event *fork_event)
{
	struct perf_output_handle handle;
	int size = fork_event->event.header.size;
	struct task_struct *task = fork_event->task;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

	fork_event->event.pid = perf_counter_pid(counter, task);
	fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);

	perf_output_put(&handle, fork_event->event);
	perf_output_end(&handle);
}

static int perf_counter_fork_match(struct perf_counter *counter)
{
2583
	if (counter->attr.comm || counter->attr.mmap)
P
Peter Zijlstra 已提交
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
		return 1;

	return 0;
}

static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
				  struct perf_fork_event *fork_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_fork_match(counter))
			perf_counter_fork_output(counter, fork_event);
	}
	rcu_read_unlock();
}

static void perf_counter_fork_event(struct perf_fork_event *fork_event)
{
	struct perf_cpu_context *cpuctx;
	struct perf_counter_context *ctx;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
	put_cpu_var(perf_cpu_context);

	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_fork_ctx(ctx, fork_event);
	rcu_read_unlock();
}

void perf_counter_fork(struct task_struct *task)
{
	struct perf_fork_event fork_event;

	if (!atomic_read(&nr_comm_counters) &&
2630
	    !atomic_read(&nr_mmap_counters))
P
Peter Zijlstra 已提交
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
		return;

	fork_event = (struct perf_fork_event){
		.task	= task,
		.event  = {
			.header = {
				.type = PERF_EVENT_FORK,
				.size = sizeof(fork_event.event),
			},
		},
	};

	perf_counter_fork_event(&fork_event);
}

2646 2647 2648 2649 2650
/*
 * comm tracking
 */

struct perf_comm_event {
2651 2652
	struct task_struct	*task;
	char			*comm;
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
	} event;
};

static void perf_counter_comm_output(struct perf_counter *counter,
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
	int size = comm_event->event.header.size;
	int ret = perf_output_begin(&handle, counter, size, 0, 0);

	if (ret)
		return;

2673 2674 2675
	comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
	comm_event->event.tid = perf_counter_tid(counter, comm_event->task);

2676 2677 2678 2679 2680 2681
	perf_output_put(&handle, comm_event->event);
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
2682
static int perf_counter_comm_match(struct perf_counter *counter)
2683
{
P
Peter Zijlstra 已提交
2684
	if (counter->attr.comm)
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
		return 1;

	return 0;
}

static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
				  struct perf_comm_event *comm_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
P
Peter Zijlstra 已提交
2700
		if (perf_counter_comm_match(counter))
2701 2702 2703 2704 2705 2706 2707 2708
			perf_counter_comm_output(counter, comm_event);
	}
	rcu_read_unlock();
}

static void perf_counter_comm_event(struct perf_comm_event *comm_event)
{
	struct perf_cpu_context *cpuctx;
2709
	struct perf_counter_context *ctx;
2710 2711 2712
	unsigned int size;
	char *comm = comm_event->task->comm;

2713
	size = ALIGN(strlen(comm)+1, sizeof(u64));
2714 2715 2716 2717 2718 2719 2720 2721 2722

	comm_event->comm = comm;
	comm_event->comm_size = size;

	comm_event->event.header.size = sizeof(comm_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
	put_cpu_var(perf_cpu_context);
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732

	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_comm_ctx(ctx, comm_event);
	rcu_read_unlock();
2733 2734 2735 2736
}

void perf_counter_comm(struct task_struct *task)
{
2737 2738
	struct perf_comm_event comm_event;

P
Peter Zijlstra 已提交
2739
	if (!atomic_read(&nr_comm_counters))
2740
		return;
2741

2742
	comm_event = (struct perf_comm_event){
2743 2744 2745 2746 2747 2748 2749 2750 2751
		.task	= task,
		.event  = {
			.header = { .type = PERF_EVENT_COMM, },
		},
	};

	perf_counter_comm_event(&comm_event);
}

2752 2753 2754 2755 2756
/*
 * mmap tracking
 */

struct perf_mmap_event {
2757 2758 2759 2760
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
	} event;
};

static void perf_counter_mmap_output(struct perf_counter *counter,
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
	int size = mmap_event->event.header.size;
2778
	int ret = perf_output_begin(&handle, counter, size, 0, 0);
2779 2780 2781 2782

	if (ret)
		return;

2783 2784 2785
	mmap_event->event.pid = perf_counter_pid(counter, current);
	mmap_event->event.tid = perf_counter_tid(counter, current);

2786 2787 2788
	perf_output_put(&handle, mmap_event->event);
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
2789
	perf_output_end(&handle);
2790 2791 2792 2793 2794
}

static int perf_counter_mmap_match(struct perf_counter *counter,
				   struct perf_mmap_event *mmap_event)
{
2795
	if (counter->attr.mmap)
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
		return 1;

	return 0;
}

static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
				  struct perf_mmap_event *mmap_event)
{
	struct perf_counter *counter;

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
		if (perf_counter_mmap_match(counter, mmap_event))
			perf_counter_mmap_output(counter, mmap_event);
	}
	rcu_read_unlock();
}

static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
{
	struct perf_cpu_context *cpuctx;
2820
	struct perf_counter_context *ctx;
2821 2822
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
2823 2824 2825
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
2826
	const char *name;
2827 2828 2829 2830 2831 2832 2833

	if (file) {
		buf = kzalloc(PATH_MAX, GFP_KERNEL);
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
2834
		name = d_path(&file->f_path, buf, PATH_MAX);
2835 2836 2837 2838 2839
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
2840 2841 2842 2843 2844 2845 2846 2847 2848
		name = arch_vma_name(mmap_event->vma);
		if (name)
			goto got_name;

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

2849 2850 2851 2852 2853
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
2854
	size = ALIGN(strlen(name)+1, sizeof(u64));
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864

	mmap_event->file_name = name;
	mmap_event->file_size = size;

	mmap_event->event.header.size = sizeof(mmap_event->event) + size;

	cpuctx = &get_cpu_var(perf_cpu_context);
	perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
	put_cpu_var(perf_cpu_context);

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_counter_mmap_ctx(ctx, mmap_event);
	rcu_read_unlock();

2875 2876 2877
	kfree(buf);
}

2878
void __perf_counter_mmap(struct vm_area_struct *vma)
2879
{
2880 2881
	struct perf_mmap_event mmap_event;

P
Peter Zijlstra 已提交
2882
	if (!atomic_read(&nr_mmap_counters))
2883 2884 2885
		return;

	mmap_event = (struct perf_mmap_event){
2886
		.vma	= vma,
2887 2888
		.event  = {
			.header = { .type = PERF_EVENT_MMAP, },
2889 2890 2891
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
2892 2893 2894 2895 2896 2897
		},
	};

	perf_counter_mmap_event(&mmap_event);
}

2898
/*
2899
 * Log sample_period changes so that analyzing tools can re-normalize the
2900
 * event flow.
2901 2902
 */

2903 2904 2905 2906 2907 2908 2909
struct freq_event {
	struct perf_event_header	header;
	u64				time;
	u64				id;
	u64				period;
};

2910 2911 2912
static void perf_log_period(struct perf_counter *counter, u64 period)
{
	struct perf_output_handle handle;
2913
	struct freq_event event;
2914 2915
	int ret;

2916 2917 2918 2919 2920 2921 2922
	if (counter->hw.sample_period == period)
		return;

	if (counter->attr.sample_type & PERF_SAMPLE_PERIOD)
		return;

	event = (struct freq_event) {
2923 2924 2925
		.header = {
			.type = PERF_EVENT_PERIOD,
			.misc = 0,
2926
			.size = sizeof(event),
2927 2928
		},
		.time = sched_clock(),
2929
		.id = counter->id,
2930 2931 2932
		.period = period,
	};

2933
	ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0);
2934 2935 2936
	if (ret)
		return;

2937
	perf_output_put(&handle, event);
2938 2939 2940
	perf_output_end(&handle);
}

2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
/*
 * IRQ throttle logging
 */

static void perf_log_throttle(struct perf_counter *counter, int enable)
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
2953
		u64				id;
2954 2955 2956 2957 2958 2959
	} throttle_event = {
		.header = {
			.type = PERF_EVENT_THROTTLE + 1,
			.misc = 0,
			.size = sizeof(throttle_event),
		},
2960 2961
		.time	= sched_clock(),
		.id	= counter->id,
2962 2963
	};

I
Ingo Molnar 已提交
2964
	ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2965 2966 2967 2968 2969 2970 2971
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

2972 2973 2974 2975
/*
 * Generic counter overflow handling.
 */

2976 2977
int perf_counter_overflow(struct perf_counter *counter, int nmi,
			  struct perf_sample_data *data)
2978
{
2979
	int events = atomic_read(&counter->event_limit);
2980
	int throttle = counter->pmu->unthrottle != NULL;
2981
	struct hw_perf_counter *hwc = &counter->hw;
2982 2983
	int ret = 0;

2984
	if (!throttle) {
2985
		hwc->interrupts++;
2986
	} else {
2987 2988
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
2989 2990
			if (HZ * hwc->interrupts >
					(u64)sysctl_perf_counter_sample_rate) {
2991
				hwc->interrupts = MAX_INTERRUPTS;
2992 2993 2994 2995 2996 2997 2998 2999 3000
				perf_log_throttle(counter, 0);
				ret = 1;
			}
		} else {
			/*
			 * Keep re-disabling counters even though on the previous
			 * pass we disabled it - just in case we raced with a
			 * sched-in and the counter got enabled again:
			 */
3001 3002 3003
			ret = 1;
		}
	}
3004

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
	if (counter->attr.freq) {
		u64 now = sched_clock();
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
			perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
	}

3015 3016 3017 3018 3019
	/*
	 * XXX event_limit might not quite work as expected on inherited
	 * counters
	 */

3020
	counter->pending_kill = POLL_IN;
3021 3022
	if (events && atomic_dec_and_test(&counter->event_limit)) {
		ret = 1;
3023
		counter->pending_kill = POLL_HUP;
3024 3025 3026 3027 3028 3029 3030 3031
		if (nmi) {
			counter->pending_disable = 1;
			perf_pending_queue(&counter->pending,
					   perf_pending_counter);
		} else
			perf_counter_disable(counter);
	}

3032
	perf_counter_output(counter, nmi, data);
3033
	return ret;
3034 3035
}

3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
/*
 * Generic software counter infrastructure
 */

static void perf_swcounter_update(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	u64 prev, now;
	s64 delta;

again:
	prev = atomic64_read(&hwc->prev_count);
	now = atomic64_read(&hwc->count);
	if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
		goto again;

	delta = now - prev;

	atomic64_add(delta, &counter->count);
	atomic64_sub(delta, &hwc->period_left);
}

static void perf_swcounter_set_period(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	s64 left = atomic64_read(&hwc->period_left);
3062
	s64 period = hwc->sample_period;
3063 3064 3065 3066

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
3067
		hwc->last_period = period;
3068 3069 3070 3071 3072
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_add(period, &hwc->period_left);
3073
		hwc->last_period = period;
3074 3075 3076 3077 3078 3079
	}

	atomic64_set(&hwc->prev_count, -left);
	atomic64_set(&hwc->count, -left);
}

3080 3081
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
{
3082
	enum hrtimer_restart ret = HRTIMER_RESTART;
3083
	struct perf_sample_data data;
3084
	struct perf_counter *counter;
3085
	u64 period;
3086 3087

	counter	= container_of(hrtimer, struct perf_counter, hw.hrtimer);
3088
	counter->pmu->read(counter);
3089

3090 3091
	data.addr = 0;
	data.regs = get_irq_regs();
3092 3093 3094 3095
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
3096
	if ((counter->attr.exclude_kernel || !data.regs) &&
3097
			!counter->attr.exclude_user)
3098
		data.regs = task_pt_regs(current);
3099

3100 3101
	if (data.regs) {
		if (perf_counter_overflow(counter, 0, &data))
3102 3103
			ret = HRTIMER_NORESTART;
	}
3104

3105
	period = max_t(u64, 10000, counter->hw.sample_period);
3106
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3107

3108
	return ret;
3109 3110 3111
}

static void perf_swcounter_overflow(struct perf_counter *counter,
3112
				    int nmi, struct pt_regs *regs, u64 addr)
3113
{
3114
	struct perf_sample_data data = {
3115 3116 3117
		.regs	= regs,
		.addr	= addr,
		.period	= counter->hw.last_period,
3118 3119
	};

3120 3121
	perf_swcounter_update(counter);
	perf_swcounter_set_period(counter);
3122
	if (perf_counter_overflow(counter, nmi, &data))
3123 3124 3125
		/* soft-disable the counter */
		;

3126 3127
}

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
static int perf_swcounter_is_counting(struct perf_counter *counter)
{
	struct perf_counter_context *ctx;
	unsigned long flags;
	int count;

	if (counter->state == PERF_COUNTER_STATE_ACTIVE)
		return 1;

	if (counter->state != PERF_COUNTER_STATE_INACTIVE)
		return 0;

	/*
	 * If the counter is inactive, it could be just because
	 * its task is scheduled out, or because it's in a group
	 * which could not go on the PMU.  We want to count in
	 * the first case but not the second.  If the context is
	 * currently active then an inactive software counter must
	 * be the second case.  If it's not currently active then
	 * we need to know whether the counter was active when the
	 * context was last active, which we can determine by
	 * comparing counter->tstamp_stopped with ctx->time.
	 *
	 * We are within an RCU read-side critical section,
	 * which protects the existence of *ctx.
	 */
	ctx = counter->ctx;
	spin_lock_irqsave(&ctx->lock, flags);
	count = 1;
	/* Re-check state now we have the lock */
	if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
	    counter->ctx->is_active ||
	    counter->tstamp_stopped < ctx->time)
		count = 0;
	spin_unlock_irqrestore(&ctx->lock, flags);
	return count;
}

3166
static int perf_swcounter_match(struct perf_counter *counter,
P
Peter Zijlstra 已提交
3167
				enum perf_type_id type,
3168
				u32 event, struct pt_regs *regs)
3169
{
3170
	if (!perf_swcounter_is_counting(counter))
3171 3172
		return 0;

3173 3174 3175
	if (counter->attr.type != type)
		return 0;
	if (counter->attr.config != event)
3176 3177
		return 0;

3178
	if (regs) {
3179
		if (counter->attr.exclude_user && user_mode(regs))
3180
			return 0;
3181

3182
		if (counter->attr.exclude_kernel && !user_mode(regs))
3183 3184
			return 0;
	}
3185 3186 3187 3188

	return 1;
}

3189
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3190
			       int nmi, struct pt_regs *regs, u64 addr)
3191 3192
{
	int neg = atomic64_add_negative(nr, &counter->hw.count);
3193

3194
	if (counter->hw.sample_period && !neg && regs)
3195
		perf_swcounter_overflow(counter, nmi, regs, addr);
3196 3197
}

3198
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
P
Peter Zijlstra 已提交
3199
				     enum perf_type_id type, u32 event,
3200 3201
				     u64 nr, int nmi, struct pt_regs *regs,
				     u64 addr)
3202 3203 3204
{
	struct perf_counter *counter;

3205
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3206 3207
		return;

P
Peter Zijlstra 已提交
3208 3209
	rcu_read_lock();
	list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3210
		if (perf_swcounter_match(counter, type, event, regs))
3211
			perf_swcounter_add(counter, nr, nmi, regs, addr);
3212
	}
P
Peter Zijlstra 已提交
3213
	rcu_read_unlock();
3214 3215
}

P
Peter Zijlstra 已提交
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

P
Peter Zijlstra 已提交
3230
static void __perf_swcounter_event(enum perf_type_id type, u32 event,
3231 3232
				   u64 nr, int nmi, struct pt_regs *regs,
				   u64 addr)
3233 3234
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3235
	int *recursion = perf_swcounter_recursion_context(cpuctx);
3236
	struct perf_counter_context *ctx;
P
Peter Zijlstra 已提交
3237 3238 3239 3240 3241 3242

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
3243

3244 3245
	perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
				 nr, nmi, regs, addr);
3246 3247 3248 3249 3250 3251 3252 3253 3254
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
	ctx = rcu_dereference(current->perf_counter_ctxp);
	if (ctx)
		perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
	rcu_read_unlock();
3255

P
Peter Zijlstra 已提交
3256 3257 3258 3259
	barrier();
	(*recursion)--;

out:
3260 3261 3262
	put_cpu_var(perf_cpu_context);
}

3263 3264
void
perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3265
{
3266
	__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3267 3268
}

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
static void perf_swcounter_read(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

static int perf_swcounter_enable(struct perf_counter *counter)
{
	perf_swcounter_set_period(counter);
	return 0;
}

static void perf_swcounter_disable(struct perf_counter *counter)
{
	perf_swcounter_update(counter);
}

3285
static const struct pmu perf_ops_generic = {
3286 3287 3288 3289 3290
	.enable		= perf_swcounter_enable,
	.disable	= perf_swcounter_disable,
	.read		= perf_swcounter_read,
};

3291 3292 3293 3294
/*
 * Software counter: cpu wall time clock
 */

3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = atomic64_read(&counter->hw.prev_count);
	atomic64_set(&counter->hw.prev_count, now);
	atomic64_add(now - prev, &counter->count);
}

3307 3308 3309 3310 3311 3312
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
{
	struct hw_perf_counter *hwc = &counter->hw;
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3313 3314
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3315 3316
	if (hwc->sample_period) {
		u64 period = max_t(u64, 10000, hwc->sample_period);
3317
		__hrtimer_start_range_ns(&hwc->hrtimer,
3318
				ns_to_ktime(period), 0,
3319 3320 3321 3322 3323 3324
				HRTIMER_MODE_REL, 0);
	}

	return 0;
}

3325 3326
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
{
3327
	if (counter->hw.sample_period)
3328
		hrtimer_cancel(&counter->hw.hrtimer);
3329
	cpu_clock_perf_counter_update(counter);
3330 3331 3332 3333
}

static void cpu_clock_perf_counter_read(struct perf_counter *counter)
{
3334
	cpu_clock_perf_counter_update(counter);
3335 3336
}

3337
static const struct pmu perf_ops_cpu_clock = {
I
Ingo Molnar 已提交
3338 3339 3340
	.enable		= cpu_clock_perf_counter_enable,
	.disable	= cpu_clock_perf_counter_disable,
	.read		= cpu_clock_perf_counter_read,
3341 3342
};

3343 3344 3345 3346
/*
 * Software counter: task time clock
 */

3347
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
I
Ingo Molnar 已提交
3348
{
3349
	u64 prev;
I
Ingo Molnar 已提交
3350 3351
	s64 delta;

3352
	prev = atomic64_xchg(&counter->hw.prev_count, now);
I
Ingo Molnar 已提交
3353 3354
	delta = now - prev;
	atomic64_add(delta, &counter->count);
3355 3356
}

3357
static int task_clock_perf_counter_enable(struct perf_counter *counter)
I
Ingo Molnar 已提交
3358
{
3359
	struct hw_perf_counter *hwc = &counter->hw;
3360 3361 3362
	u64 now;

	now = counter->ctx->time;
3363

3364
	atomic64_set(&hwc->prev_count, now);
3365 3366
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swcounter_hrtimer;
3367 3368
	if (hwc->sample_period) {
		u64 period = max_t(u64, 10000, hwc->sample_period);
3369
		__hrtimer_start_range_ns(&hwc->hrtimer,
3370
				ns_to_ktime(period), 0,
3371 3372
				HRTIMER_MODE_REL, 0);
	}
3373 3374

	return 0;
I
Ingo Molnar 已提交
3375 3376 3377
}

static void task_clock_perf_counter_disable(struct perf_counter *counter)
3378
{
3379
	if (counter->hw.sample_period)
3380
		hrtimer_cancel(&counter->hw.hrtimer);
3381 3382
	task_clock_perf_counter_update(counter, counter->ctx->time);

3383
}
I
Ingo Molnar 已提交
3384

3385 3386
static void task_clock_perf_counter_read(struct perf_counter *counter)
{
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
	u64 time;

	if (!in_nmi()) {
		update_context_time(counter->ctx);
		time = counter->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - counter->ctx->timestamp;
		time = counter->ctx->time + delta;
	}

	task_clock_perf_counter_update(counter, time);
3399 3400
}

3401
static const struct pmu perf_ops_task_clock = {
I
Ingo Molnar 已提交
3402 3403 3404
	.enable		= task_clock_perf_counter_enable,
	.disable	= task_clock_perf_counter_disable,
	.read		= task_clock_perf_counter_read,
3405 3406
};

3407 3408 3409
/*
 * Software counter: cpu migrations
 */
3410
void perf_counter_task_migration(struct task_struct *task, int cpu)
3411
{
3412 3413
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx;
3414

3415
	perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE,
3416
				 PERF_COUNT_SW_CPU_MIGRATIONS,
3417
				 1, 1, NULL, 0);
3418

3419 3420 3421
	ctx = perf_pin_task_context(task);
	if (ctx) {
		perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE,
3422
					 PERF_COUNT_SW_CPU_MIGRATIONS,
3423 3424 3425
					 1, 1, NULL, 0);
		perf_unpin_context(ctx);
	}
3426 3427
}

3428 3429 3430
#ifdef CONFIG_EVENT_PROFILE
void perf_tpcounter_event(int event_id)
{
3431 3432 3433 3434 3435
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);

3436
	__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3437
}
3438
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3439 3440 3441 3442 3443 3444

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

static void tp_perf_counter_destroy(struct perf_counter *counter)
{
3445
	ftrace_profile_disable(perf_event_id(&counter->attr));
3446 3447
}

3448
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3449
{
3450
	int event_id = perf_event_id(&counter->attr);
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
	int ret;

	ret = ftrace_profile_enable(event_id);
	if (ret)
		return NULL;

	counter->destroy = tp_perf_counter_destroy;

	return &perf_ops_generic;
}
#else
3462
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3463 3464 3465 3466 3467
{
	return NULL;
}
#endif

3468
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3469
{
3470
	const struct pmu *pmu = NULL;
3471

3472 3473 3474 3475 3476 3477 3478
	/*
	 * Software counters (currently) can't in general distinguish
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
3479
	switch (counter->attr.config) {
3480
	case PERF_COUNT_SW_CPU_CLOCK:
3481
		pmu = &perf_ops_cpu_clock;
3482

3483
		break;
3484
	case PERF_COUNT_SW_TASK_CLOCK:
3485 3486 3487 3488 3489
		/*
		 * If the user instantiates this as a per-cpu counter,
		 * use the cpu_clock counter instead.
		 */
		if (counter->ctx->task)
3490
			pmu = &perf_ops_task_clock;
3491
		else
3492
			pmu = &perf_ops_cpu_clock;
3493

3494
		break;
3495 3496 3497 3498 3499
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
3500
		pmu = &perf_ops_generic;
3501
		break;
3502
	}
3503

3504
	return pmu;
3505 3506
}

T
Thomas Gleixner 已提交
3507 3508 3509 3510
/*
 * Allocate and initialize a counter structure
 */
static struct perf_counter *
3511
perf_counter_alloc(struct perf_counter_attr *attr,
3512
		   int cpu,
3513
		   struct perf_counter_context *ctx,
3514 3515
		   struct perf_counter *group_leader,
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
3516
{
3517
	const struct pmu *pmu;
I
Ingo Molnar 已提交
3518
	struct perf_counter *counter;
3519
	struct hw_perf_counter *hwc;
3520
	long err;
T
Thomas Gleixner 已提交
3521

3522
	counter = kzalloc(sizeof(*counter), gfpflags);
T
Thomas Gleixner 已提交
3523
	if (!counter)
3524
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
3525

3526 3527 3528 3529 3530 3531 3532
	/*
	 * Single counters are their own group leaders, with an
	 * empty sibling list:
	 */
	if (!group_leader)
		group_leader = counter;

3533 3534 3535
	mutex_init(&counter->child_mutex);
	INIT_LIST_HEAD(&counter->child_list);

3536
	INIT_LIST_HEAD(&counter->list_entry);
P
Peter Zijlstra 已提交
3537
	INIT_LIST_HEAD(&counter->event_entry);
3538
	INIT_LIST_HEAD(&counter->sibling_list);
T
Thomas Gleixner 已提交
3539 3540
	init_waitqueue_head(&counter->waitq);

3541 3542
	mutex_init(&counter->mmap_mutex);

3543
	counter->cpu		= cpu;
3544
	counter->attr		= *attr;
3545 3546 3547 3548 3549 3550 3551 3552 3553
	counter->group_leader	= group_leader;
	counter->pmu		= NULL;
	counter->ctx		= ctx;
	counter->oncpu		= -1;

	counter->ns		= get_pid_ns(current->nsproxy->pid_ns);
	counter->id		= atomic64_inc_return(&perf_counter_id);

	counter->state		= PERF_COUNTER_STATE_INACTIVE;
3554

3555
	if (attr->disabled)
3556 3557
		counter->state = PERF_COUNTER_STATE_OFF;

3558
	pmu = NULL;
3559

3560
	hwc = &counter->hw;
3561
	hwc->sample_period = attr->sample_period;
3562
	if (attr->freq && attr->sample_freq)
3563 3564 3565
		hwc->sample_period = 1;

	atomic64_set(&hwc->period_left, hwc->sample_period);
3566

3567
	/*
3568
	 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3569
	 */
3570
	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3571 3572
		goto done;

3573
	if (attr->type == PERF_TYPE_RAW) {
3574
		pmu = hw_perf_counter_init(counter);
3575 3576 3577
		goto done;
	}

3578
	switch (attr->type) {
3579
	case PERF_TYPE_HARDWARE:
3580
	case PERF_TYPE_HW_CACHE:
3581
		pmu = hw_perf_counter_init(counter);
3582 3583 3584
		break;

	case PERF_TYPE_SOFTWARE:
3585
		pmu = sw_perf_counter_init(counter);
3586 3587 3588
		break;

	case PERF_TYPE_TRACEPOINT:
3589
		pmu = tp_perf_counter_init(counter);
3590 3591
		break;
	}
3592 3593
done:
	err = 0;
3594
	if (!pmu)
3595
		err = -EINVAL;
3596 3597
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
3598

3599
	if (err) {
3600 3601
		if (counter->ns)
			put_pid_ns(counter->ns);
I
Ingo Molnar 已提交
3602
		kfree(counter);
3603
		return ERR_PTR(err);
I
Ingo Molnar 已提交
3604
	}
3605

3606
	counter->pmu = pmu;
T
Thomas Gleixner 已提交
3607

3608
	atomic_inc(&nr_counters);
3609
	if (counter->attr.mmap)
P
Peter Zijlstra 已提交
3610
		atomic_inc(&nr_mmap_counters);
3611
	if (counter->attr.comm)
P
Peter Zijlstra 已提交
3612
		atomic_inc(&nr_comm_counters);
3613

T
Thomas Gleixner 已提交
3614 3615 3616 3617
	return counter;
}

/**
3618
 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
I
Ingo Molnar 已提交
3619
 *
3620
 * @attr_uptr:	event type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
3621
 * @pid:		target pid
I
Ingo Molnar 已提交
3622 3623
 * @cpu:		target cpu
 * @group_fd:		group leader counter fd
T
Thomas Gleixner 已提交
3624
 */
3625
SYSCALL_DEFINE5(perf_counter_open,
3626
		const struct perf_counter_attr __user *, attr_uptr,
3627
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
3628
{
3629
	struct perf_counter *counter, *group_leader;
3630
	struct perf_counter_attr attr;
3631
	struct perf_counter_context *ctx;
3632
	struct file *counter_file = NULL;
3633 3634
	struct file *group_file = NULL;
	int fput_needed = 0;
3635
	int fput_needed2 = 0;
T
Thomas Gleixner 已提交
3636 3637
	int ret;

3638 3639 3640 3641
	/* for future expandability... */
	if (flags)
		return -EINVAL;

3642
	if (copy_from_user(&attr, attr_uptr, sizeof(attr)) != 0)
3643 3644
		return -EFAULT;

3645 3646 3647 3648 3649
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

3650 3651 3652 3653 3654
	if (attr.freq) {
		if (attr.sample_freq > sysctl_perf_counter_sample_rate)
			return -EINVAL;
	}

3655
	/*
I
Ingo Molnar 已提交
3656 3657 3658 3659 3660 3661 3662 3663
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
	 * Look up the group leader (we will attach this counter to it):
3664 3665 3666 3667 3668 3669
	 */
	group_leader = NULL;
	if (group_fd != -1) {
		ret = -EINVAL;
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
3670
			goto err_put_context;
3671
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
3672
			goto err_put_context;
3673 3674 3675

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
3676 3677 3678 3679 3680 3681 3682 3683
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
3684
		 */
I
Ingo Molnar 已提交
3685 3686
		if (group_leader->ctx != ctx)
			goto err_put_context;
3687 3688 3689
		/*
		 * Only a group leader can be exclusive or pinned
		 */
3690
		if (attr.exclusive || attr.pinned)
3691
			goto err_put_context;
3692 3693
	}

3694
	counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
3695
				     GFP_KERNEL);
3696 3697
	ret = PTR_ERR(counter);
	if (IS_ERR(counter))
T
Thomas Gleixner 已提交
3698 3699 3700 3701
		goto err_put_context;

	ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
	if (ret < 0)
3702 3703 3704 3705 3706 3707 3708
		goto err_free_put_context;

	counter_file = fget_light(ret, &fput_needed2);
	if (!counter_file)
		goto err_free_put_context;

	counter->filp = counter_file;
3709
	WARN_ON_ONCE(ctx->parent_ctx);
3710
	mutex_lock(&ctx->mutex);
3711
	perf_install_in_context(ctx, counter, cpu);
3712
	++ctx->generation;
3713
	mutex_unlock(&ctx->mutex);
3714

3715 3716 3717 3718 3719 3720
	counter->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_counter_mutex);
	list_add_tail(&counter->owner_entry, &current->perf_counter_list);
	mutex_unlock(&current->perf_counter_mutex);

3721
	fput_light(counter_file, fput_needed2);
T
Thomas Gleixner 已提交
3722

3723 3724 3725
out_fput:
	fput_light(group_file, fput_needed);

T
Thomas Gleixner 已提交
3726 3727
	return ret;

3728
err_free_put_context:
T
Thomas Gleixner 已提交
3729 3730 3731
	kfree(counter);

err_put_context:
3732
	put_ctx(ctx);
T
Thomas Gleixner 已提交
3733

3734
	goto out_fput;
T
Thomas Gleixner 已提交
3735 3736
}

3737 3738 3739
/*
 * inherit a counter from parent task to child task:
 */
3740
static struct perf_counter *
3741 3742 3743 3744
inherit_counter(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
3745
	      struct perf_counter *group_leader,
3746 3747 3748 3749
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *child_counter;

3750 3751 3752 3753 3754 3755 3756 3757 3758
	/*
	 * Instead of creating recursive hierarchies of counters,
	 * we link inherited counters back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_counter->parent)
		parent_counter = parent_counter->parent;

3759
	child_counter = perf_counter_alloc(&parent_counter->attr,
3760 3761
					   parent_counter->cpu, child_ctx,
					   group_leader, GFP_KERNEL);
3762 3763
	if (IS_ERR(child_counter))
		return child_counter;
3764
	get_ctx(child_ctx);
3765

3766 3767
	/*
	 * Make the child state follow the state of the parent counter,
3768
	 * not its attr.disabled bit.  We hold the parent's mutex,
3769
	 * so we won't race with perf_counter_{en, dis}able_family.
3770 3771 3772 3773 3774 3775
	 */
	if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
		child_counter->state = PERF_COUNTER_STATE_INACTIVE;
	else
		child_counter->state = PERF_COUNTER_STATE_OFF;

3776 3777 3778
	if (parent_counter->attr.freq)
		child_counter->hw.sample_period = parent_counter->hw.sample_period;

3779 3780 3781
	/*
	 * Link it up in the child's context:
	 */
3782
	add_counter_to_ctx(child_counter, child_ctx);
3783 3784 3785 3786 3787

	child_counter->parent = parent_counter;
	/*
	 * inherit into child's child as well:
	 */
3788
	child_counter->attr.inherit = 1;
3789 3790 3791 3792 3793 3794 3795 3796 3797

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child counter exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_counter->filp->f_count);

3798 3799 3800
	/*
	 * Link this into the parent counter's child list
	 */
3801
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3802
	mutex_lock(&parent_counter->child_mutex);
3803
	list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3804
	mutex_unlock(&parent_counter->child_mutex);
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816

	return child_counter;
}

static int inherit_group(struct perf_counter *parent_counter,
	      struct task_struct *parent,
	      struct perf_counter_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_counter_context *child_ctx)
{
	struct perf_counter *leader;
	struct perf_counter *sub;
3817
	struct perf_counter *child_ctr;
3818 3819 3820

	leader = inherit_counter(parent_counter, parent, parent_ctx,
				 child, NULL, child_ctx);
3821 3822
	if (IS_ERR(leader))
		return PTR_ERR(leader);
3823
	list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3824 3825 3826 3827
		child_ctr = inherit_counter(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
3828
	}
3829 3830 3831
	return 0;
}

3832 3833 3834
static void sync_child_counter(struct perf_counter *child_counter,
			       struct perf_counter *parent_counter)
{
3835
	u64 child_val;
3836 3837 3838 3839 3840 3841 3842

	child_val = atomic64_read(&child_counter->count);

	/*
	 * Add back the child's count to the parent's count:
	 */
	atomic64_add(child_val, &parent_counter->count);
3843 3844 3845 3846
	atomic64_add(child_counter->total_time_enabled,
		     &parent_counter->child_total_time_enabled);
	atomic64_add(child_counter->total_time_running,
		     &parent_counter->child_total_time_running);
3847 3848 3849 3850

	/*
	 * Remove this counter from the parent's list
	 */
3851
	WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3852
	mutex_lock(&parent_counter->child_mutex);
3853
	list_del_init(&child_counter->child_list);
3854
	mutex_unlock(&parent_counter->child_mutex);
3855 3856 3857 3858 3859 3860 3861 3862

	/*
	 * Release the parent counter, if this was the last
	 * reference to it.
	 */
	fput(parent_counter->filp);
}

3863
static void
3864
__perf_counter_exit_task(struct perf_counter *child_counter,
3865 3866 3867 3868
			 struct perf_counter_context *child_ctx)
{
	struct perf_counter *parent_counter;

3869
	update_counter_times(child_counter);
3870
	perf_counter_remove_from_context(child_counter);
3871

3872 3873 3874 3875 3876 3877
	parent_counter = child_counter->parent;
	/*
	 * It can happen that parent exits first, and has counters
	 * that are still around due to the child reference. These
	 * counters need to be zapped - but otherwise linger.
	 */
3878 3879
	if (parent_counter) {
		sync_child_counter(child_counter, parent_counter);
3880
		free_counter(child_counter);
3881
	}
3882 3883 3884
}

/*
3885
 * When a child task exits, feed back counter values to parent counters.
3886 3887 3888 3889 3890
 */
void perf_counter_exit_task(struct task_struct *child)
{
	struct perf_counter *child_counter, *tmp;
	struct perf_counter_context *child_ctx;
3891
	unsigned long flags;
3892

3893
	if (likely(!child->perf_counter_ctxp))
3894 3895
		return;

3896
	local_irq_save(flags);
3897 3898 3899 3900 3901 3902 3903
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
	child_ctx = child->perf_counter_ctxp;
3904
	__perf_counter_task_sched_out(child_ctx);
3905 3906 3907 3908 3909 3910 3911

	/*
	 * Take the context lock here so that if find_get_context is
	 * reading child->perf_counter_ctxp, we wait until it has
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
3912
	child->perf_counter_ctxp = NULL;
3913 3914 3915 3916 3917 3918 3919 3920 3921
	if (child_ctx->parent_ctx) {
		/*
		 * This context is a clone; unclone it so it can't get
		 * swapped to another process while we're removing all
		 * the counters from it.
		 */
		put_ctx(child_ctx->parent_ctx);
		child_ctx->parent_ctx = NULL;
	}
3922
	spin_unlock(&child_ctx->lock);
3923 3924
	local_irq_restore(flags);

3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
	/*
	 * We can recurse on the same lock type through:
	 *
	 *   __perf_counter_exit_task()
	 *     sync_child_counter()
	 *       fput(parent_counter->filp)
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
3937

3938
again:
3939 3940
	list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
				 list_entry)
3941
		__perf_counter_exit_task(child_counter, child_ctx);
3942 3943 3944 3945 3946 3947 3948 3949

	/*
	 * If the last counter was a group counter, it will have appended all
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
	if (!list_empty(&child_ctx->counter_list))
		goto again;
3950 3951 3952 3953

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
3954 3955
}

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
void perf_counter_free_task(struct task_struct *task)
{
	struct perf_counter_context *ctx = task->perf_counter_ctxp;
	struct perf_counter *counter, *tmp;

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
		struct perf_counter *parent = counter->parent;

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
		list_del_init(&counter->child_list);
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

		list_del_counter(counter, ctx);
		free_counter(counter);
	}

	if (!list_empty(&ctx->counter_list))
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3994 3995 3996
/*
 * Initialize the perf_counter context in task_struct
 */
3997
int perf_counter_init_task(struct task_struct *child)
3998 3999
{
	struct perf_counter_context *child_ctx, *parent_ctx;
4000
	struct perf_counter_context *cloned_ctx;
4001
	struct perf_counter *counter;
4002
	struct task_struct *parent = current;
4003
	int inherited_all = 1;
4004
	int ret = 0;
4005

4006
	child->perf_counter_ctxp = NULL;
4007

4008 4009 4010
	mutex_init(&child->perf_counter_mutex);
	INIT_LIST_HEAD(&child->perf_counter_list);

4011
	if (likely(!parent->perf_counter_ctxp))
4012 4013
		return 0;

4014 4015
	/*
	 * This is executed from the parent task context, so inherit
4016 4017
	 * counters that have been marked for cloning.
	 * First allocate and initialize a context for the child.
4018 4019
	 */

4020 4021
	child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
	if (!child_ctx)
4022
		return -ENOMEM;
4023

4024 4025
	__perf_counter_init_context(child_ctx, child);
	child->perf_counter_ctxp = child_ctx;
4026
	get_task_struct(child);
4027

4028
	/*
4029 4030
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
4031
	 */
4032 4033
	parent_ctx = perf_pin_task_context(parent);

4034 4035 4036 4037 4038 4039 4040
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

4041 4042 4043 4044
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
4045
	mutex_lock(&parent_ctx->mutex);
4046 4047 4048 4049 4050

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
4051 4052 4053 4054
	list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
		if (counter != counter->group_leader)
			continue;

4055
		if (!counter->attr.inherit) {
4056
			inherited_all = 0;
4057
			continue;
4058
		}
4059

4060 4061 4062
		ret = inherit_group(counter, parent, parent_ctx,
					     child, child_ctx);
		if (ret) {
4063
			inherited_all = 0;
4064
			break;
4065 4066 4067 4068 4069 4070 4071
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
4072 4073 4074 4075
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
		 * because the list of counters and the generation
		 * count can't have changed since we took the mutex.
4076
		 */
4077 4078 4079
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
4080
			child_ctx->parent_gen = parent_ctx->parent_gen;
4081 4082 4083 4084 4085
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
4086 4087
	}

4088
	mutex_unlock(&parent_ctx->mutex);
4089

4090
	perf_unpin_context(parent_ctx);
4091

4092
	return ret;
4093 4094
}

4095
static void __cpuinit perf_counter_init_cpu(int cpu)
T
Thomas Gleixner 已提交
4096
{
4097
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
4098

4099 4100
	cpuctx = &per_cpu(perf_cpu_context, cpu);
	__perf_counter_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
4101

4102
	spin_lock(&perf_resource_lock);
4103
	cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4104
	spin_unlock(&perf_resource_lock);
4105

4106
	hw_perf_counter_setup(cpu);
T
Thomas Gleixner 已提交
4107 4108 4109
}

#ifdef CONFIG_HOTPLUG_CPU
4110
static void __perf_counter_exit_cpu(void *info)
T
Thomas Gleixner 已提交
4111 4112 4113 4114 4115
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_counter_context *ctx = &cpuctx->ctx;
	struct perf_counter *counter, *tmp;

4116 4117
	list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
		__perf_counter_remove_from_context(counter);
T
Thomas Gleixner 已提交
4118
}
4119
static void perf_counter_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
4120
{
4121 4122 4123 4124
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	struct perf_counter_context *ctx = &cpuctx->ctx;

	mutex_lock(&ctx->mutex);
4125
	smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4126
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
4127 4128
}
#else
4129
static inline void perf_counter_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4141
		perf_counter_init_cpu(cpu);
T
Thomas Gleixner 已提交
4142 4143 4144 4145
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
4146
		perf_counter_exit_cpu(cpu);
T
Thomas Gleixner 已提交
4147 4148 4149 4150 4151 4152 4153 4154 4155
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

4156 4157 4158
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
4159 4160
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
4161
	.priority		= 20,
T
Thomas Gleixner 已提交
4162 4163
};

4164
void __init perf_counter_init(void)
T
Thomas Gleixner 已提交
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > perf_max_counters)
		return -EINVAL;

4191
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4192 4193 4194 4195 4196 4197 4198 4199 4200
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
		mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
			  perf_max_counters - perf_reserved_percpu);
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
4201
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

4223
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4224
	perf_overcommit = val;
4225
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
	.name			= "perf_counters",
};

static int __init perf_counter_sysfs_init(void)
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
device_initcall(perf_counter_sysfs_init);