journal.c 65.4 KB
Newer Older
1
/*
2
 * linux/fs/jbd2/journal.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
 *
 * Copyright 1998 Red Hat corp --- All Rights Reserved
 *
 * This file is part of the Linux kernel and is made available under
 * the terms of the GNU General Public License, version 2, or at your
 * option, any later version, incorporated herein by reference.
 *
 * Generic filesystem journal-writing code; part of the ext2fs
 * journaling system.
 *
 * This file manages journals: areas of disk reserved for logging
 * transactional updates.  This includes the kernel journaling thread
 * which is responsible for scheduling updates to the log.
 *
 * We do not actually manage the physical storage of the journal in this
 * file: that is left to a per-journal policy function, which allows us
 * to store the journal within a filesystem-specified area for ext2
 * journaling (ext2 can use a reserved inode for storing the log).
 */

#include <linux/module.h>
#include <linux/time.h>
#include <linux/fs.h>
28
#include <linux/jbd2.h>
29 30 31 32
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/mm.h>
33
#include <linux/freezer.h>
34 35 36 37
#include <linux/pagemap.h>
#include <linux/kthread.h>
#include <linux/poison.h>
#include <linux/proc_fs.h>
38
#include <linux/debugfs.h>
39
#include <linux/seq_file.h>
40
#include <linux/math64.h>
41
#include <linux/hash.h>
42 43
#include <linux/log2.h>
#include <linux/vmalloc.h>
44
#include <linux/backing-dev.h>
45
#include <linux/bitops.h>
46
#include <linux/ratelimit.h>
47 48 49

#define CREATE_TRACE_POINTS
#include <trace/events/jbd2.h>
50 51 52

#include <asm/uaccess.h>
#include <asm/page.h>
53
#include <asm/system.h>
54

55 56 57 58 59 60 61
EXPORT_SYMBOL(jbd2_journal_extend);
EXPORT_SYMBOL(jbd2_journal_stop);
EXPORT_SYMBOL(jbd2_journal_lock_updates);
EXPORT_SYMBOL(jbd2_journal_unlock_updates);
EXPORT_SYMBOL(jbd2_journal_get_write_access);
EXPORT_SYMBOL(jbd2_journal_get_create_access);
EXPORT_SYMBOL(jbd2_journal_get_undo_access);
J
Joel Becker 已提交
62
EXPORT_SYMBOL(jbd2_journal_set_triggers);
63 64 65
EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
EXPORT_SYMBOL(jbd2_journal_release_buffer);
EXPORT_SYMBOL(jbd2_journal_forget);
66 67 68
#if 0
EXPORT_SYMBOL(journal_sync_buffer);
#endif
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
EXPORT_SYMBOL(jbd2_journal_flush);
EXPORT_SYMBOL(jbd2_journal_revoke);

EXPORT_SYMBOL(jbd2_journal_init_dev);
EXPORT_SYMBOL(jbd2_journal_init_inode);
EXPORT_SYMBOL(jbd2_journal_update_format);
EXPORT_SYMBOL(jbd2_journal_check_used_features);
EXPORT_SYMBOL(jbd2_journal_check_available_features);
EXPORT_SYMBOL(jbd2_journal_set_features);
EXPORT_SYMBOL(jbd2_journal_load);
EXPORT_SYMBOL(jbd2_journal_destroy);
EXPORT_SYMBOL(jbd2_journal_abort);
EXPORT_SYMBOL(jbd2_journal_errno);
EXPORT_SYMBOL(jbd2_journal_ack_err);
EXPORT_SYMBOL(jbd2_journal_clear_err);
EXPORT_SYMBOL(jbd2_log_wait_commit);
85
EXPORT_SYMBOL(jbd2_log_start_commit);
86 87 88 89 90 91 92
EXPORT_SYMBOL(jbd2_journal_start_commit);
EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
EXPORT_SYMBOL(jbd2_journal_wipe);
EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
EXPORT_SYMBOL(jbd2_journal_invalidatepage);
EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
EXPORT_SYMBOL(jbd2_journal_force_commit);
93 94 95 96
EXPORT_SYMBOL(jbd2_journal_file_inode);
EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97
EXPORT_SYMBOL(jbd2_inode_cache);
98 99 100

static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
static void __journal_abort_soft (journal_t *journal, int errno);
101
static int jbd2_journal_create_slab(size_t slab_size);
102 103 104 105 106 107 108 109 110 111 112 113 114

/*
 * Helper function used to manage commit timeouts
 */

static void commit_timeout(unsigned long __data)
{
	struct task_struct * p = (struct task_struct *) __data;

	wake_up_process(p);
}

/*
115
 * kjournald2: The main thread function used to manage a logging device
116 117 118 119 120 121 122 123 124 125 126 127 128 129
 * journal.
 *
 * This kernel thread is responsible for two things:
 *
 * 1) COMMIT:  Every so often we need to commit the current state of the
 *    filesystem to disk.  The journal thread is responsible for writing
 *    all of the metadata buffers to disk.
 *
 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 *    of the data in that part of the log has been rewritten elsewhere on
 *    the disk.  Flushing these old buffers to reclaim space in the log is
 *    known as checkpointing, and this thread is responsible for that job.
 */

130
static int kjournald2(void *arg)
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
{
	journal_t *journal = arg;
	transaction_t *transaction;

	/*
	 * Set up an interval timer which can be used to trigger a commit wakeup
	 * after the commit interval expires
	 */
	setup_timer(&journal->j_commit_timer, commit_timeout,
			(unsigned long)current);

	/* Record that the journal thread is running */
	journal->j_task = current;
	wake_up(&journal->j_wait_done_commit);

	/*
	 * And now, wait forever for commit wakeup events.
	 */
149
	write_lock(&journal->j_state_lock);
150 151

loop:
152
	if (journal->j_flags & JBD2_UNMOUNT)
153 154 155 156 157 158 159
		goto end_loop;

	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
		journal->j_commit_sequence, journal->j_commit_request);

	if (journal->j_commit_sequence != journal->j_commit_request) {
		jbd_debug(1, "OK, requests differ\n");
160
		write_unlock(&journal->j_state_lock);
161
		del_timer_sync(&journal->j_commit_timer);
162
		jbd2_journal_commit_transaction(journal);
163
		write_lock(&journal->j_state_lock);
164 165 166 167 168 169 170 171 172 173
		goto loop;
	}

	wake_up(&journal->j_wait_done_commit);
	if (freezing(current)) {
		/*
		 * The simpler the better. Flushing journal isn't a
		 * good idea, because that depends on threads that may
		 * be already stopped.
		 */
174
		jbd_debug(1, "Now suspending kjournald2\n");
175
		write_unlock(&journal->j_state_lock);
176
		refrigerator();
177
		write_lock(&journal->j_state_lock);
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	} else {
		/*
		 * We assume on resume that commits are already there,
		 * so we don't sleep
		 */
		DEFINE_WAIT(wait);
		int should_sleep = 1;

		prepare_to_wait(&journal->j_wait_commit, &wait,
				TASK_INTERRUPTIBLE);
		if (journal->j_commit_sequence != journal->j_commit_request)
			should_sleep = 0;
		transaction = journal->j_running_transaction;
		if (transaction && time_after_eq(jiffies,
						transaction->t_expires))
			should_sleep = 0;
194
		if (journal->j_flags & JBD2_UNMOUNT)
195 196
			should_sleep = 0;
		if (should_sleep) {
197
			write_unlock(&journal->j_state_lock);
198
			schedule();
199
			write_lock(&journal->j_state_lock);
200 201 202 203
		}
		finish_wait(&journal->j_wait_commit, &wait);
	}

204
	jbd_debug(1, "kjournald2 wakes\n");
205 206 207 208 209 210 211 212 213 214 215 216

	/*
	 * Were we woken up by a commit wakeup event?
	 */
	transaction = journal->j_running_transaction;
	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
		journal->j_commit_request = transaction->t_tid;
		jbd_debug(1, "woke because of timeout\n");
	}
	goto loop;

end_loop:
217
	write_unlock(&journal->j_state_lock);
218 219 220 221 222 223 224
	del_timer_sync(&journal->j_commit_timer);
	journal->j_task = NULL;
	wake_up(&journal->j_wait_done_commit);
	jbd_debug(1, "Journal thread exiting.\n");
	return 0;
}

225
static int jbd2_journal_start_thread(journal_t *journal)
226
{
227 228
	struct task_struct *t;

229 230
	t = kthread_run(kjournald2, journal, "jbd2/%s",
			journal->j_devname);
231 232 233
	if (IS_ERR(t))
		return PTR_ERR(t);

A
Al Viro 已提交
234
	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
235
	return 0;
236 237 238 239
}

static void journal_kill_thread(journal_t *journal)
{
240
	write_lock(&journal->j_state_lock);
241
	journal->j_flags |= JBD2_UNMOUNT;
242 243 244

	while (journal->j_task) {
		wake_up(&journal->j_wait_commit);
245
		write_unlock(&journal->j_state_lock);
A
Al Viro 已提交
246
		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
247
		write_lock(&journal->j_state_lock);
248
	}
249
	write_unlock(&journal->j_state_lock);
250 251 252
}

/*
253
 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
254 255 256 257 258 259 260
 *
 * Writes a metadata buffer to a given disk block.  The actual IO is not
 * performed but a new buffer_head is constructed which labels the data
 * to be written with the correct destination disk block.
 *
 * Any magic-number escaping which needs to be done will cause a
 * copy-out here.  If the buffer happens to start with the
261
 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
 * magic number is only written to the log for descripter blocks.  In
 * this case, we copy the data and replace the first word with 0, and we
 * return a result code which indicates that this buffer needs to be
 * marked as an escaped buffer in the corresponding log descriptor
 * block.  The missing word can then be restored when the block is read
 * during recovery.
 *
 * If the source buffer has already been modified by a new transaction
 * since we took the last commit snapshot, we use the frozen copy of
 * that data for IO.  If we end up using the existing buffer_head's data
 * for the write, then we *have* to lock the buffer to prevent anyone
 * else from using and possibly modifying it while the IO is in
 * progress.
 *
 * The function returns a pointer to the buffer_heads to be used for IO.
 *
 * We assume that the journal has already been locked in this function.
 *
 * Return value:
 *  <0: Error
 * >=0: Finished OK
 *
 * On success:
 * Bit 0 set == escape performed on the data
 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 */

289
int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
290 291
				  struct journal_head  *jh_in,
				  struct journal_head **jh_out,
292
				  unsigned long long blocknr)
293 294 295 296 297 298 299 300 301 302
{
	int need_copy_out = 0;
	int done_copy_out = 0;
	int do_escape = 0;
	char *mapped_data;
	struct buffer_head *new_bh;
	struct journal_head *new_jh;
	struct page *new_page;
	unsigned int new_offset;
	struct buffer_head *bh_in = jh2bh(jh_in);
303
	journal_t *journal = transaction->t_journal;
304 305 306 307 308 309 310 311 312 313 314 315

	/*
	 * The buffer really shouldn't be locked: only the current committing
	 * transaction is allowed to write it, so nobody else is allowed
	 * to do any IO.
	 *
	 * akpm: except if we're journalling data, and write() output is
	 * also part of a shared mapping, and another thread has
	 * decided to launch a writepage() against this buffer.
	 */
	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));

316 317 318 319 320 321 322 323 324 325 326
retry_alloc:
	new_bh = alloc_buffer_head(GFP_NOFS);
	if (!new_bh) {
		/*
		 * Failure is not an option, but __GFP_NOFAIL is going
		 * away; so we retry ourselves here.
		 */
		congestion_wait(BLK_RW_ASYNC, HZ/50);
		goto retry_alloc;
	}

327 328 329 330 331
	/* keep subsequent assertions sane */
	new_bh->b_state = 0;
	init_buffer(new_bh, NULL, NULL);
	atomic_set(&new_bh->b_count, 1);
	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

	/*
	 * If a new transaction has already done a buffer copy-out, then
	 * we use that version of the data for the commit.
	 */
	jbd_lock_bh_state(bh_in);
repeat:
	if (jh_in->b_frozen_data) {
		done_copy_out = 1;
		new_page = virt_to_page(jh_in->b_frozen_data);
		new_offset = offset_in_page(jh_in->b_frozen_data);
	} else {
		new_page = jh2bh(jh_in)->b_page;
		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
	}

	mapped_data = kmap_atomic(new_page, KM_USER0);
J
Joel Becker 已提交
349
	/*
350 351 352 353
	 * Fire data frozen trigger if data already wasn't frozen.  Do this
	 * before checking for escaping, as the trigger may modify the magic
	 * offset.  If a copy-out happens afterwards, it will have the correct
	 * data in the buffer.
J
Joel Becker 已提交
354
	 */
355 356 357
	if (!done_copy_out)
		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
					   jh_in->b_triggers);
J
Joel Becker 已提交
358

359 360 361 362
	/*
	 * Check for escaping
	 */
	if (*((__be32 *)(mapped_data + new_offset)) ==
363
				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
364 365 366 367 368 369 370 371 372 373 374 375
		need_copy_out = 1;
		do_escape = 1;
	}
	kunmap_atomic(mapped_data, KM_USER0);

	/*
	 * Do we need to do a data copy?
	 */
	if (need_copy_out && !done_copy_out) {
		char *tmp;

		jbd_unlock_bh_state(bh_in);
M
Mingming Cao 已提交
376
		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
377 378 379 380
		if (!tmp) {
			jbd2_journal_put_journal_head(new_jh);
			return -ENOMEM;
		}
381 382
		jbd_lock_bh_state(bh_in);
		if (jh_in->b_frozen_data) {
M
Mingming Cao 已提交
383
			jbd2_free(tmp, bh_in->b_size);
384 385 386 387 388 389 390 391 392 393 394
			goto repeat;
		}

		jh_in->b_frozen_data = tmp;
		mapped_data = kmap_atomic(new_page, KM_USER0);
		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
		kunmap_atomic(mapped_data, KM_USER0);

		new_page = virt_to_page(tmp);
		new_offset = offset_in_page(tmp);
		done_copy_out = 1;
J
Joel Becker 已提交
395 396 397 398 399 400 401

		/*
		 * This isn't strictly necessary, as we're using frozen
		 * data for the escaping, but it keeps consistency with
		 * b_frozen_data usage.
		 */
		jh_in->b_frozen_triggers = jh_in->b_triggers;
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
	}

	/*
	 * Did we need to do an escaping?  Now we've done all the
	 * copying, we can finally do so.
	 */
	if (do_escape) {
		mapped_data = kmap_atomic(new_page, KM_USER0);
		*((unsigned int *)(mapped_data + new_offset)) = 0;
		kunmap_atomic(mapped_data, KM_USER0);
	}

	set_bh_page(new_bh, new_page, new_offset);
	new_jh->b_transaction = NULL;
	new_bh->b_size = jh2bh(jh_in)->b_size;
	new_bh->b_bdev = transaction->t_journal->j_dev;
	new_bh->b_blocknr = blocknr;
	set_buffer_mapped(new_bh);
	set_buffer_dirty(new_bh);

	*jh_out = new_jh;

	/*
	 * The to-be-written buffer needs to get moved to the io queue,
	 * and the original buffer whose contents we are shadowing or
	 * copying is moved to the transaction's shadow queue.
	 */
	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
430 431 432 433 434
	spin_lock(&journal->j_list_lock);
	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
	spin_unlock(&journal->j_list_lock);
	jbd_unlock_bh_state(bh_in);

435
	JBUFFER_TRACE(new_jh, "file as BJ_IO");
436
	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
437 438 439 440 441 442 443 444 445 446

	return do_escape | (done_copy_out << 1);
}

/*
 * Allocation code for the journal file.  Manage the space left in the
 * journal, so that we can begin checkpointing when appropriate.
 */

/*
447
 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
448 449 450 451 452 453
 *
 * Called with the journal already locked.
 *
 * Called under j_state_lock
 */

454
int __jbd2_log_space_left(journal_t *journal)
455 456 457
{
	int left = journal->j_free;

458
	/* assert_spin_locked(&journal->j_state_lock); */
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

	/*
	 * Be pessimistic here about the number of those free blocks which
	 * might be required for log descriptor control blocks.
	 */

#define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */

	left -= MIN_LOG_RESERVED_BLOCKS;

	if (left <= 0)
		return 0;
	left -= (left >> 3);
	return left;
}

/*
476 477
 * Called with j_state_lock locked for writing.
 * Returns true if a transaction commit was started.
478
 */
479
int __jbd2_log_start_commit(journal_t *journal, tid_t target)
480 481
{
	/*
482 483 484
	 * The only transaction we can possibly wait upon is the
	 * currently running transaction (if it exists).  Otherwise,
	 * the target tid must be an old one.
485
	 */
486 487
	if (journal->j_running_transaction &&
	    journal->j_running_transaction->t_tid == target) {
488
		/*
A
Andrea Gelmini 已提交
489
		 * We want a new commit: OK, mark the request and wakeup the
490 491 492 493 494 495 496 497 498
		 * commit thread.  We do _not_ do the commit ourselves.
		 */

		journal->j_commit_request = target;
		jbd_debug(1, "JBD: requesting commit %d/%d\n",
			  journal->j_commit_request,
			  journal->j_commit_sequence);
		wake_up(&journal->j_wait_commit);
		return 1;
499 500 501 502
	} else if (!tid_geq(journal->j_commit_request, target))
		/* This should never happen, but if it does, preserve
		   the evidence before kjournald goes into a loop and
		   increments j_commit_sequence beyond all recognition. */
503 504 505 506 507
		WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
			  journal->j_commit_request,
			  journal->j_commit_sequence,
			  target, journal->j_running_transaction ? 
			  journal->j_running_transaction->t_tid : 0);
508 509 510
	return 0;
}

511
int jbd2_log_start_commit(journal_t *journal, tid_t tid)
512 513 514
{
	int ret;

515
	write_lock(&journal->j_state_lock);
516
	ret = __jbd2_log_start_commit(journal, tid);
517
	write_unlock(&journal->j_state_lock);
518 519 520 521 522 523 524 525 526 527 528 529 530
	return ret;
}

/*
 * Force and wait upon a commit if the calling process is not within
 * transaction.  This is used for forcing out undo-protected data which contains
 * bitmaps, when the fs is running out of space.
 *
 * We can only force the running transaction if we don't have an active handle;
 * otherwise, we will deadlock.
 *
 * Returns true if a transaction was started.
 */
531
int jbd2_journal_force_commit_nested(journal_t *journal)
532 533 534
{
	transaction_t *transaction = NULL;
	tid_t tid;
535
	int need_to_start = 0;
536

537
	read_lock(&journal->j_state_lock);
538 539
	if (journal->j_running_transaction && !current->journal_info) {
		transaction = journal->j_running_transaction;
540 541
		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
			need_to_start = 1;
542 543 544 545
	} else if (journal->j_committing_transaction)
		transaction = journal->j_committing_transaction;

	if (!transaction) {
546
		read_unlock(&journal->j_state_lock);
547 548 549 550
		return 0;	/* Nothing to retry */
	}

	tid = transaction->t_tid;
551
	read_unlock(&journal->j_state_lock);
552 553
	if (need_to_start)
		jbd2_log_start_commit(journal, tid);
554
	jbd2_log_wait_commit(journal, tid);
555 556 557 558 559
	return 1;
}

/*
 * Start a commit of the current running transaction (if any).  Returns true
560 561
 * if a transaction is going to be committed (or is currently already
 * committing), and fills its tid in at *ptid
562
 */
563
int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
564 565 566
{
	int ret = 0;

567
	write_lock(&journal->j_state_lock);
568 569 570
	if (journal->j_running_transaction) {
		tid_t tid = journal->j_running_transaction->t_tid;

571 572 573 574
		__jbd2_log_start_commit(journal, tid);
		/* There's a running transaction and we've just made sure
		 * it's commit has been scheduled. */
		if (ptid)
575
			*ptid = tid;
576 577
		ret = 1;
	} else if (journal->j_committing_transaction) {
578 579 580 581
		/*
		 * If ext3_write_super() recently started a commit, then we
		 * have to wait for completion of that transaction
		 */
582 583
		if (ptid)
			*ptid = journal->j_committing_transaction->t_tid;
584 585
		ret = 1;
	}
586
	write_unlock(&journal->j_state_lock);
587 588 589
	return ret;
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
/*
 * Return 1 if a given transaction has not yet sent barrier request
 * connected with a transaction commit. If 0 is returned, transaction
 * may or may not have sent the barrier. Used to avoid sending barrier
 * twice in common cases.
 */
int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
{
	int ret = 0;
	transaction_t *commit_trans;

	if (!(journal->j_flags & JBD2_BARRIER))
		return 0;
	read_lock(&journal->j_state_lock);
	/* Transaction already committed? */
	if (tid_geq(journal->j_commit_sequence, tid))
		goto out;
	commit_trans = journal->j_committing_transaction;
	if (!commit_trans || commit_trans->t_tid != tid) {
		ret = 1;
		goto out;
	}
	/*
	 * Transaction is being committed and we already proceeded to
	 * submitting a flush to fs partition?
	 */
	if (journal->j_fs_dev != journal->j_dev) {
		if (!commit_trans->t_need_data_flush ||
		    commit_trans->t_state >= T_COMMIT_DFLUSH)
			goto out;
	} else {
		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
			goto out;
	}
	ret = 1;
out:
	read_unlock(&journal->j_state_lock);
	return ret;
}
EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);

631 632 633 634
/*
 * Wait for a specified commit to complete.
 * The caller may not hold the journal lock.
 */
635
int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
636 637 638
{
	int err = 0;

639
	read_lock(&journal->j_state_lock);
640
#ifdef CONFIG_JBD2_DEBUG
641 642 643
	if (!tid_geq(journal->j_commit_request, tid)) {
		printk(KERN_EMERG
		       "%s: error: j_commit_request=%d, tid=%d\n",
644
		       __func__, journal->j_commit_request, tid);
645 646 647 648 649 650
	}
#endif
	while (tid_gt(tid, journal->j_commit_sequence)) {
		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
				  tid, journal->j_commit_sequence);
		wake_up(&journal->j_wait_commit);
651
		read_unlock(&journal->j_state_lock);
652 653
		wait_event(journal->j_wait_done_commit,
				!tid_gt(tid, journal->j_commit_sequence));
654
		read_lock(&journal->j_state_lock);
655
	}
656
	read_unlock(&journal->j_state_lock);
657 658 659 660 661 662 663 664 665 666 667 668

	if (unlikely(is_journal_aborted(journal))) {
		printk(KERN_EMERG "journal commit I/O error\n");
		err = -EIO;
	}
	return err;
}

/*
 * Log buffer allocation routines:
 */

669
int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
670 671 672
{
	unsigned long blocknr;

673
	write_lock(&journal->j_state_lock);
674 675 676 677 678 679 680
	J_ASSERT(journal->j_free > 1);

	blocknr = journal->j_head;
	journal->j_head++;
	journal->j_free--;
	if (journal->j_head == journal->j_last)
		journal->j_head = journal->j_first;
681
	write_unlock(&journal->j_state_lock);
682
	return jbd2_journal_bmap(journal, blocknr, retp);
683 684 685 686 687 688 689 690 691
}

/*
 * Conversion of logical to physical block numbers for the journal
 *
 * On external journals the journal blocks are identity-mapped, so
 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 * ready.
 */
692
int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
693
		 unsigned long long *retp)
694 695
{
	int err = 0;
696
	unsigned long long ret;
697 698 699 700 701 702 703 704

	if (journal->j_inode) {
		ret = bmap(journal->j_inode, blocknr);
		if (ret)
			*retp = ret;
		else {
			printk(KERN_ALERT "%s: journal block not found "
					"at offset %lu on %s\n",
705
			       __func__, blocknr, journal->j_devname);
706 707 708 709 710 711 712 713 714 715 716 717 718 719
			err = -EIO;
			__journal_abort_soft(journal, err);
		}
	} else {
		*retp = blocknr; /* +journal->j_blk_offset */
	}
	return err;
}

/*
 * We play buffer_head aliasing tricks to write data/metadata blocks to
 * the journal without copying their contents, but for journal
 * descriptor blocks we do need to generate bona fide buffers.
 *
720
 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
721 722 723 724
 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 * But we don't bother doing that, so there will be coherency problems with
 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 */
725
struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
726 727
{
	struct buffer_head *bh;
728
	unsigned long long blocknr;
729 730
	int err;

731
	err = jbd2_journal_next_log_block(journal, &blocknr);
732 733 734 735 736

	if (err)
		return NULL;

	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
737 738
	if (!bh)
		return NULL;
739 740 741 742 743
	lock_buffer(bh);
	memset(bh->b_data, 0, journal->j_blocksize);
	set_buffer_uptodate(bh);
	unlock_buffer(bh);
	BUFFER_TRACE(bh, "return this buffer");
744
	return jbd2_journal_add_journal_head(bh);
745 746
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
struct jbd2_stats_proc_session {
	journal_t *journal;
	struct transaction_stats_s *stats;
	int start;
	int max;
};

static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
{
	return *pos ? NULL : SEQ_START_TOKEN;
}

static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
{
	return NULL;
}

static int jbd2_seq_info_show(struct seq_file *seq, void *v)
{
	struct jbd2_stats_proc_session *s = seq->private;

	if (v != SEQ_START_TOKEN)
		return 0;
770
	seq_printf(seq, "%lu transaction, each up to %u blocks\n",
771 772 773 774 775
			s->stats->ts_tid,
			s->journal->j_max_transaction_buffers);
	if (s->stats->ts_tid == 0)
		return 0;
	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
776
	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
777
	seq_printf(seq, "  %ums running transaction\n",
778
	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
779
	seq_printf(seq, "  %ums transaction was being locked\n",
780
	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
781
	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
782
	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
783
	seq_printf(seq, "  %ums logging transaction\n",
784
	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
785 786
	seq_printf(seq, "  %lluus average transaction commit time\n",
		   div_u64(s->journal->j_average_commit_time, 1000));
787
	seq_printf(seq, "  %lu handles per transaction\n",
788
	    s->stats->run.rs_handle_count / s->stats->ts_tid);
789
	seq_printf(seq, "  %lu blocks per transaction\n",
790
	    s->stats->run.rs_blocks / s->stats->ts_tid);
791
	seq_printf(seq, "  %lu logged blocks per transaction\n",
792
	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
793 794 795 796 797 798 799
	return 0;
}

static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
{
}

J
James Morris 已提交
800
static const struct seq_operations jbd2_seq_info_ops = {
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	.start  = jbd2_seq_info_start,
	.next   = jbd2_seq_info_next,
	.stop   = jbd2_seq_info_stop,
	.show   = jbd2_seq_info_show,
};

static int jbd2_seq_info_open(struct inode *inode, struct file *file)
{
	journal_t *journal = PDE(inode)->data;
	struct jbd2_stats_proc_session *s;
	int rc, size;

	s = kmalloc(sizeof(*s), GFP_KERNEL);
	if (s == NULL)
		return -ENOMEM;
	size = sizeof(struct transaction_stats_s);
	s->stats = kmalloc(size, GFP_KERNEL);
	if (s->stats == NULL) {
		kfree(s);
		return -ENOMEM;
	}
	spin_lock(&journal->j_history_lock);
	memcpy(s->stats, &journal->j_stats, size);
	s->journal = journal;
	spin_unlock(&journal->j_history_lock);

	rc = seq_open(file, &jbd2_seq_info_ops);
	if (rc == 0) {
		struct seq_file *m = file->private_data;
		m->private = s;
	} else {
		kfree(s->stats);
		kfree(s);
	}
	return rc;

}

static int jbd2_seq_info_release(struct inode *inode, struct file *file)
{
	struct seq_file *seq = file->private_data;
	struct jbd2_stats_proc_session *s = seq->private;
	kfree(s->stats);
	kfree(s);
	return seq_release(inode, file);
}

848
static const struct file_operations jbd2_seq_info_fops = {
849 850 851 852 853 854 855 856 857 858 859
	.owner		= THIS_MODULE,
	.open           = jbd2_seq_info_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = jbd2_seq_info_release,
};

static struct proc_dir_entry *proc_jbd2_stats;

static void jbd2_stats_proc_init(journal_t *journal)
{
860
	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
861
	if (journal->j_proc_entry) {
862 863
		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
				 &jbd2_seq_info_fops, journal);
864 865 866 867 868 869
	}
}

static void jbd2_stats_proc_exit(journal_t *journal)
{
	remove_proc_entry("info", journal->j_proc_entry);
870
	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
871 872
}

873 874 875 876 877 878 879 880 881 882 883 884 885 886
/*
 * Management for journal control blocks: functions to create and
 * destroy journal_t structures, and to initialise and read existing
 * journal blocks from disk.  */

/* First: create and setup a journal_t object in memory.  We initialise
 * very few fields yet: that has to wait until we have created the
 * journal structures from from scratch, or loaded them from disk. */

static journal_t * journal_init_common (void)
{
	journal_t *journal;
	int err;

887
	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
888
	if (!journal)
889
		return NULL;
890 891 892 893 894 895 896 897 898 899 900

	init_waitqueue_head(&journal->j_wait_transaction_locked);
	init_waitqueue_head(&journal->j_wait_logspace);
	init_waitqueue_head(&journal->j_wait_done_commit);
	init_waitqueue_head(&journal->j_wait_checkpoint);
	init_waitqueue_head(&journal->j_wait_commit);
	init_waitqueue_head(&journal->j_wait_updates);
	mutex_init(&journal->j_barrier);
	mutex_init(&journal->j_checkpoint_mutex);
	spin_lock_init(&journal->j_revoke_lock);
	spin_lock_init(&journal->j_list_lock);
901
	rwlock_init(&journal->j_state_lock);
902

903
	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
904 905
	journal->j_min_batch_time = 0;
	journal->j_max_batch_time = 15000; /* 15ms */
906 907

	/* The journal is marked for error until we succeed with recovery! */
908
	journal->j_flags = JBD2_ABORT;
909 910

	/* Set up a default-sized revoke table for the new mount. */
911
	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
912 913
	if (err) {
		kfree(journal);
914
		return NULL;
915
	}
916

917
	spin_lock_init(&journal->j_history_lock);
918

919 920 921
	return journal;
}

922
/* jbd2_journal_init_dev and jbd2_journal_init_inode:
923 924 925 926 927 928 929 930 931
 *
 * Create a journal structure assigned some fixed set of disk blocks to
 * the journal.  We don't actually touch those disk blocks yet, but we
 * need to set up all of the mapping information to tell the journaling
 * system where the journal blocks are.
 *
 */

/**
R
Randy Dunlap 已提交
932
 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
933 934 935 936 937
 *  @bdev: Block device on which to create the journal
 *  @fs_dev: Device which hold journalled filesystem for this journal.
 *  @start: Block nr Start of journal.
 *  @len:  Length of the journal in blocks.
 *  @blocksize: blocksize of journalling device
R
Randy Dunlap 已提交
938 939
 *
 *  Returns: a newly created journal_t *
940
 *
941
 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
942 943 944
 *  range of blocks on an arbitrary block device.
 *
 */
945
journal_t * jbd2_journal_init_dev(struct block_device *bdev,
946
			struct block_device *fs_dev,
947
			unsigned long long start, int len, int blocksize)
948 949 950
{
	journal_t *journal = journal_init_common();
	struct buffer_head *bh;
951
	char *p;
952 953 954 955 956 957 958
	int n;

	if (!journal)
		return NULL;

	/* journal descriptor can store up to n blocks -bzzz */
	journal->j_blocksize = blocksize;
959 960 961 962 963 964 965 966
	journal->j_dev = bdev;
	journal->j_fs_dev = fs_dev;
	journal->j_blk_offset = start;
	journal->j_maxlen = len;
	bdevname(journal->j_dev, journal->j_devname);
	p = journal->j_devname;
	while ((p = strchr(p, '/')))
		*p = '!';
967
	jbd2_stats_proc_init(journal);
968 969 970 971
	n = journal->j_blocksize / sizeof(journal_block_tag_t);
	journal->j_wbufsize = n;
	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
	if (!journal->j_wbuf) {
L
Lucas De Marchi 已提交
972
		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
973
			__func__);
974
		goto out_err;
975 976 977
	}

	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
978 979 980 981 982 983
	if (!bh) {
		printk(KERN_ERR
		       "%s: Cannot get buffer for journal superblock\n",
		       __func__);
		goto out_err;
	}
984 985
	journal->j_sb_buffer = bh;
	journal->j_superblock = (journal_superblock_t *)bh->b_data;
986

987
	return journal;
988
out_err:
989
	kfree(journal->j_wbuf);
990 991 992
	jbd2_stats_proc_exit(journal);
	kfree(journal);
	return NULL;
993 994 995
}

/**
996
 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
997 998
 *  @inode: An inode to create the journal in
 *
999
 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1000 1001 1002
 * the journal.  The inode must exist already, must support bmap() and
 * must have all data blocks preallocated.
 */
1003
journal_t * jbd2_journal_init_inode (struct inode *inode)
1004 1005 1006
{
	struct buffer_head *bh;
	journal_t *journal = journal_init_common();
1007
	char *p;
1008 1009
	int err;
	int n;
1010
	unsigned long long blocknr;
1011 1012 1013 1014 1015 1016

	if (!journal)
		return NULL;

	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
	journal->j_inode = inode;
1017 1018 1019 1020 1021
	bdevname(journal->j_dev, journal->j_devname);
	p = journal->j_devname;
	while ((p = strchr(p, '/')))
		*p = '!';
	p = journal->j_devname + strlen(journal->j_devname);
1022
	sprintf(p, "-%lu", journal->j_inode->i_ino);
1023 1024 1025 1026 1027 1028 1029 1030
	jbd_debug(1,
		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
		  journal, inode->i_sb->s_id, inode->i_ino,
		  (long long) inode->i_size,
		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);

	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
	journal->j_blocksize = inode->i_sb->s_blocksize;
1031
	jbd2_stats_proc_init(journal);
1032 1033 1034 1035 1036 1037

	/* journal descriptor can store up to n blocks -bzzz */
	n = journal->j_blocksize / sizeof(journal_block_tag_t);
	journal->j_wbufsize = n;
	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
	if (!journal->j_wbuf) {
L
Lucas De Marchi 已提交
1038
		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1039
			__func__);
1040
		goto out_err;
1041 1042
	}

1043
	err = jbd2_journal_bmap(journal, 0, &blocknr);
1044 1045
	/* If that failed, give up */
	if (err) {
1046
		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1047
		       __func__);
1048
		goto out_err;
1049 1050 1051
	}

	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1052 1053 1054 1055 1056 1057
	if (!bh) {
		printk(KERN_ERR
		       "%s: Cannot get buffer for journal superblock\n",
		       __func__);
		goto out_err;
	}
1058 1059 1060 1061
	journal->j_sb_buffer = bh;
	journal->j_superblock = (journal_superblock_t *)bh->b_data;

	return journal;
1062
out_err:
1063
	kfree(journal->j_wbuf);
1064 1065 1066
	jbd2_stats_proc_exit(journal);
	kfree(journal);
	return NULL;
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
}

/*
 * If the journal init or create aborts, we need to mark the journal
 * superblock as being NULL to prevent the journal destroy from writing
 * back a bogus superblock.
 */
static void journal_fail_superblock (journal_t *journal)
{
	struct buffer_head *bh = journal->j_sb_buffer;
	brelse(bh);
	journal->j_sb_buffer = NULL;
}

/*
 * Given a journal_t structure, initialise the various fields for
 * startup of a new journaling session.  We use this both when creating
 * a journal, and after recovering an old journal to reset it for
 * subsequent use.
 */

static int journal_reset(journal_t *journal)
{
	journal_superblock_t *sb = journal->j_superblock;
1091
	unsigned long long first, last;
1092 1093 1094

	first = be32_to_cpu(sb->s_first);
	last = be32_to_cpu(sb->s_maxlen);
1095 1096 1097 1098 1099 1100
	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
		printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
		       first, last);
		journal_fail_superblock(journal);
		return -EINVAL;
	}
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

	journal->j_first = first;
	journal->j_last = last;

	journal->j_head = first;
	journal->j_tail = first;
	journal->j_free = last - first;

	journal->j_tail_sequence = journal->j_transaction_sequence;
	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
	journal->j_commit_request = journal->j_commit_sequence;

	journal->j_max_transaction_buffers = journal->j_maxlen / 4;

	/* Add the dynamic fields and write it to disk. */
1116
	jbd2_journal_update_superblock(journal, 1);
1117
	return jbd2_journal_start_thread(journal);
1118 1119 1120
}

/**
1121
 * void jbd2_journal_update_superblock() - Update journal sb on disk.
1122 1123 1124 1125 1126 1127
 * @journal: The journal to update.
 * @wait: Set to '0' if you don't want to wait for IO completion.
 *
 * Update a journal's dynamic superblock fields and write it to disk,
 * optionally waiting for the IO to complete.
 */
1128
void jbd2_journal_update_superblock(journal_t *journal, int wait)
1129 1130 1131 1132 1133 1134 1135 1136
{
	journal_superblock_t *sb = journal->j_superblock;
	struct buffer_head *bh = journal->j_sb_buffer;

	/*
	 * As a special case, if the on-disk copy is already marked as needing
	 * no recovery (s_start == 0) and there are no outstanding transactions
	 * in the filesystem, then we can safely defer the superblock update
1137
	 * until the next commit by setting JBD2_FLUSHED.  This avoids
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	 * attempting a write to a potential-readonly device.
	 */
	if (sb->s_start == 0 && journal->j_tail_sequence ==
				journal->j_transaction_sequence) {
		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
			"(start %ld, seq %d, errno %d)\n",
			journal->j_tail, journal->j_tail_sequence,
			journal->j_errno);
		goto out;
	}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	if (buffer_write_io_error(bh)) {
		/*
		 * Oh, dear.  A previous attempt to write the journal
		 * superblock failed.  This could happen because the
		 * USB device was yanked out.  Or it could happen to
		 * be a transient write error and maybe the block will
		 * be remapped.  Nothing we can do but to retry the
		 * write and hope for the best.
		 */
		printk(KERN_ERR "JBD2: previous I/O error detected "
		       "for journal superblock update for %s.\n",
		       journal->j_devname);
		clear_buffer_write_io_error(bh);
		set_buffer_uptodate(bh);
	}

1165
	read_lock(&journal->j_state_lock);
1166 1167 1168 1169 1170 1171
	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);

	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
	sb->s_start    = cpu_to_be32(journal->j_tail);
	sb->s_errno    = cpu_to_be32(journal->j_errno);
1172
	read_unlock(&journal->j_state_lock);
1173 1174 1175

	BUFFER_TRACE(bh, "marking dirty");
	mark_buffer_dirty(bh);
1176
	if (wait) {
1177
		sync_dirty_buffer(bh);
1178 1179 1180 1181 1182 1183 1184 1185
		if (buffer_write_io_error(bh)) {
			printk(KERN_ERR "JBD2: I/O error detected "
			       "when updating journal superblock for %s.\n",
			       journal->j_devname);
			clear_buffer_write_io_error(bh);
			set_buffer_uptodate(bh);
		}
	} else
C
Christoph Hellwig 已提交
1186
		write_dirty_buffer(bh, WRITE);
1187 1188 1189 1190 1191 1192

out:
	/* If we have just flushed the log (by marking s_start==0), then
	 * any future commit will have to be careful to update the
	 * superblock again to re-record the true start of the log. */

1193
	write_lock(&journal->j_state_lock);
1194
	if (sb->s_start)
1195
		journal->j_flags &= ~JBD2_FLUSHED;
1196
	else
1197
		journal->j_flags |= JBD2_FLUSHED;
1198
	write_unlock(&journal->j_state_lock);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
}

/*
 * Read the superblock for a given journal, performing initial
 * validation of the format.
 */

static int journal_get_superblock(journal_t *journal)
{
	struct buffer_head *bh;
	journal_superblock_t *sb;
	int err = -EIO;

	bh = journal->j_sb_buffer;

	J_ASSERT(bh != NULL);
	if (!buffer_uptodate(bh)) {
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
			printk (KERN_ERR
				"JBD: IO error reading journal superblock\n");
			goto out;
		}
	}

	sb = journal->j_superblock;

	err = -EINVAL;

1229
	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1230 1231 1232 1233 1234 1235
	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
		goto out;
	}

	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1236
	case JBD2_SUPERBLOCK_V1:
1237 1238
		journal->j_format_version = 1;
		break;
1239
	case JBD2_SUPERBLOCK_V2:
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
		journal->j_format_version = 2;
		break;
	default:
		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
		goto out;
	}

	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
		printk (KERN_WARNING "JBD: journal file too short\n");
		goto out;
	}

1254 1255 1256 1257 1258 1259 1260 1261
	if (be32_to_cpu(sb->s_first) == 0 ||
	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
		printk(KERN_WARNING
			"JBD2: Invalid start block of journal: %u\n",
			be32_to_cpu(sb->s_first));
		goto out;
	}

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	return 0;

out:
	journal_fail_superblock(journal);
	return err;
}

/*
 * Load the on-disk journal superblock and read the key fields into the
 * journal_t.
 */

static int load_superblock(journal_t *journal)
{
	int err;
	journal_superblock_t *sb;

	err = journal_get_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;

	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
	journal->j_tail = be32_to_cpu(sb->s_start);
	journal->j_first = be32_to_cpu(sb->s_first);
	journal->j_last = be32_to_cpu(sb->s_maxlen);
	journal->j_errno = be32_to_cpu(sb->s_errno);

	return 0;
}


/**
1296
 * int jbd2_journal_load() - Read journal from disk.
1297 1298 1299 1300 1301 1302
 * @journal: Journal to act on.
 *
 * Given a journal_t structure which tells us which disk blocks contain
 * a journal, read the journal from disk to initialise the in-memory
 * structures.
 */
1303
int jbd2_journal_load(journal_t *journal)
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
{
	int err;
	journal_superblock_t *sb;

	err = load_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;
	/* If this is a V2 superblock, then we have to check the
	 * features flags on it. */

	if (journal->j_format_version >= 2) {
		if ((sb->s_feature_ro_compat &
1318
		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1319
		    (sb->s_feature_incompat &
1320
		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1321 1322 1323 1324 1325 1326
			printk (KERN_WARNING
				"JBD: Unrecognised features on journal\n");
			return -EINVAL;
		}
	}

1327 1328 1329 1330 1331 1332 1333
	/*
	 * Create a slab for this blocksize
	 */
	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
	if (err)
		return err;

1334 1335
	/* Let the recovery code check whether it needs to recover any
	 * data from the journal. */
1336
	if (jbd2_journal_recover(journal))
1337 1338
		goto recovery_error;

1339 1340 1341 1342 1343 1344 1345
	if (journal->j_failed_commit) {
		printk(KERN_ERR "JBD2: journal transaction %u on %s "
		       "is corrupt.\n", journal->j_failed_commit,
		       journal->j_devname);
		return -EIO;
	}

1346 1347 1348 1349 1350 1351
	/* OK, we've finished with the dynamic journal bits:
	 * reinitialise the dynamic contents of the superblock in memory
	 * and reset them on disk. */
	if (journal_reset(journal))
		goto recovery_error;

1352 1353
	journal->j_flags &= ~JBD2_ABORT;
	journal->j_flags |= JBD2_LOADED;
1354 1355 1356 1357 1358 1359 1360 1361
	return 0;

recovery_error:
	printk (KERN_WARNING "JBD: recovery failed\n");
	return -EIO;
}

/**
1362
 * void jbd2_journal_destroy() - Release a journal_t structure.
1363 1364 1365 1366
 * @journal: Journal to act on.
 *
 * Release a journal_t structure once it is no longer in use by the
 * journaled object.
1367
 * Return <0 if we couldn't clean up the journal.
1368
 */
1369
int jbd2_journal_destroy(journal_t *journal)
1370
{
1371 1372
	int err = 0;

1373 1374 1375 1376 1377
	/* Wait for the commit thread to wake up and die. */
	journal_kill_thread(journal);

	/* Force a final log commit */
	if (journal->j_running_transaction)
1378
		jbd2_journal_commit_transaction(journal);
1379 1380 1381 1382 1383 1384 1385

	/* Force any old transactions to disk */

	/* Totally anal locking here... */
	spin_lock(&journal->j_list_lock);
	while (journal->j_checkpoint_transactions != NULL) {
		spin_unlock(&journal->j_list_lock);
1386
		mutex_lock(&journal->j_checkpoint_mutex);
1387
		jbd2_log_do_checkpoint(journal);
1388
		mutex_unlock(&journal->j_checkpoint_mutex);
1389 1390 1391 1392 1393 1394 1395 1396 1397
		spin_lock(&journal->j_list_lock);
	}

	J_ASSERT(journal->j_running_transaction == NULL);
	J_ASSERT(journal->j_committing_transaction == NULL);
	J_ASSERT(journal->j_checkpoint_transactions == NULL);
	spin_unlock(&journal->j_list_lock);

	if (journal->j_sb_buffer) {
1398 1399 1400 1401 1402 1403 1404 1405 1406
		if (!is_journal_aborted(journal)) {
			/* We can now mark the journal as empty. */
			journal->j_tail = 0;
			journal->j_tail_sequence =
				++journal->j_transaction_sequence;
			jbd2_journal_update_superblock(journal, 1);
		} else {
			err = -EIO;
		}
1407 1408 1409
		brelse(journal->j_sb_buffer);
	}

1410 1411
	if (journal->j_proc_entry)
		jbd2_stats_proc_exit(journal);
1412 1413 1414
	if (journal->j_inode)
		iput(journal->j_inode);
	if (journal->j_revoke)
1415
		jbd2_journal_destroy_revoke(journal);
1416 1417
	kfree(journal->j_wbuf);
	kfree(journal);
1418 1419

	return err;
1420 1421 1422 1423
}


/**
1424
 *int jbd2_journal_check_used_features () - Check if features specified are used.
1425 1426 1427 1428 1429 1430 1431 1432 1433
 * @journal: Journal to check.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Check whether the journal uses all of a given set of
 * features.  Return true (non-zero) if it does.
 **/

1434
int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1435 1436 1437 1438 1439 1440
				 unsigned long ro, unsigned long incompat)
{
	journal_superblock_t *sb;

	if (!compat && !ro && !incompat)
		return 1;
1441 1442 1443 1444
	/* Load journal superblock if it is not loaded yet. */
	if (journal->j_format_version == 0 &&
	    journal_get_superblock(journal) != 0)
		return 0;
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	if (journal->j_format_version == 1)
		return 0;

	sb = journal->j_superblock;

	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
		return 1;

	return 0;
}

/**
1459
 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1460 1461 1462 1463 1464 1465 1466 1467 1468
 * @journal: Journal to check.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Check whether the journaling code supports the use of
 * all of a given set of features on this journal.  Return true
 * (non-zero) if it can. */

1469
int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
				      unsigned long ro, unsigned long incompat)
{
	if (!compat && !ro && !incompat)
		return 1;

	/* We can support any known requested features iff the
	 * superblock is in version 2.  Otherwise we fail to support any
	 * extended sb features. */

	if (journal->j_format_version != 2)
		return 0;

1482 1483 1484
	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1485 1486 1487 1488 1489 1490
		return 1;

	return 0;
}

/**
1491
 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
 * @journal: Journal to act on.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Mark a given journal feature as present on the
 * superblock.  Returns true if the requested features could be set.
 *
 */

1502
int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1503 1504 1505 1506
			  unsigned long ro, unsigned long incompat)
{
	journal_superblock_t *sb;

1507
	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1508 1509
		return 1;

1510
	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
		return 0;

	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
		  compat, ro, incompat);

	sb = journal->j_superblock;

	sb->s_feature_compat    |= cpu_to_be32(compat);
	sb->s_feature_ro_compat |= cpu_to_be32(ro);
	sb->s_feature_incompat  |= cpu_to_be32(incompat);

	return 1;
}

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
/*
 * jbd2_journal_clear_features () - Clear a given journal feature in the
 * 				    superblock
 * @journal: Journal to act on.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Clear a given journal feature as present on the
 * superblock.
 */
void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
				unsigned long ro, unsigned long incompat)
{
	journal_superblock_t *sb;

	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
		  compat, ro, incompat);

	sb = journal->j_superblock;

	sb->s_feature_compat    &= ~cpu_to_be32(compat);
	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
}
EXPORT_SYMBOL(jbd2_journal_clear_features);
1551 1552

/**
1553
 * int jbd2_journal_update_format () - Update on-disk journal structure.
1554 1555 1556 1557 1558
 * @journal: Journal to act on.
 *
 * Given an initialised but unloaded journal struct, poke about in the
 * on-disk structure to update it to the most recent supported version.
 */
1559
int jbd2_journal_update_format (journal_t *journal)
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
{
	journal_superblock_t *sb;
	int err;

	err = journal_get_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;

	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1571
	case JBD2_SUPERBLOCK_V2:
1572
		return 0;
1573
	case JBD2_SUPERBLOCK_V1:
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
		return journal_convert_superblock_v1(journal, sb);
	default:
		break;
	}
	return -EINVAL;
}

static int journal_convert_superblock_v1(journal_t *journal,
					 journal_superblock_t *sb)
{
	int offset, blocksize;
	struct buffer_head *bh;

	printk(KERN_WARNING
		"JBD: Converting superblock from version 1 to 2.\n");

	/* Pre-initialise new fields to zero */
	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
	blocksize = be32_to_cpu(sb->s_blocksize);
	memset(&sb->s_feature_compat, 0, blocksize-offset);

	sb->s_nr_users = cpu_to_be32(1);
1596
	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	journal->j_format_version = 2;

	bh = journal->j_sb_buffer;
	BUFFER_TRACE(bh, "marking dirty");
	mark_buffer_dirty(bh);
	sync_dirty_buffer(bh);
	return 0;
}


/**
1608
 * int jbd2_journal_flush () - Flush journal
1609 1610 1611 1612 1613 1614 1615
 * @journal: Journal to act on.
 *
 * Flush all data for a given journal to disk and empty the journal.
 * Filesystems can use this when remounting readonly to ensure that
 * recovery does not need to happen on remount.
 */

1616
int jbd2_journal_flush(journal_t *journal)
1617 1618 1619 1620 1621
{
	int err = 0;
	transaction_t *transaction = NULL;
	unsigned long old_tail;

1622
	write_lock(&journal->j_state_lock);
1623 1624 1625 1626

	/* Force everything buffered to the log... */
	if (journal->j_running_transaction) {
		transaction = journal->j_running_transaction;
1627
		__jbd2_log_start_commit(journal, transaction->t_tid);
1628 1629 1630 1631 1632 1633 1634
	} else if (journal->j_committing_transaction)
		transaction = journal->j_committing_transaction;

	/* Wait for the log commit to complete... */
	if (transaction) {
		tid_t tid = transaction->t_tid;

1635
		write_unlock(&journal->j_state_lock);
1636
		jbd2_log_wait_commit(journal, tid);
1637
	} else {
1638
		write_unlock(&journal->j_state_lock);
1639 1640 1641 1642 1643 1644
	}

	/* ...and flush everything in the log out to disk. */
	spin_lock(&journal->j_list_lock);
	while (!err && journal->j_checkpoint_transactions != NULL) {
		spin_unlock(&journal->j_list_lock);
1645
		mutex_lock(&journal->j_checkpoint_mutex);
1646
		err = jbd2_log_do_checkpoint(journal);
1647
		mutex_unlock(&journal->j_checkpoint_mutex);
1648 1649 1650
		spin_lock(&journal->j_list_lock);
	}
	spin_unlock(&journal->j_list_lock);
1651 1652 1653 1654

	if (is_journal_aborted(journal))
		return -EIO;

1655
	jbd2_cleanup_journal_tail(journal);
1656 1657 1658 1659 1660 1661

	/* Finally, mark the journal as really needing no recovery.
	 * This sets s_start==0 in the underlying superblock, which is
	 * the magic code for a fully-recovered superblock.  Any future
	 * commits of data to the journal will restore the current
	 * s_start value. */
1662
	write_lock(&journal->j_state_lock);
1663 1664
	old_tail = journal->j_tail;
	journal->j_tail = 0;
1665
	write_unlock(&journal->j_state_lock);
1666
	jbd2_journal_update_superblock(journal, 1);
1667
	write_lock(&journal->j_state_lock);
1668 1669 1670 1671 1672 1673 1674
	journal->j_tail = old_tail;

	J_ASSERT(!journal->j_running_transaction);
	J_ASSERT(!journal->j_committing_transaction);
	J_ASSERT(!journal->j_checkpoint_transactions);
	J_ASSERT(journal->j_head == journal->j_tail);
	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1675
	write_unlock(&journal->j_state_lock);
1676
	return 0;
1677 1678 1679
}

/**
1680
 * int jbd2_journal_wipe() - Wipe journal contents
1681 1682 1683 1684 1685
 * @journal: Journal to act on.
 * @write: flag (see below)
 *
 * Wipe out all of the contents of a journal, safely.  This will produce
 * a warning if the journal contains any valid recovery information.
1686
 * Must be called between journal_init_*() and jbd2_journal_load().
1687 1688 1689 1690 1691
 *
 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
 * we merely suppress recovery.
 */

1692
int jbd2_journal_wipe(journal_t *journal, int write)
1693 1694 1695
{
	int err = 0;

1696
	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

	err = load_superblock(journal);
	if (err)
		return err;

	if (!journal->j_tail)
		goto no_recovery;

	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
		write ? "Clearing" : "Ignoring");

1708
	err = jbd2_journal_skip_recovery(journal);
1709
	if (write)
1710
		jbd2_journal_update_superblock(journal, 1);
1711 1712 1713 1714 1715 1716 1717 1718 1719

 no_recovery:
	return err;
}

/*
 * Journal abort has very specific semantics, which we describe
 * for journal abort.
 *
1720
 * Two internal functions, which provide abort to the jbd layer
1721 1722 1723 1724 1725 1726 1727 1728
 * itself are here.
 */

/*
 * Quick version for internal journal use (doesn't lock the journal).
 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
 * and don't attempt to make any other journal updates.
 */
1729
void __jbd2_journal_abort_hard(journal_t *journal)
1730 1731 1732
{
	transaction_t *transaction;

1733
	if (journal->j_flags & JBD2_ABORT)
1734 1735 1736
		return;

	printk(KERN_ERR "Aborting journal on device %s.\n",
1737
	       journal->j_devname);
1738

1739
	write_lock(&journal->j_state_lock);
1740
	journal->j_flags |= JBD2_ABORT;
1741 1742
	transaction = journal->j_running_transaction;
	if (transaction)
1743
		__jbd2_log_start_commit(journal, transaction->t_tid);
1744
	write_unlock(&journal->j_state_lock);
1745 1746 1747 1748 1749 1750
}

/* Soft abort: record the abort error status in the journal superblock,
 * but don't do any other IO. */
static void __journal_abort_soft (journal_t *journal, int errno)
{
1751
	if (journal->j_flags & JBD2_ABORT)
1752 1753 1754 1755 1756
		return;

	if (!journal->j_errno)
		journal->j_errno = errno;

1757
	__jbd2_journal_abort_hard(journal);
1758 1759

	if (errno)
1760
		jbd2_journal_update_superblock(journal, 1);
1761 1762 1763
}

/**
1764
 * void jbd2_journal_abort () - Shutdown the journal immediately.
1765 1766 1767 1768 1769 1770 1771 1772
 * @journal: the journal to shutdown.
 * @errno:   an error number to record in the journal indicating
 *           the reason for the shutdown.
 *
 * Perform a complete, immediate shutdown of the ENTIRE
 * journal (not of a single transaction).  This operation cannot be
 * undone without closing and reopening the journal.
 *
1773
 * The jbd2_journal_abort function is intended to support higher level error
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
 * recovery mechanisms such as the ext2/ext3 remount-readonly error
 * mode.
 *
 * Journal abort has very specific semantics.  Any existing dirty,
 * unjournaled buffers in the main filesystem will still be written to
 * disk by bdflush, but the journaling mechanism will be suspended
 * immediately and no further transaction commits will be honoured.
 *
 * Any dirty, journaled buffers will be written back to disk without
 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
 * filesystem, but we _do_ attempt to leave as much data as possible
 * behind for fsck to use for cleanup.
 *
 * Any attempt to get a new transaction handle on a journal which is in
 * ABORT state will just result in an -EROFS error return.  A
1789
 * jbd2_journal_stop on an existing handle will return -EIO if we have
1790 1791 1792
 * entered abort state during the update.
 *
 * Recursive transactions are not disturbed by journal abort until the
1793
 * final jbd2_journal_stop, which will receive the -EIO error.
1794
 *
1795
 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
 * which will be recorded (if possible) in the journal superblock.  This
 * allows a client to record failure conditions in the middle of a
 * transaction without having to complete the transaction to record the
 * failure to disk.  ext3_error, for example, now uses this
 * functionality.
 *
 * Errors which originate from within the journaling layer will NOT
 * supply an errno; a null errno implies that absolutely no further
 * writes are done to the journal (unless there are any already in
 * progress).
 *
 */

1809
void jbd2_journal_abort(journal_t *journal, int errno)
1810 1811 1812 1813 1814
{
	__journal_abort_soft(journal, errno);
}

/**
1815
 * int jbd2_journal_errno () - returns the journal's error state.
1816 1817
 * @journal: journal to examine.
 *
1818
 * This is the errno number set with jbd2_journal_abort(), the last
1819 1820 1821 1822 1823 1824
 * time the journal was mounted - if the journal was stopped
 * without calling abort this will be 0.
 *
 * If the journal has been aborted on this mount time -EROFS will
 * be returned.
 */
1825
int jbd2_journal_errno(journal_t *journal)
1826 1827 1828
{
	int err;

1829
	read_lock(&journal->j_state_lock);
1830
	if (journal->j_flags & JBD2_ABORT)
1831 1832 1833
		err = -EROFS;
	else
		err = journal->j_errno;
1834
	read_unlock(&journal->j_state_lock);
1835 1836 1837 1838
	return err;
}

/**
1839
 * int jbd2_journal_clear_err () - clears the journal's error state
1840 1841
 * @journal: journal to act on.
 *
1842
 * An error must be cleared or acked to take a FS out of readonly
1843 1844
 * mode.
 */
1845
int jbd2_journal_clear_err(journal_t *journal)
1846 1847 1848
{
	int err = 0;

1849
	write_lock(&journal->j_state_lock);
1850
	if (journal->j_flags & JBD2_ABORT)
1851 1852 1853
		err = -EROFS;
	else
		journal->j_errno = 0;
1854
	write_unlock(&journal->j_state_lock);
1855 1856 1857 1858
	return err;
}

/**
1859
 * void jbd2_journal_ack_err() - Ack journal err.
1860 1861
 * @journal: journal to act on.
 *
1862
 * An error must be cleared or acked to take a FS out of readonly
1863 1864
 * mode.
 */
1865
void jbd2_journal_ack_err(journal_t *journal)
1866
{
1867
	write_lock(&journal->j_state_lock);
1868
	if (journal->j_errno)
1869
		journal->j_flags |= JBD2_ACK_ERR;
1870
	write_unlock(&journal->j_state_lock);
1871 1872
}

1873
int jbd2_journal_blocks_per_page(struct inode *inode)
1874 1875 1876 1877
{
	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
}

Z
Zach Brown 已提交
1878 1879 1880 1881 1882 1883
/*
 * helper functions to deal with 32 or 64bit block numbers.
 */
size_t journal_tag_bytes(journal_t *journal)
{
	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1884
		return JBD2_TAG_SIZE64;
Z
Zach Brown 已提交
1885
	else
1886
		return JBD2_TAG_SIZE32;
Z
Zach Brown 已提交
1887 1888
}

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
/*
 * JBD memory management
 *
 * These functions are used to allocate block-sized chunks of memory
 * used for making copies of buffer_head data.  Very often it will be
 * page-sized chunks of data, but sometimes it will be in
 * sub-page-size chunks.  (For example, 16k pages on Power systems
 * with a 4k block file system.)  For blocks smaller than a page, we
 * use a SLAB allocator.  There are slab caches for each block size,
 * which are allocated at mount time, if necessary, and we only free
 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
 * this reason we don't need to a mutex to protect access to
 * jbd2_slab[] allocating or releasing memory; only in
 * jbd2_journal_create_slab().
 */
#define JBD2_MAX_SLABS 8
static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];

static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
};


static void jbd2_journal_destroy_slabs(void)
{
	int i;

	for (i = 0; i < JBD2_MAX_SLABS; i++) {
		if (jbd2_slab[i])
			kmem_cache_destroy(jbd2_slab[i]);
		jbd2_slab[i] = NULL;
	}
}

static int jbd2_journal_create_slab(size_t size)
{
1926
	static DEFINE_MUTEX(jbd2_slab_create_mutex);
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	int i = order_base_2(size) - 10;
	size_t slab_size;

	if (size == PAGE_SIZE)
		return 0;

	if (i >= JBD2_MAX_SLABS)
		return -EINVAL;

	if (unlikely(i < 0))
		i = 0;
1938
	mutex_lock(&jbd2_slab_create_mutex);
1939
	if (jbd2_slab[i]) {
1940
		mutex_unlock(&jbd2_slab_create_mutex);
1941 1942 1943 1944 1945 1946
		return 0;	/* Already created */
	}

	slab_size = 1 << (i+10);
	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
					 slab_size, 0, NULL);
1947
	mutex_unlock(&jbd2_slab_create_mutex);
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	if (!jbd2_slab[i]) {
		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
		return -ENOMEM;
	}
	return 0;
}

static struct kmem_cache *get_slab(size_t size)
{
	int i = order_base_2(size) - 10;

	BUG_ON(i >= JBD2_MAX_SLABS);
	if (unlikely(i < 0))
		i = 0;
1962
	BUG_ON(jbd2_slab[i] == NULL);
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	return jbd2_slab[i];
}

void *jbd2_alloc(size_t size, gfp_t flags)
{
	void *ptr;

	BUG_ON(size & (size-1)); /* Must be a power of 2 */

	flags |= __GFP_REPEAT;
	if (size == PAGE_SIZE)
		ptr = (void *)__get_free_pages(flags, 0);
	else if (size > PAGE_SIZE) {
		int order = get_order(size);

		if (order < 3)
			ptr = (void *)__get_free_pages(flags, order);
		else
			ptr = vmalloc(size);
	} else
		ptr = kmem_cache_alloc(get_slab(size), flags);

	/* Check alignment; SLUB has gotten this wrong in the past,
	 * and this can lead to user data corruption! */
	BUG_ON(((unsigned long) ptr) & (size-1));

	return ptr;
}

void jbd2_free(void *ptr, size_t size)
{
	if (size == PAGE_SIZE) {
		free_pages((unsigned long)ptr, 0);
		return;
	}
	if (size > PAGE_SIZE) {
		int order = get_order(size);

		if (order < 3)
			free_pages((unsigned long)ptr, order);
		else
			vfree(ptr);
		return;
	}
	kmem_cache_free(get_slab(size), ptr);
};

2010 2011 2012
/*
 * Journal_head storage management
 */
2013
static struct kmem_cache *jbd2_journal_head_cache;
2014
#ifdef CONFIG_JBD2_DEBUG
2015 2016 2017
static atomic_t nr_journal_heads = ATOMIC_INIT(0);
#endif

2018
static int journal_init_jbd2_journal_head_cache(void)
2019 2020 2021
{
	int retval;

A
Al Viro 已提交
2022
	J_ASSERT(jbd2_journal_head_cache == NULL);
J
Johann Lombardi 已提交
2023
	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2024 2025
				sizeof(struct journal_head),
				0,		/* offset */
2026
				SLAB_TEMPORARY,	/* flags */
2027
				NULL);		/* ctor */
2028
	retval = 0;
A
Al Viro 已提交
2029
	if (!jbd2_journal_head_cache) {
2030 2031 2032 2033 2034 2035
		retval = -ENOMEM;
		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
	}
	return retval;
}

2036
static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
2037
{
2038 2039 2040 2041
	if (jbd2_journal_head_cache) {
		kmem_cache_destroy(jbd2_journal_head_cache);
		jbd2_journal_head_cache = NULL;
	}
2042 2043 2044 2045 2046 2047 2048 2049 2050
}

/*
 * journal_head splicing and dicing
 */
static struct journal_head *journal_alloc_journal_head(void)
{
	struct journal_head *ret;

2051
#ifdef CONFIG_JBD2_DEBUG
2052 2053
	atomic_inc(&nr_journal_heads);
#endif
2054
	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
A
Al Viro 已提交
2055
	if (!ret) {
2056
		jbd_debug(1, "out of memory for journal_head\n");
2057
		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
A
Al Viro 已提交
2058
		while (!ret) {
2059
			yield();
2060
			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2061 2062 2063 2064 2065 2066 2067
		}
	}
	return ret;
}

static void journal_free_journal_head(struct journal_head *jh)
{
2068
#ifdef CONFIG_JBD2_DEBUG
2069
	atomic_dec(&nr_journal_heads);
2070
	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2071
#endif
2072
	kmem_cache_free(jbd2_journal_head_cache, jh);
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
}

/*
 * A journal_head is attached to a buffer_head whenever JBD has an
 * interest in the buffer.
 *
 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
 * is set.  This bit is tested in core kernel code where we need to take
 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
 * there.
 *
 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
 *
 * When a buffer has its BH_JBD bit set it is immune from being released by
 * core kernel code, mainly via ->b_count.
 *
2089 2090 2091
 * A journal_head is detached from its buffer_head when the journal_head's
 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
 * transaction (b_cp_transaction) hold their references to b_jcount.
2092 2093 2094
 *
 * Various places in the kernel want to attach a journal_head to a buffer_head
 * _before_ attaching the journal_head to a transaction.  To protect the
2095
 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2096
 * journal_head's b_jcount refcount by one.  The caller must call
2097
 * jbd2_journal_put_journal_head() to undo this.
2098 2099 2100 2101
 *
 * So the typical usage would be:
 *
 *	(Attach a journal_head if needed.  Increments b_jcount)
2102
 *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2103
 *	...
2104 2105
 *      (Get another reference for transaction)
 *	jbd2_journal_grab_journal_head(bh);
2106
 *	jh->b_transaction = xxx;
2107
 *	(Put original reference)
2108
 *	jbd2_journal_put_journal_head(jh);
2109 2110 2111 2112 2113 2114 2115
 */

/*
 * Give a buffer_head a journal_head.
 *
 * May sleep.
 */
2116
struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
{
	struct journal_head *jh;
	struct journal_head *new_jh = NULL;

repeat:
	if (!buffer_jbd(bh)) {
		new_jh = journal_alloc_journal_head();
		memset(new_jh, 0, sizeof(*new_jh));
	}

	jbd_lock_bh_journal_head(bh);
	if (buffer_jbd(bh)) {
		jh = bh2jh(bh);
	} else {
		J_ASSERT_BH(bh,
			(atomic_read(&bh->b_count) > 0) ||
			(bh->b_page && bh->b_page->mapping));

		if (!new_jh) {
			jbd_unlock_bh_journal_head(bh);
			goto repeat;
		}

		jh = new_jh;
		new_jh = NULL;		/* We consumed it */
		set_buffer_jbd(bh);
		bh->b_private = jh;
		jh->b_bh = bh;
		get_bh(bh);
		BUFFER_TRACE(bh, "added journal_head");
	}
	jh->b_jcount++;
	jbd_unlock_bh_journal_head(bh);
	if (new_jh)
		journal_free_journal_head(new_jh);
	return bh->b_private;
}

/*
 * Grab a ref against this buffer_head's journal_head.  If it ended up not
 * having a journal_head, return NULL
 */
2159
struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
{
	struct journal_head *jh = NULL;

	jbd_lock_bh_journal_head(bh);
	if (buffer_jbd(bh)) {
		jh = bh2jh(bh);
		jh->b_jcount++;
	}
	jbd_unlock_bh_journal_head(bh);
	return jh;
}

static void __journal_remove_journal_head(struct buffer_head *bh)
{
	struct journal_head *jh = bh2jh(bh);

	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
	J_ASSERT_JH(jh, jh->b_transaction == NULL);
	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
	J_ASSERT_BH(bh, buffer_jbd(bh));
	J_ASSERT_BH(bh, jh2bh(jh) == bh);
	BUFFER_TRACE(bh, "remove journal_head");
	if (jh->b_frozen_data) {
		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
		jbd2_free(jh->b_frozen_data, bh->b_size);
2187
	}
2188 2189 2190 2191 2192 2193 2194 2195
	if (jh->b_committed_data) {
		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
		jbd2_free(jh->b_committed_data, bh->b_size);
	}
	bh->b_private = NULL;
	jh->b_bh = NULL;	/* debug, really */
	clear_buffer_jbd(bh);
	journal_free_journal_head(jh);
2196 2197 2198
}

/*
2199
 * Drop a reference on the passed journal_head.  If it fell to zero then
2200 2201
 * release the journal_head from the buffer_head.
 */
2202
void jbd2_journal_put_journal_head(struct journal_head *jh)
2203 2204 2205 2206 2207 2208
{
	struct buffer_head *bh = jh2bh(jh);

	jbd_lock_bh_journal_head(bh);
	J_ASSERT_JH(jh, jh->b_jcount > 0);
	--jh->b_jcount;
2209
	if (!jh->b_jcount) {
2210
		__journal_remove_journal_head(bh);
2211
		jbd_unlock_bh_journal_head(bh);
2212
		__brelse(bh);
2213 2214
	} else
		jbd_unlock_bh_journal_head(bh);
2215 2216
}

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
/*
 * Initialize jbd inode head
 */
void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
{
	jinode->i_transaction = NULL;
	jinode->i_next_transaction = NULL;
	jinode->i_vfs_inode = inode;
	jinode->i_flags = 0;
	INIT_LIST_HEAD(&jinode->i_list);
}

/*
 * Function to be called before we start removing inode from memory (i.e.,
 * clear_inode() is a fine place to be called from). It removes inode from
 * transaction's lists.
 */
void jbd2_journal_release_jbd_inode(journal_t *journal,
				    struct jbd2_inode *jinode)
{
	if (!journal)
		return;
restart:
	spin_lock(&journal->j_list_lock);
	/* Is commit writing out inode - we have to wait */
2242
	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
		wait_queue_head_t *wq;
		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
		spin_unlock(&journal->j_list_lock);
		schedule();
		finish_wait(wq, &wait.wait);
		goto restart;
	}

	if (jinode->i_transaction) {
		list_del(&jinode->i_list);
		jinode->i_transaction = NULL;
	}
	spin_unlock(&journal->j_list_lock);
}

2260
/*
2261
 * debugfs tunables
2262
 */
J
Jose R. Santos 已提交
2263 2264
#ifdef CONFIG_JBD2_DEBUG
u8 jbd2_journal_enable_debug __read_mostly;
2265
EXPORT_SYMBOL(jbd2_journal_enable_debug);
2266

2267
#define JBD2_DEBUG_NAME "jbd2-debug"
2268

J
Jose R. Santos 已提交
2269 2270
static struct dentry *jbd2_debugfs_dir;
static struct dentry *jbd2_debug;
2271

2272 2273 2274 2275
static void __init jbd2_create_debugfs_entry(void)
{
	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
	if (jbd2_debugfs_dir)
2276 2277
		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
					       S_IRUGO | S_IWUSR,
2278 2279
					       jbd2_debugfs_dir,
					       &jbd2_journal_enable_debug);
2280 2281
}

2282
static void __exit jbd2_remove_debugfs_entry(void)
2283
{
J
Jose R. Santos 已提交
2284 2285
	debugfs_remove(jbd2_debug);
	debugfs_remove(jbd2_debugfs_dir);
2286 2287
}

2288
#else
2289

2290
static void __init jbd2_create_debugfs_entry(void)
2291 2292 2293
{
}

2294
static void __exit jbd2_remove_debugfs_entry(void)
2295 2296 2297 2298 2299
{
}

#endif

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
#ifdef CONFIG_PROC_FS

#define JBD2_STATS_PROC_NAME "fs/jbd2"

static void __init jbd2_create_jbd_stats_proc_entry(void)
{
	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
}

static void __exit jbd2_remove_jbd_stats_proc_entry(void)
{
	if (proc_jbd2_stats)
		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
}

#else

#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)

#endif

2322
struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2323 2324 2325

static int __init journal_init_handle_cache(void)
{
2326
	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2327
	if (jbd2_handle_cache == NULL) {
2328 2329 2330 2331 2332 2333 2334
		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
		return -ENOMEM;
	}
	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
	if (jbd2_inode_cache == NULL) {
		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
		kmem_cache_destroy(jbd2_handle_cache);
2335 2336 2337 2338 2339
		return -ENOMEM;
	}
	return 0;
}

2340
static void jbd2_journal_destroy_handle_cache(void)
2341
{
2342 2343
	if (jbd2_handle_cache)
		kmem_cache_destroy(jbd2_handle_cache);
2344 2345 2346
	if (jbd2_inode_cache)
		kmem_cache_destroy(jbd2_inode_cache);

2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
}

/*
 * Module startup and shutdown
 */

static int __init journal_init_caches(void)
{
	int ret;

2357
	ret = jbd2_journal_init_revoke_caches();
2358
	if (ret == 0)
2359
		ret = journal_init_jbd2_journal_head_cache();
2360 2361 2362 2363 2364
	if (ret == 0)
		ret = journal_init_handle_cache();
	return ret;
}

2365
static void jbd2_journal_destroy_caches(void)
2366
{
2367 2368 2369
	jbd2_journal_destroy_revoke_caches();
	jbd2_journal_destroy_jbd2_journal_head_cache();
	jbd2_journal_destroy_handle_cache();
2370
	jbd2_journal_destroy_slabs();
2371 2372 2373 2374 2375 2376 2377 2378 2379
}

static int __init journal_init(void)
{
	int ret;

	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);

	ret = journal_init_caches();
2380 2381 2382 2383
	if (ret == 0) {
		jbd2_create_debugfs_entry();
		jbd2_create_jbd_stats_proc_entry();
	} else {
2384
		jbd2_journal_destroy_caches();
2385
	}
2386 2387 2388 2389 2390
	return ret;
}

static void __exit journal_exit(void)
{
2391
#ifdef CONFIG_JBD2_DEBUG
2392 2393 2394 2395
	int n = atomic_read(&nr_journal_heads);
	if (n)
		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
#endif
2396
	jbd2_remove_debugfs_entry();
2397
	jbd2_remove_jbd_stats_proc_entry();
2398
	jbd2_journal_destroy_caches();
2399 2400 2401 2402 2403 2404
}

MODULE_LICENSE("GPL");
module_init(journal_init);
module_exit(journal_exit);