ucb1x00-ts.c 10.6 KB
Newer Older
1
/*
2
 *  Touchscreen driver for UCB1x00-based touchscreens
3 4
 *
 *  Copyright (C) 2001 Russell King, All Rights Reserved.
5
 *  Copyright (C) 2005 Pavel Machek
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * 21-Jan-2002 <jco@ict.es> :
 *
 * Added support for synchronous A/D mode. This mode is useful to
 * avoid noise induced in the touchpanel by the LCD, provided that
 * the UCB1x00 has a valid LCD sync signal routed to its ADCSYNC pin.
 * It is important to note that the signal connected to the ADCSYNC
 * pin should provide pulses even when the LCD is blanked, otherwise
 * a pen touch needed to unblank the LCD will never be read.
 */
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/sched.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/input.h>
#include <linux/device.h>
#include <linux/suspend.h>
#include <linux/slab.h>
33
#include <linux/kthread.h>
34 35 36

#include <asm/dma.h>
#include <asm/semaphore.h>
37 38
#include <asm/arch/collie.h>
#include <asm/mach-types.h>
39 40 41 42 43

#include "ucb1x00.h"


struct ucb1x00_ts {
44
	struct input_dev	*idev;
45 46 47 48 49 50 51
	struct ucb1x00		*ucb;

	wait_queue_head_t	irq_wait;
	struct task_struct	*rtask;
	u16			x_res;
	u16			y_res;

52 53
	unsigned int		restart:1;
	unsigned int		adcsync:1;
54 55 56 57 58 59
};

static int adcsync;

static inline void ucb1x00_ts_evt_add(struct ucb1x00_ts *ts, u16 pressure, u16 x, u16 y)
{
60
	struct input_dev *idev = ts->idev;
61

62 63 64 65
	input_report_abs(idev, ABS_X, x);
	input_report_abs(idev, ABS_Y, y);
	input_report_abs(idev, ABS_PRESSURE, pressure);
	input_sync(idev);
66 67 68 69
}

static inline void ucb1x00_ts_event_release(struct ucb1x00_ts *ts)
{
70
	struct input_dev *idev = ts->idev;
71

72 73
	input_report_abs(idev, ABS_PRESSURE, 0);
	input_sync(idev);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
}

/*
 * Switch to interrupt mode.
 */
static inline void ucb1x00_ts_mode_int(struct ucb1x00_ts *ts)
{
	ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
			UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
			UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
			UCB_TS_CR_MODE_INT);
}

/*
 * Switch to pressure mode, and read pressure.  We don't need to wait
 * here, since both plates are being driven.
 */
static inline unsigned int ucb1x00_ts_read_pressure(struct ucb1x00_ts *ts)
{
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	if (machine_is_collie()) {
		ucb1x00_io_write(ts->ucb, COLLIE_TC35143_GPIO_TBL_CHK, 0);
		ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
				  UCB_TS_CR_TSPX_POW | UCB_TS_CR_TSMX_POW |
				  UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);

		udelay(55);

		return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_AD2, ts->adcsync);
	} else {
		ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
				  UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
				  UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
				  UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);

		return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
	}
110 111 112 113 114 115 116 117 118 119
}

/*
 * Switch to X position mode and measure Y plate.  We switch the plate
 * configuration in pressure mode, then switch to position mode.  This
 * gives a faster response time.  Even so, we need to wait about 55us
 * for things to stabilise.
 */
static inline unsigned int ucb1x00_ts_read_xpos(struct ucb1x00_ts *ts)
{
120 121 122 123 124 125 126 127 128 129
	if (machine_is_collie())
		ucb1x00_io_write(ts->ucb, 0, COLLIE_TC35143_GPIO_TBL_CHK);
	else {
		ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
				  UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
				  UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
		ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
				  UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
				  UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
	}
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
	ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
			UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
			UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);

	udelay(55);

	return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
}

/*
 * Switch to Y position mode and measure X plate.  We switch the plate
 * configuration in pressure mode, then switch to position mode.  This
 * gives a faster response time.  Even so, we need to wait about 55us
 * for things to stabilise.
 */
static inline unsigned int ucb1x00_ts_read_ypos(struct ucb1x00_ts *ts)
{
147 148 149 150 151 152 153 154 155 156 157
	if (machine_is_collie())
		ucb1x00_io_write(ts->ucb, 0, COLLIE_TC35143_GPIO_TBL_CHK);
	else {
		ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
				  UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
				  UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
		ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
				  UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
				  UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
	}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
	ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
			UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
			UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);

	udelay(55);

	return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPX, ts->adcsync);
}

/*
 * Switch to X plate resistance mode.  Set MX to ground, PX to
 * supply.  Measure current.
 */
static inline unsigned int ucb1x00_ts_read_xres(struct ucb1x00_ts *ts)
{
	ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
			UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
			UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
	return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
}

/*
 * Switch to Y plate resistance mode.  Set MY to ground, PY to
 * supply.  Measure current.
 */
static inline unsigned int ucb1x00_ts_read_yres(struct ucb1x00_ts *ts)
{
	ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
			UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
			UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
	return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
}

191 192 193
static inline int ucb1x00_ts_pen_down(struct ucb1x00_ts *ts)
{
	unsigned int val = ucb1x00_reg_read(ts->ucb, UCB_TS_CR);
194

195 196 197 198 199 200
	if (machine_is_collie())
		return (!(val & (UCB_TS_CR_TSPX_LOW)));
	else
		return (val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW));
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
/*
 * This is a RT kernel thread that handles the ADC accesses
 * (mainly so we can use semaphores in the UCB1200 core code
 * to serialise accesses to the ADC).
 */
static int ucb1x00_thread(void *_ts)
{
	struct ucb1x00_ts *ts = _ts;
	struct task_struct *tsk = current;
	DECLARE_WAITQUEUE(wait, tsk);
	int valid;

	/*
	 * We could run as a real-time thread.  However, thus far
	 * this doesn't seem to be necessary.
	 */
//	tsk->policy = SCHED_FIFO;
//	tsk->rt_priority = 1;

	valid = 0;

	add_wait_queue(&ts->irq_wait, &wait);
223
	while (!kthread_should_stop()) {
224
		unsigned int x, y, p;
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
		signed long timeout;

		ts->restart = 0;

		ucb1x00_adc_enable(ts->ucb);

		x = ucb1x00_ts_read_xpos(ts);
		y = ucb1x00_ts_read_ypos(ts);
		p = ucb1x00_ts_read_pressure(ts);

		/*
		 * Switch back to interrupt mode.
		 */
		ucb1x00_ts_mode_int(ts);
		ucb1x00_adc_disable(ts->ucb);

241
		msleep(10);
242 243 244

		ucb1x00_enable(ts->ucb);

245 246

		if (ucb1x00_ts_pen_down(ts)) {
247 248
			set_task_state(tsk, TASK_INTERRUPTIBLE);

249
			ucb1x00_enable_irq(ts->ucb, UCB_IRQ_TSPX, machine_is_collie() ? UCB_RISING : UCB_FALLING);
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
			ucb1x00_disable(ts->ucb);

			/*
			 * If we spat out a valid sample set last time,
			 * spit out a "pen off" sample here.
			 */
			if (valid) {
				ucb1x00_ts_event_release(ts);
				valid = 0;
			}

			timeout = MAX_SCHEDULE_TIMEOUT;
		} else {
			ucb1x00_disable(ts->ucb);

			/*
			 * Filtering is policy.  Policy belongs in user
			 * space.  We therefore leave it to user space
			 * to do any filtering they please.
			 */
			if (!ts->restart) {
				ucb1x00_ts_evt_add(ts, p, x, y);
				valid = 1;
			}

			set_task_state(tsk, TASK_INTERRUPTIBLE);
			timeout = HZ / 100;
		}

		try_to_freeze();

		schedule_timeout(timeout);
	}

	remove_wait_queue(&ts->irq_wait, &wait);

	ts->rtask = NULL;
287
	return 0;
288 289 290 291 292 293 294 295 296
}

/*
 * We only detect touch screen _touches_ with this interrupt
 * handler, and even then we just schedule our task.
 */
static void ucb1x00_ts_irq(int idx, void *id)
{
	struct ucb1x00_ts *ts = id;
297

298 299 300 301 302 303
	ucb1x00_disable_irq(ts->ucb, UCB_IRQ_TSPX, UCB_FALLING);
	wake_up(&ts->irq_wait);
}

static int ucb1x00_ts_open(struct input_dev *idev)
{
304
	struct ucb1x00_ts *ts = idev->private;
305 306
	int ret = 0;

307
	BUG_ON(ts->rtask);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

	init_waitqueue_head(&ts->irq_wait);
	ret = ucb1x00_hook_irq(ts->ucb, UCB_IRQ_TSPX, ucb1x00_ts_irq, ts);
	if (ret < 0)
		goto out;

	/*
	 * If we do this at all, we should allow the user to
	 * measure and read the X and Y resistance at any time.
	 */
	ucb1x00_adc_enable(ts->ucb);
	ts->x_res = ucb1x00_ts_read_xres(ts);
	ts->y_res = ucb1x00_ts_read_yres(ts);
	ucb1x00_adc_disable(ts->ucb);

323 324
	ts->rtask = kthread_run(ucb1x00_thread, ts, "ktsd");
	if (!IS_ERR(ts->rtask)) {
325 326 327
		ret = 0;
	} else {
		ucb1x00_free_irq(ts->ucb, UCB_IRQ_TSPX, ts);
328 329
		ts->rtask = NULL;
		ret = -EFAULT;
330 331 332 333 334 335 336 337 338 339 340
	}

 out:
	return ret;
}

/*
 * Release touchscreen resources.  Disable IRQs.
 */
static void ucb1x00_ts_close(struct input_dev *idev)
{
341
	struct ucb1x00_ts *ts = idev->private;
342

343 344
	if (ts->rtask)
		kthread_stop(ts->rtask);
345

346 347 348 349
	ucb1x00_enable(ts->ucb);
	ucb1x00_free_irq(ts->ucb, UCB_IRQ_TSPX, ts);
	ucb1x00_reg_write(ts->ucb, UCB_TS_CR, 0);
	ucb1x00_disable(ts->ucb);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
}

#ifdef CONFIG_PM
static int ucb1x00_ts_resume(struct ucb1x00_dev *dev)
{
	struct ucb1x00_ts *ts = dev->priv;

	if (ts->rtask != NULL) {
		/*
		 * Restart the TS thread to ensure the
		 * TS interrupt mode is set up again
		 * after sleep.
		 */
		ts->restart = 1;
		wake_up(&ts->irq_wait);
	}
	return 0;
}
#else
#define ucb1x00_ts_resume NULL
#endif


/*
 * Initialisation.
 */
static int ucb1x00_ts_add(struct ucb1x00_dev *dev)
{
	struct ucb1x00_ts *ts;
379 380
	struct input_dev *idev;
	int err;
381

382
	ts = kzalloc(sizeof(struct ucb1x00_ts), GFP_KERNEL);
383 384 385 386
	idev = input_allocate_device();
	if (!ts || !idev) {
		err = -ENOMEM;
		goto fail;
387
	}
388 389

	ts->ucb = dev->ucb;
390
	ts->idev = idev;
391 392
	ts->adcsync = adcsync ? UCB_SYNC : UCB_NOSYNC;

393 394 395 396 397
	idev->private    = ts;
	idev->name       = "Touchscreen panel";
	idev->id.product = ts->ucb->id;
	idev->open       = ucb1x00_ts_open;
	idev->close      = ucb1x00_ts_close;
398

399 400 401 402
	__set_bit(EV_ABS, idev->evbit);
	__set_bit(ABS_X, idev->absbit);
	__set_bit(ABS_Y, idev->absbit);
	__set_bit(ABS_PRESSURE, idev->absbit);
403

404 405 406
	err = input_register_device(idev);
	if (err)
		goto fail;
407 408 409 410

	dev->priv = ts;

	return 0;
411 412 413 414 415

 fail:
	input_free_device(idev);
	kfree(ts);
	return err;
416 417 418 419 420
}

static void ucb1x00_ts_remove(struct ucb1x00_dev *dev)
{
	struct ucb1x00_ts *ts = dev->priv;
421 422

	input_unregister_device(ts->idev);
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	kfree(ts);
}

static struct ucb1x00_driver ucb1x00_ts_driver = {
	.add		= ucb1x00_ts_add,
	.remove		= ucb1x00_ts_remove,
	.resume		= ucb1x00_ts_resume,
};

static int __init ucb1x00_ts_init(void)
{
	return ucb1x00_register_driver(&ucb1x00_ts_driver);
}

static void __exit ucb1x00_ts_exit(void)
{
	ucb1x00_unregister_driver(&ucb1x00_ts_driver);
}

module_param(adcsync, int, 0444);
module_init(ucb1x00_ts_init);
module_exit(ucb1x00_ts_exit);

MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
MODULE_DESCRIPTION("UCB1x00 touchscreen driver");
MODULE_LICENSE("GPL");